Skip to main content

Plastid Genomes of Flowering Plants: Essential Principles

  • Protocol
  • First Online:
Chloroplast Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2317))

Abstract

The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  3. Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheppard AE, Madesis P, Lloyd AH, Day A, Ayliffe MA, Timmis JN (2011) Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus. Plant Mol Biol 76:299–309

    Article  CAS  PubMed  Google Scholar 

  5. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids Cell culture and somatic cell genetics of plants, vol 7a. Springer, Vienna, pp 5–53

    Google Scholar 

  7. Wu C, Lai Y, Lin C, Wang Y, Chaw S (2009) Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol 52:115–124

    Article  CAS  PubMed  Google Scholar 

  8. Cai Z, Penaflor C, Kuehl J, Leebens-Mack J, Carlson J, dePamphilis C, Boore J, Jansen R (2006) Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 6:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer-Verlag, Berlin, pp 29–63

    Chapter  Google Scholar 

  10. Clarke AK, MacDonald TM, Sjogren LLE (2005) The ATP-dependent Clp protease in chloroplasts of higher plants. Physiol Plant 123:406–412

    Article  CAS  Google Scholar 

  11. Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89

    Article  CAS  PubMed  Google Scholar 

  12. Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244

    Article  CAS  PubMed  Google Scholar 

  13. Cronan JE, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435

    Article  CAS  PubMed  Google Scholar 

  14. Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha HA, Dornelas MC, Varani AM, Oliveira GCX, Bergès H, Vieira ML (2017) The chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: structural organization and phylogenomic studies in Malpighiales. Front Plant Sci 8:334

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rabah SO, Shrestha B, Hajrah NH, Sabir JM, Alharby H, Sabir JM, Gilbert LE, Ruhlman TA, Jansen RK (2019) Passiflora plastome sequencing reveals widespread genomic rearrangements. J Syst Evol 57:1–14

    Article  Google Scholar 

  16. Park S, Ruhlman TA, Weng M-L, Hajrah NH, Sabir JSM, Jansen RK (2017) Contrasting patterns of nucleotide substitution rates provide insight into dynamic evolution of plastid and mitochondrial genomes of Geranium. Genome Biol Evol 9:1766–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gurdon C, Maliga P (2014) Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accD coding region in Medicago truncatula. DNA Res 21:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi I-S, Jansen RK, Ruhlman TA (2019) Lost and found: return of the inverted repeat in the legume clade defined by its absence. Genome Biol Evol. https://doi.org/10.1093/gbe/evz076

  19. Lee SS, Jeong WJ, Bae JM, Bang JW, Liu JR, Harn CH (2004) Characterization of the plastid-encoded carboxyltransferase subunit (accD) gene of potato. Mol Cells 17:422–429

    CAS  PubMed  Google Scholar 

  20. Konishi T, Shinohara K, Yamada K, Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37:117–122

    Article  CAS  PubMed  Google Scholar 

  21. Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen RK, Ruhlman T (2014) Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. Plant Biotechnol J 12:743–754

    Article  CAS  PubMed  Google Scholar 

  23. Page MLD, Hamel PP, Gabilly ST, Zegzouti H, Perea JV, Alonso JM, Ecker JR, Theg SM, Christensen SK, Merchant S (2004) A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b6f complex in Arabidopsis chloroplasts. J Biol Chem 279:32474–32482

    Article  CAS  PubMed  Google Scholar 

  24. Hamel PP, Dreyfuss BW, Xie Z, Gabilly ST, Merchant S (2003) Essential histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis protein. J Biol Chem 278:2593–2603

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki Y, Sekiguchi K, Nagano Y, Matsuno R (1993) Chloroplast envelope protein encoded by chloroplast genome. FEBS Lett 316:93–98

    Article  CAS  PubMed  Google Scholar 

  26. Willey DL, Gray JC (1990) An open reading frame encoding a putative haem-binding polypeptide is cotranscribed with the pea chloroplast gene for apocytochrome f. Plant Mol Biol 15:347–356

    Article  CAS  PubMed  Google Scholar 

  27. Rolland N, Dorne AJ, Amoroso G, Sültemeyer DF, Joyard J, Rochaix JD (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16:6713–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505

    Article  CAS  PubMed  Google Scholar 

  30. Schmitz-Linneweber C, Maier RM, Alcaraz J, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  CAS  PubMed  Google Scholar 

  31. Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of Solanaceous plastid genomes. J Mol Evol 63:194–207

    Article  CAS  PubMed  Google Scholar 

  32. Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104

    Article  CAS  PubMed  Google Scholar 

  33. Cai Z, Guisinger M, Kim H, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67:696–704

    Article  CAS  PubMed  Google Scholar 

  34. Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600

    Article  CAS  PubMed  Google Scholar 

  35. Weng M-L, Ruhlman TA, Jansen RK (2017) Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. New Phytol 214:842–851

    Article  CAS  PubMed  Google Scholar 

  36. Ruhlman TA, Jansen RK (2018) Aberration or analogy? The atypical plastomes of Geraniaceae. In: Chaw S-M, Jansen RK (eds) Advances in botanical research, plastid genome evolution. Academic, Cambridge, MA, pp 223–262

    Chapter  Google Scholar 

  37. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Article  CAS  PubMed  Google Scholar 

  38. Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  CAS  PubMed  Google Scholar 

  39. Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 70:149–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66:350–361

    Article  CAS  PubMed  Google Scholar 

  41. Cheon K-S, Kim K-A, Yoo K-O (2017) The complete chloroplast genome sequences of three Adenophora species and comparative analysis with Campanuloid species (Campanulaceae). PLoS One 12:e0183652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, Zalapa JE (2013) Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Gen 9:489–498

    Article  Google Scholar 

  43. Martínez-Alberola F, del Campo EM, Lázaro-Gimeno D, Mezquita-Claramonte S, Molins A, Mateu-Andrés I, Pedrola-Monfort J, Casano LM, Barreno E (2013) Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts. PLoS One 8:e79685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR (2012) Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol 4:294–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sanderson MJ, Copetti D, Búrquez A, Bustamante E, Charboneau JLM, Eguiarte LE, Kumar S, Lee HO, Lee J, McMahon M, Steele K, Wing R, Yang TJ, Zwickl D, Wojciechowski MF (2015) Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): loss of the ndh gene suite and inverted repeat. Am J Bot 102:1115–1127

    Article  CAS  PubMed  Google Scholar 

  46. Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (2013) Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339:571–574

    Article  CAS  PubMed  Google Scholar 

  47. de Vries J, Sousa FL, Bölter B, Soll J, Gould SB (2015) YCF1: a green TIC? Plant Cell 27:1827–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Iles WJD, Smith SY, Graham SW (2013) A well-supported phylogenetic framework for the monocot order Alismatales reveals multiple losses of the plastid NADH dehydrogenase complex and a strong long-branch effect. In: Early Events in Monocot Evolution, systematics association special volume series. Cambridge University Press, Cambridge, MA

    Google Scholar 

  49. Peredo EL, King UM, Les DH (2013) The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm. PLoS One 8:e68591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neyland R, Urbatsch LE (1996) Phylogeny of subfamily Epidendroideae (Orchidaceae) inferred from ndhF chloroplast gene sequences. Am J Bot 83:1195–1206

    Article  CAS  Google Scholar 

  51. Chang C-C, Lin H-C, Lin I-P, Chow T-Y, Chen H-H, Chen W-H, Cheng C-H, Lin C-Y, Liu S-M, Chang C-C, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  CAS  PubMed  Google Scholar 

  52. Wu F-H, Chan M-T, Liao D-C, Hsu C-T, Lee Y-W, Daniell H, Duvall MR, Lin C-S (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ruhlman TA, Chang W-J, Chen JJ, Huang Y-T, Chan M-T, Zhang J, Liao D-C, Blazier JC, Jin X, Shih M-C, Jansen RK, Lin CS (2015) NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. BMC Plant Biol 15:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Blazier JC, Guisinger MM, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272

    Article  CAS  Google Scholar 

  55. Ifuku K, Endo T, Shikanai T, Aro E-M (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol 52:1560–1568

    Article  CAS  PubMed  Google Scholar 

  56. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Braukmann TWA, Kuzmina M, Stefanović S (2009) Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet 55:323–337

    Article  CAS  PubMed  Google Scholar 

  58. Lee H, Golicz AA, Bayer PE, Severn-Ellis AA, Chan C-KK, Batley J, Kendrick GA, Edwards D (2018) Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. J Exp Bot 69:3689–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Portis AR, Parry MAJ (2007) Discoveries in Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94:121–143

    Article  CAS  PubMed  Google Scholar 

  60. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci U S A 76:41–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci U S A 78:5533–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93

    Article  CAS  Google Scholar 

  63. Stein DB, Palmer JD, Thompson WF (1986) Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. Curr Genet 10:835–841

    Article  CAS  Google Scholar 

  64. Tassopulu D, Kung SD (1984) Nicotiana chloroplast genome. 6. Deletion and hot spot - a proposed origin of the inverted repeats. Theor Appl Genet 67:185–193

    Article  CAS  PubMed  Google Scholar 

  65. Goulding SE, Wolfe KH, Olmstead RG, Morden CW (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  CAS  PubMed  Google Scholar 

  66. Falcon LI, Magallon S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783

    Article  CAS  PubMed  Google Scholar 

  67. Criscuolo A, Gribaldo S (2011) Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol 28:3019–3032

    Article  CAS  PubMed  Google Scholar 

  68. Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    Article  CAS  PubMed  Google Scholar 

  69. Jansen RK, Wojciechowski MF, Sanniyasi E, Lee S, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550

    Article  CAS  PubMed  Google Scholar 

  71. Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11:275–286

    Article  CAS  Google Scholar 

  72. Wolfe KH (1988) The site of deletion of the inverted repeat in pea chloroplast DNA contains duplicated gene fragments. Curr Genet 13:97–99

    Article  CAS  PubMed  Google Scholar 

  73. Perry AS, Wolfe KH (2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J Mol Evol 55:501–508

    Article  CAS  PubMed  Google Scholar 

  74. Downie S, Palmer J (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, NY, pp 14–35

    Chapter  Google Scholar 

  75. Blazier JC, Jansen RK, Mower JP, Govindu M, Zhang J, Weng M-L, Ruhlman TA (2016) Variable presence of the inverted repeat and plastome stability in Erodium. Ann Bot 117:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ruhlman TA, Zhang J, Blazier JC, Sabir JSM, Jansen RK (2017) Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure. Am J Bot 104:559–572

    Article  CAS  PubMed  Google Scholar 

  77. Zhang J, Ruhlman TA, Sabir JSM, Blazier JC, Weng M-L, Park S, Jansen RK (2016) Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity. Genome Biol Evol 8:622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guisinger MM Personal communication

    Google Scholar 

  79. Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, Li J, Lim GS, Mayfield-Jones DR, Perez L, Medina J, Pires JC, Santos C, Wm Stevenson D, Zomlefer W, Davis JI (2016) Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol 209:855–870

    Article  PubMed  Google Scholar 

  80. Wimpee CF, Wrobel RL, Garvin DK (1991) A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Mol Biol 17:161–166

    Article  CAS  PubMed  Google Scholar 

  81. Frailey DC, Chaluvadi SR, Vaughn JN, Coatney CG, Bennetzen JL (2018) Gene loss and genome rearrangement in the plastids of five hemiparasites in the family Orobanchaceae. BMC Plant Biol 18:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A 89:10648–10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Delannoy E, Fujii S, Colas des Francs-Small, C., Brundrett, M., and Small, I. (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wolfe KH, Li W, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Birky CW Jr, Walsh JB (1992) Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. Genetics 130:677–683

    Article  PubMed  Google Scholar 

  88. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maliga P (1993) Towards plastid transformation in flowering plants. Trends Biotechnol 11:101–107

    Article  CAS  Google Scholar 

  90. Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    Article  CAS  PubMed  Google Scholar 

  92. Tungsuchat-Huang T, Sinagawa-García SR, Paredes-López O, Maliga P (2010) Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats. Plant Physiol 153:252–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schwarz EN, Ruhlman TA, Sabir JSM, Hajrah NH, Alharbi NS, Al-Malki AL, Bailey CD, Jansen RK (2017) Plastome-wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. J Mol Evol 84:187–203

    Article  CAS  PubMed  Google Scholar 

  94. Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    Article  CAS  PubMed  Google Scholar 

  95. Maréchal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317

    Article  PubMed  CAS  Google Scholar 

  96. Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8:e67350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Walker JF, Jansen RK, Zanis MJ, Emery NC (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. Am J Bot 102:1751–1752

    Article  CAS  PubMed  Google Scholar 

  98. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  99. Kim K, Lee H (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cell 19:104–113

    CAS  Google Scholar 

  100. Bain JF, Jansen RK (2006) A chloroplast DNA hairpin structure provides useful phylogenetic data within tribe Senecioneae (Asteraceae). Can J Bot 84:862–868

    Article  CAS  Google Scholar 

  101. Ansell SW, Schneider H, Pedersen N, Grundmann M, Russell SJ, Vogel JC (2007) Recombination diversifies chloroplast trnF pseudogenes in Arabidopsis lyrata. J Evol Biol 20:2400–2411

    Article  CAS  PubMed  Google Scholar 

  102. Morton BR, Clegg MT (1993) A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr Genet 24:357–365

    Article  CAS  PubMed  Google Scholar 

  103. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    Article  CAS  PubMed  Google Scholar 

  104. Plunkett GM, Downie SR (2000) Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst Bot 25:648–667

    Article  Google Scholar 

  105. Wang R, Cheng C, Chang C, Wu C, Su T, Chaw S (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8:36–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Davis JI, Soreng RJ (2010) Migration of endpoints of two genes relative to boundaries between regions of the plastid genome in the grass family (Poaceae). Am J Bot 97:874–892

    Article  CAS  PubMed  Google Scholar 

  107. Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR (2012) Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus. Silene Genome Biol Evolution 4:294–306

    Article  CAS  Google Scholar 

  108. Palmer JD, Nugent JM, Herbon LA (1987) Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci U S A 84:769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim KJ, Jansen RK (1994) Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst Evol 190:157–185

    Article  CAS  Google Scholar 

  110. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  CAS  PubMed  Google Scholar 

  111. Ma J, Yang B, Zhu W, Sun L, Tian J, Wang X (2013) The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene 528:120–131

    Article  CAS  PubMed  Google Scholar 

  112. Lee H, Jansen RK, Chumley TW, Kim K (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180

    Article  CAS  PubMed  Google Scholar 

  113. Mariotti R, Cultrera NGM, Díez CM, Baldoni L, Rubini A (2010) Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biol 10:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Oldenburg DJ, Bendich AJ (2015) DNA maintenance in plastids and mitochondria of plants. Front Plant Sci 6:883

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci U S A 84:5818–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  CAS  PubMed  Google Scholar 

  117. Stein DB, Conant DS, Ahearn ME, Jordan ET, Kirch SA, Hasebe M, Iwatsuki K, Tan MK, Thomson JA (1992) Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proc Natl Acad Sci U S A 89:1856–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cosner ME, Raubeson LA, Jansen RK (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Blazier C, Guisinger M, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272

    Article  CAS  Google Scholar 

  120. Weng M-L, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastome in Geraniaceae reveals a correlation between genome rearrangements, repeats and nucleotide substitution rates. Mol Biol Evol 31:645–659

    Article  CAS  PubMed  Google Scholar 

  121. Park S, Jansen R, Park S (2015) Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae. BMC Plant Biol 15:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10:3073–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ueda M, Fujimoto M, Arimura S, Murata J, Tsutsumi N, Kadowaki K (2007) Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus. Gene 402:51–56

    Article  CAS  PubMed  Google Scholar 

  125. Jansen RK, Saski C, Lee S, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847

    Article  CAS  PubMed  Google Scholar 

  126. Zhelyazkova P, Sharma CM, Förstner KU, Liere K, Vogel J, Börner T (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 12:279–291

    Article  CAS  Google Scholar 

  128. Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA (2003) Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol 52:923–934

    Article  CAS  PubMed  Google Scholar 

  129. Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arthofer W, Schuler S, Steiner FM, Schlick-Steiner BC (2010) Chloroplast DNA-based studies in molecular ecology may be compromised by nuclear-encoded plastid sequence. Mol Ecol 19:3853–3856

    Article  CAS  PubMed  Google Scholar 

  131. Lloyd AH, Timmis JN (2011) The origin and characterization of new nuclear genes originating from a cytoplasmic organellar genome. Mol Biol Evol 28:2019–2028

    Article  CAS  PubMed  Google Scholar 

  132. Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc B 358:19–38

    Article  CAS  Google Scholar 

  133. Allen JF, Puthiyaveetil S, Strom J, Allen CA (2005) Energy transduction anchors genes in organelles. BioEssays 27:426–435

    Article  CAS  PubMed  Google Scholar 

  134. Daley DO, Whelan J (2005) Why genes persist in organelle genomes. Genome Biol 6:110–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Allen JF (1993) Redox control of gene expression and the function of chloroplast genomes – an hypothesis. Photosynth Res 36:95–102

    Article  CAS  PubMed  Google Scholar 

  136. Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wright AF, Murphy MP, Turnbull DM (2009) Do organellar genomes function as long-term redox damage sensors? Trends Genet 25:253–261

    Article  CAS  PubMed  Google Scholar 

  138. Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci U S A 91:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zerges W (2002) Does complexity constrain organelle evolution? Trends Plant Sci 7:175–182

    Article  CAS  PubMed  Google Scholar 

  140. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. BBA-Bioenergetics 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  141. Akbarova YY, Solovyev VV, Shahmuradov IA (2010) Possible functional and evolutionary role of plastid DNA inserted in rice genome. Appl Comput Math 9:19–33

    Google Scholar 

  142. Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 25:1566–1575

    Article  CAS  PubMed  Google Scholar 

  143. Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, Nakayama T, Ishida K, Bhattacharya D (2010) Differential gene retention in plastids of common recent origin. Mol Biol Evol 27:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rousseau-Gueutin M, Ayliffe MA, Timmis JN (2011) Conservation of plastid sequences in the plant nuclear genome for millions of years facilitates endosymbiotic evolution. Plant Physiol 157:2181–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702

    Article  CAS  PubMed  Google Scholar 

  146. Nakazono M, Hira A (1993) Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Mol Gen Genet 236:341–346

    Article  CAS  PubMed  Google Scholar 

  147. Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  CAS  PubMed  Google Scholar 

  148. Alverson AJ, Wei XX, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10(1):e1001241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kumar RA, Bendich AJ (2011) Distinguishing authentic mitochondrial and plastid DNAs from similar DNA sequences in the nucleus using the polymerase chain reaction. Curr Genet 57:287–295

    Article  CAS  PubMed  Google Scholar 

  151. Maier RM, Schmitz-Linneweber (2004) Plastid genomes. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Springer, Dordrecht, pp 115–150

    Chapter  Google Scholar 

  152. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279–282

    Article  CAS  PubMed  Google Scholar 

  153. Rauwolf U, Golczyk H, Greiner S, Herrmann RG (2010) Variable amounts of DNA related to the size of chloroplasts III. Biochemical determinations of DNA amounts per organelle. Mol Genet Genomics 283:35–47

    Article  CAS  PubMed  Google Scholar 

  154. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schottler MA, Bock R (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23:3137–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Maliga P, Carrer H, Kanevski I, Staub J, Svab Z (1993) Plastid engineering in land plants: a conservative genome is open to change. Philos Trans R Soc B 342:203–208

    Article  CAS  Google Scholar 

  157. Maliga P, Sz-Breznovits A, Marton L, Joo F (1975) Non-Mendelian streptomycin-resistant tobacco mutant with altered chloroplasts and mitochondria. Nature 255:401–402

    Article  CAS  PubMed  Google Scholar 

  158. Moller S (2005) Plastid division in higher plants. In: Moller SG (ed) Plastids. Blackwell, Oxford, pp 126–152

    Google Scholar 

  159. McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929

    Article  CAS  PubMed  Google Scholar 

  160. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AI, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  CAS  PubMed  Google Scholar 

  161. Maenpaa P, Gonzalez EB, Chen L, Khan MS, Gray JC, Aro EM (2000) The ycf9 (orf62) gene in the plant chloroplast genome encodes a hydrophobic protein of stromal thylakoid membranes. J Exp Bot 51:375–382

    Article  CAS  PubMed  Google Scholar 

  162. Baena-Gonzalez E, Gray JC, Tyystjarvi E, Aro EM, Maenpaa P (2001) Abnormal regulation of photosynthetic electron transport in a chloroplast ycf9 inactivation mutant. J Biol Chem 276:20795–20802

    Article  CAS  PubMed  Google Scholar 

  163. Swiatek M, Greiner S, Kemp S, Drescher A, Koop H, Herrmann RG, Maier RM (2003) PCR analysis of pulsed-field gel electrophoresis-purified plastid DNA, a sensitive tool to judge the hetero-/homoplastomic status of plastid transformants. Curr Genet 43:45–53

    Article  CAS  PubMed  Google Scholar 

  164. Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner D, Simon P (2012) De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol 12:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Spooner DM, Ruess H, Iorizzo M, Senalik D, Simon P (2017) Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. Am J Bot 104:296–312

    Article  CAS  PubMed  Google Scholar 

  167. Downie SR, Jansen RK (2015) A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst Bot 40:336–351

    Article  Google Scholar 

  168. Ma P-F, Zhang Y-X, Guo Z-H, Li D-Z (2015) Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci Rep 5:11608

    Article  PubMed  PubMed Central  Google Scholar 

  169. Burke SV, Ungerer MC, Duvall MR (2018) Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae). BMC Plant Biol 18:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Rabah SO, Lee C, Hajrah NH, Makki RM, Alharby HF, Alhebshi AM, Sabir JSM, Jansen RK, Ruhlman TA (2017) Plastome sequencing of ten nonmodel crop species uncovers a large insertion of mitochondrial DNA in cashew. Plant Genome 10:1–14

    Article  CAS  Google Scholar 

  171. Ku C, Chung W-C, Chen L-L, Kuo C-H (2013) The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS ONE 8:e68518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Straub SCK, Cronn RC, Edwards C, Fishbein M, Liston A (2013) Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biol Evol 5:1872–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Klaus SMJ, Huang F, Golds TJ, Koop H (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229

    Article  CAS  PubMed  Google Scholar 

  174. Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30:259–262

    Article  CAS  PubMed  Google Scholar 

  175. Catalano SA, Saidman BO, Vilardi JC (2009) Evolution of small inversions in chloroplast genome: a case study from a recurrent inversion in angiosperms. Cladistics 25:93–104

    Article  PubMed  Google Scholar 

  176. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  CAS  PubMed  Google Scholar 

  177. Gray BN, Ahner BA, Hanson MR (2009) Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res 18:559–572

    Article  CAS  PubMed  Google Scholar 

  178. Agrawal AF, Hadany L, Otto SP (2005) The evolution of plastic recombination. Genetics 171:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  181. Singh S, Roy S, Choudhury S, Sengupta D (2010) DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice. BMC Genomics 11:443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Cerutti H, Ibrahim HZ, Jagendorf AT (1993) Treatment of pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to Escherichia coli RecA. Plant Physiol 102:155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cerutti H, Jagendorf AT (1993) DNA strand-transfer activity in pea (Pisum sativum L.) chloroplasts. Plant Physiol 102:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cerutti H, Johnson A, Boynton J, Gillham N (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol 15:3003–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rowan BA, Oldenburg DJ, Bendich AJ (2010) RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot 61:2575–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kolodner RD, Tewari KK (1975) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256:708–711

    Article  CAS  PubMed  Google Scholar 

  187. Krishnan NM, Rao BJ (2009) A comparative approach to elucidate chloroplast genome replication. BMC Genomics 10:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Zampini É, Truche S, Lepage É, Tremblay-Belzile S, Brisson N (2017) Plastid genome stability and repair. In: Somatic genome variation in animals, plants, and microorganisms. John Wiley & Sons, Ltd, Hoboken, NJ, pp 119–163

    Chapter  Google Scholar 

  189. Meeker R, Nielsen B, Tewari KK (1988) Localization of replication origins in pea chloroplast DNA. Mol Cell Biol 8:1216–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lu Z, Kunnimalaiyaan M, Nielsen BL (1996) Characterization of replication origins flanking the 23S rRNA gene in tobacco chloroplast DNA. Plant Mol Biol 32:693–706

    Article  CAS  PubMed  Google Scholar 

  191. Takeda Y, Hirokawa H, Nagata T (1992) The replication origin of proplastid DNA in cultured cells of tobacco. Mol Gen Genet 232:191–198

    Article  CAS  PubMed  Google Scholar 

  192. Kunnimalaiyaan M, Shi F, Nielsen BL (1997) Analysis of the tobacco chloroplast DNA replication origin (ori B) downstream of the 23 S rRNA gene. J Mol Biol 268:273–283

    Article  CAS  PubMed  Google Scholar 

  193. Kunnimalaiyaan M, Nielsen BL (1997) Fine mapping of replication origins (ori A and ori B) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res 25:3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mühlbauer SK, Lössl A, Tzekova L, Zou Z, Koop H (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J 32:175–184

    Article  PubMed  Google Scholar 

  195. Wang Y, Saitoh Y, Sato T, Hidaka S, Tsutsumi K (2003) Comparison of plastid DNA replication in different cells and tissues of the rice plant. Plant Mol Biol 52:905–913

    Article  CAS  PubMed  Google Scholar 

  196. Scharff LB, Koop H (2007) Targeted inactivation of the tobacco plastome origins of replication A and B. Plant J 50:782–794

    Article  CAS  PubMed  Google Scholar 

  197. Deng XW, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci U S A 86:4156–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Scharff LB, Koop H (2006) Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol Biol 62:611–621

    Article  CAS  PubMed  Google Scholar 

  200. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    Article  CAS  PubMed  Google Scholar 

  201. Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rowan B, Oldenburg D, Bendich A (2004) The demise of chloroplast DNA in Arabidopsis. Curr Genet 46:176–181

    Article  CAS  PubMed  Google Scholar 

  203. Rowan B, Oldenburg D, Bendich A (2009) A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis. BMC Plant Biol 9:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Zheng Q, Oldenburg DJ, Bendich AJ (2011) Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species. J Exp Bot 62:2751–2730

    Article  CAS  Google Scholar 

  205. Li W, Ruf S, Bock R (2006) Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Mol Gen Genomics 275:185–192

    Article  CAS  Google Scholar 

  206. Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    Article  CAS  PubMed  Google Scholar 

  207. Evans IM, Rus AM, Belanger EM, Kimoto M, Brusslan JA (2010) Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence. Plant Biol 12:1–12

    Article  CAS  PubMed  Google Scholar 

  208. Maréchal A, Parent J, Véronneau-Lafortune F, Joyeux A, Lang BF, Brisson N (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci U S A 106:14693–14698

    Article  PubMed  PubMed Central  Google Scholar 

  209. Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Cappadocia L, Parent JS, Zampini E, Lepage E, Sygusch J, Brisson N (2012) A conserved lysine residue of plant whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Res 40:258–269

    Article  CAS  PubMed  Google Scholar 

  211. Parent JS, Lepage E, Brisson N (2011) Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol 156:254–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Xu YZ, Arrieta-Montiel MP, Virdi KS, de Paula WBM, Wildhalm JR, Basset GJ, Davila JI, Elthon TE, Elowsky CG, Sato SJ, Clemente TE, Mackenzie SA (2011) MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. Plant Cell 23:3428–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kwon T, Huq E, Herrin DL (2010) Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of Arabidopsis. Proc Natl Acad Sci U S A 107:13954–13959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. McVey M, Lee S (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cappadocia L, Maréchal A, Parent J, Lepage E, Sygusch J, Brisson N (2010) Crystal structures of DNA-whirly complexes and their role in Arabidopsis organelle genome repair. Plant Cell 22:1849–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zampini É, Lepage É, Tremblay-Belzile S, Truche S, Brisson N (2015) Organelle DNA rearrangement mapping reveals U-turn-like inversions as a major source of genomic instability in Arabidopsis and humans. Genome Res 25:645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861

    Article  CAS  PubMed  Google Scholar 

  219. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Smith DR (2011) Extending the limited transfer window hypothesis to inter-organelle DNA migration. Genome Biol Evol 3:743–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kohl S, Bock R (2009) Transposition of a bacterial insertion sequence in chloroplasts. Plant J 58:423–436

    Article  CAS  PubMed  Google Scholar 

  222. Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer-Verlag, Berlin Heidelberg, pp 65–119

    Chapter  Google Scholar 

  223. Pleines T, Jakob SS, Blattner FR (2008) Application of non-coding DNA regions in intraspecific analyses. Plant Syst Evolution 282:281–294

    Article  CAS  Google Scholar 

  224. Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Fujitani Y, Yamamoto K, Kobayashi I (1995) Dependence of frequency of homologous recombination on the homology length. Genetics 140:797–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  PubMed  Google Scholar 

  227. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  228. Zubko MK, Zubko EI, Zuilen KV, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    Article  CAS  Google Scholar 

  229. Nguyen TT, Nugent G, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Sci 168:1495–1500

    Article  CAS  Google Scholar 

  230. Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  232. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B–proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts, Nat. PRO 3:739–758

    CAS  Google Scholar 

  234. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A 104:19363–19368

    Article  PubMed  PubMed Central  Google Scholar 

  235. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A 107:4623–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE (2018) Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. Am J Bot 105:291–301

    Article  PubMed  Google Scholar 

  237. Swangpol S, Volkaert H, Sotto RC, Seelanan T (2007) Utility of selected non-coding chloroplast DNA sequences for lineage assessment of Musa interspecific hybrids. J Biochem Mol Biol 40:577–587

    CAS  PubMed  Google Scholar 

  238. Whitlock BA, Hale AM, Groff PA (2010) Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PLoS One 5:e11533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Waters DLE, Nock CJ, Ishikawa R, Rice N, Henry RJ (2011) Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol 2:211–217

    Article  Google Scholar 

  240. Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC (2011) The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76:385–396

    Article  CAS  PubMed  Google Scholar 

  242. Shen Y, Danon A, Christopher DA (2001) RNA binding-proteins interact specifically with the Arabidopsis chloroplast psbA mRNA 5′ untranslated region in a redox-dependent manner. Plant Cell Physiol 42:1071–1078

    Article  CAS  PubMed  Google Scholar 

  243. Nickelsen J (2003) Chloroplast RNA-binding proteins. Curr Genet 43:392–399

    Article  CAS  PubMed  Google Scholar 

  244. Pfalz J, Bayraktar OA, Prikryl J, Barkan A (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2042–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155

    Article  CAS  PubMed  Google Scholar 

  246. Zhelyazkova P, Hammani K, Rojas M, Voelker R, Vargas-Suarez M, Borner T, Barkan A (2011) Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts. Nucleic Acids Res 40:3092–3105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    Article  CAS  PubMed  Google Scholar 

  248. Loza-Tavera H, Vargas-Suárez M, Díaz-Mireles E, Torres-Márquez M, González de la Vara L, Moreno-Sánchez R, Gruissem W (2006) Phosphorylation of the spinach chloroplast 24 kDa RNA-binding protein (24RNP) increases its binding to petD and psbA 3′ untranslated regions. Biochimie 88:1217–1228

    Article  CAS  PubMed  Google Scholar 

  249. Borsch T, Quandt D (2009) Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. Plant Syst Evol 282:169–199

    Article  CAS  Google Scholar 

  250. Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K (2002) Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19:2084–2091

    Article  CAS  PubMed  Google Scholar 

  251. Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2008) Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci U S A 105:18424–18429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhong B, Yonezawa T, Zhong Y, Hasegawa M (2009) Episodic evolution and adaptation of chloroplast genomes in ancestral grasses. PLoS One 4:e5297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  254. Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576

    Article  CAS  PubMed  Google Scholar 

  255. Storchova H, Olson MS (2007) The architecture of the chloroplast psbA-trnH non-coding region in angiosperms. Plant Syst Evol 268:235–256

    Article  CAS  Google Scholar 

  256. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  257. Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 40:393–412

    Article  Google Scholar 

  258. Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951

    Article  CAS  PubMed  Google Scholar 

  259. Hu Y, Zhang Q, Rao G, Sodmergen (2008) Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. Plant Cell Physiol 49:958–968

    Article  CAS  PubMed  Google Scholar 

  260. Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci U S A 82:6960–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Thanh ND, Medgyesy P (1989) Limited chloroplast gene transfer via recombination overcomes plastome-genome incompatibility between Nicotiana tabacum and Solanum tuberosum. Plant Mol Biol 12:87–93

    Article  CAS  PubMed  Google Scholar 

  262. Kung SD, Zhu YS, Chen K, Shen GF, Sisson VA (1981) Nicotiana chloroplast genome. Mol Gen Genet 183:20–24

    Article  CAS  Google Scholar 

  263. Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N, Gargouri-Bouzid R (2007) Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tiss Organ Cult 91:179–189

    Article  CAS  Google Scholar 

  264. Yadav P, Bhat SR, Prakash S, Mishra LC, Chopra VL (2009) Resynthesized Brassica juncea lines with novel organellar genome constitution obtained through protoplast fusion. J Genet 88:109–112

    Article  PubMed  Google Scholar 

  265. Marshall HD, Newton C, Ritland K (2001) Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. Mol Biol Evol 18:2136–2138

    Article  CAS  PubMed  Google Scholar 

  266. Vaughn KC (1981) Plastid fusion as an agent to arrest sorting out. Curr Genet 3:243–245

    Article  CAS  PubMed  Google Scholar 

  267. Gray JC, Hibberd JM, Linley PJ, Uijtewaal B (1999) GFP movement between chloroplasts. Nat Biotechnol 17:906–909

    Article  PubMed  CAS  Google Scholar 

  268. Kwok EY, Hanson MR (2004) GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot 55:595–604

    Article  CAS  PubMed  Google Scholar 

  269. Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31:646–657

    Article  PubMed  Google Scholar 

  270. Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SKA, Newell CA (2012) Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J 69:387–398

    Article  CAS  PubMed  Google Scholar 

  271. Brunkard JO, Runkel AM, Zambryski PC (2015) The cytosol must flow: intercellular transport through plasmodesmata. Curr Opin Cell Biol 35:13–20

    Article  CAS  PubMed  Google Scholar 

  272. Pérez-Sancho J, Tilsner J, Samuels AL, Botella MA, Bayer EM, Rosado A (2016) Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol 26:705–717

    Article  PubMed  CAS  Google Scholar 

  273. Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci U S A 92:11331–11338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Zhang Q, Sodmergen (2010) Why does biparental plastid inheritance revive in angiosperms? J Plant Res 123:201–206

    Article  PubMed  Google Scholar 

  275. Greiner S, Rauwolf U, Meurer J, Herrmann RG (2011) The role of plastids in plant speciation. Mol Ecol 20:671–691

    Article  PubMed  Google Scholar 

  276. Greiner S, Bock R (2013) Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 35:354–365

    Article  CAS  PubMed  Google Scholar 

  277. Burton RS, Pereira RJ, Barreto FS (2013) Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst 44:281–302

    Article  Google Scholar 

  278. Bock DG, Andrew RL, Rieseberg LH (2014) On the adaptive value of cytoplasmic genomes in plants. Mol Ecol 23:4899–4911

    Article  PubMed  Google Scholar 

  279. Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Advances in photosynthesis and respiration 35, Genomics of chloroplasts and mitochondria. Springer, Dordrecht, pp 103–126

    Google Scholar 

  280. Barnard-Kubow KB, Sloan DB, Galloway LF (2014) Correlation between sequence divergence and polymorphism reveals similar evolutionary mechanisms acting across multiple timescales in a rapidly evolving plastid genome. BMC Evol Biol 14:268

    Article  PubMed  Google Scholar 

  281. Barnard-Kubow KB, McCoy MA, Galloway LF (2017) Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. New Phytol 213:1466–1476

    Article  CAS  PubMed  Google Scholar 

  282. Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  CAS  PubMed  Google Scholar 

  283. Korpelainen H (2004) The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 91:505–518

    Article  CAS  PubMed  Google Scholar 

  284. Zhang J, Ruhlman TA, Sabir J, Blazier JC, Jansen RK (2015) Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae. Plant Cell 27:563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Weng M-L, Ruhlman TA, Jansen RK (2016) Plastid–nuclear interaction and accelerated coevolution in plastid ribosomal genes in Geraniaceae. Genome Biol Evol 8:1824–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Bogdanova VS, Zaytseva OO, Mglinets AV, Shatskaya NV, Kosterin OE, Vasiliev GV (2015) Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-coA carboxylase subunits. PLoS ONE 10:e0119835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG (2008) The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolution. Nucleic Acids Res 36:2366–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Lysenko EA (2007) Plant sigma factors and their role in plastid transcription. Plant Cell Rep 26:845–859

    Article  CAS  PubMed  Google Scholar 

  289. Sloan DB, Triant DA, Wu M, Taylor DR (2014) Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes. Mol Biol Evol 31:673–682

    Article  CAS  PubMed  Google Scholar 

  290. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious:v5.1. http://www.geneious.com

  291. Darling AE, Mau B, Perna NT (2010) Progressive mauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS One 5:e11147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Support for this study was provided by the National Science Foundation (DEB-0717372 to R.K.J. and IOS-1027259 and DEB-1853024 to R.K.J. and T.A.R.), the Sidney F. and Doris Blake Professorship in Systematic Botany to R.K.J., and the Fred C. Gloeckner Foundation (to T.A.R. and R.K.J.). The authors thank J. Chris Blazier for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey A. Ruhlman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruhlman, T.A., Jansen, R.K. (2021). Plastid Genomes of Flowering Plants: Essential Principles. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 2317. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1472-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1472-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1471-6

  • Online ISBN: 978-1-0716-1472-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics