Skip to main content

Applications of Doubled Haploids in Plant Breeding and Applied Research

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2287))

Abstract

Manifold and diverse applications of doubled haploid (DH) plants have emerged in academy and in the plant breeding industry since the first discovery of a haploid mutant in the Jimson Weed (Datura stramonium), followed by the first reports about anther culture in the same species, maternal haploids by wide crosses in tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.), interspecific hybridization, ovary culture (gynogenesis), isolated microspore culture, and more recently the CENH3 approach in thale cress (Arabidopsis thaliana L.) and other species. Research and development efforts were and are still significant in both user groups. Luckily, often academic and industrial partners cooperate in challenging and sometimes voluminous projects worldwide. Not only to develop innovative DH protocols and technologies per se, but also to exploit the advantages of DH plants in a huge variety of research and development experiments. This review concentrates not on the DH technologies per se, but on the application of DHs in plant-related research and development projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson Weed, “Datura stramonium”. Science 55(1433):646–647. https://doi.org/10.1126/science.55.1433.646

    Article  CAS  PubMed  Google Scholar 

  2. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of datura. Nature 204(4957):497–497. https://doi.org/10.1038/204497a0

    Article  Google Scholar 

  3. Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206(4418):585. https://doi.org/10.1126/science.206.4418.585

    Article  CAS  PubMed  Google Scholar 

  4. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225(5235):874–876. https://doi.org/10.1038/225874a0

    Article  CAS  PubMed  Google Scholar 

  5. Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A (2019) State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132(3):593–605. https://doi.org/10.1007/s00122-018-3261-9

    Article  CAS  PubMed  Google Scholar 

  6. Van Geyt J, Speckmann GJ Jr, D’Halluin K, Jacobs M (1987) In vitro induction of haploid plants from unpollinated ovules and ovaries of the sugarbeet (Beta vulgaris L.). Theor Appl Genet 73(6):920–925. https://doi.org/10.1007/bf00289399

    Article  PubMed  Google Scholar 

  7. Pescitelli SM, Johnson CD, Petolino JF (1990) Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep 8(10):628–631. https://doi.org/10.1007/bf00270070

    Article  CAS  PubMed  Google Scholar 

  8. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105(5):427–434. https://doi.org/10.1016/S0044-328X(82)80040-8

    Article  Google Scholar 

  9. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618. https://doi.org/10.1038/nature08842

    Article  CAS  PubMed  Google Scholar 

  10. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30(5):839–857. https://doi.org/10.1007/s00299-011-1061-7

    Article  CAS  PubMed  Google Scholar 

  11. L-q Y, Fu S-h, Yang J, Li Y, J-s W, M-l W (2016) Generation, identification, formation mechanism and application of plant haploids. Yi Chuan 38(11):979–991. https://doi.org/10.16288/j.yczz.16-121

    Article  Google Scholar 

  12. Forster BP, WTB T (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88. https://doi.org/10.1002/9780470650301.ch3

    Article  CAS  Google Scholar 

  13. Chang M-T, Coe EH (2009) Doubled haploids. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 127–142. https://doi.org/10.1007/978-3-540-68922-5_10

    Chapter  Google Scholar 

  14. Choo TM (1981) Doubled haploids for studying the inheritance of quantitative characters. Genetics 99(3–4):525–540

    Article  CAS  Google Scholar 

  15. Choo TM, Reinbergs E, Park SJ (1982) Comparison of frequency distributions of doubled haploid and single seed descent lines in barley. Theor Appl Genet 61(3):215–218. https://doi.org/10.1007/BF00273777

    Article  CAS  PubMed  Google Scholar 

  16. Powell W, Caligari PD, Swanston JS, Jinks JL (1985) Genetical investigations into β-glucan content in barley. Theor Appl Genet 71(3):461–466. https://doi.org/10.1007/BF00251188

    Article  CAS  PubMed  Google Scholar 

  17. COST

    Google Scholar 

  18. Bordes J, Charmet G, de Vaulx RD, Pollacsek M, Beckert M, Gallais A (2006) Doubled haploid versus S1 family recurrent selection for testcross performance in a maize population. Theor Appl Genet 112(6):1063–1072. https://doi.org/10.1007/s00122-006-0208-3

    Article  CAS  PubMed  Google Scholar 

  19. Sleper JA, Bernardo R (2016) Recombination and genetic variance among maize doubled haploids induced from F(1) and F(2) plants. Theor Appl Genet 129(12):2429–2436. https://doi.org/10.1007/s00122-016-2781-4

    Article  CAS  PubMed  Google Scholar 

  20. Couto EGO, Cury MN, Bandeira e Souza M, Granato ÍSC, Vidotti MS, Domingos Garbuglio D, Crossa J, Burgueño J, Fritsche-Neto R (2019) Effect of F1 and F2 generations on genetic variability and working steps of doubled haploid production in maize. PLoS One 14(11):e0224631. https://doi.org/10.1371/journal.pone.0224631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mwathi MW, Schiessl SV, Batley J, Mason AS (2019) “Doubled-haploid” allohexaploid Brassica lines lose fertility and viability and accumulate genetic variation due to genomic instability. Chromosoma 128(4):521–532. https://doi.org/10.1007/s00412-019-00720-w

    Article  PubMed  Google Scholar 

  22. Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33(6 Pt 1):812–829. https://doi.org/10.1016/j.biotechadv.2015.07.001

    Article  PubMed  Google Scholar 

  23. Filiault DL, Seymour DK, Maruthachalam R, Maloof JN (2017) The generation of doubled haploid lines for QTL mapping. Methods Mol Biol 1610:39–57. https://doi.org/10.1007/978-1-4939-7003-2_4

    Article  CAS  PubMed  Google Scholar 

  24. Tyrka M, Oleszczuk S, Rabiza-Swider J, Wos H, Wedzony M, Zimny J, Ponitka A, Ślusarkiewicz-Jarzina A, Metzger RJ, Baenziger PS, Lukaszewski AJ (2018) Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Mol Breed 38(4):46–46. https://doi.org/10.1007/s11032-018-0804-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16(1):45–55. https://doi.org/10.1007/s11032-005-3445-2

    Article  CAS  Google Scholar 

  26. Kiviharju E, Moisander S, Tanhuanpää P (2017) Oat anther culture and use of DH-lines for genetic mapping. Methods Mol Biol 1536:71–93. https://doi.org/10.1007/978-1-4939-6682-0_6

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci 268:30–38. https://doi.org/10.1016/j.plantsci.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  28. Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128. https://doi.org/10.1007/s00299-003-0636-3

    Article  CAS  PubMed  Google Scholar 

  29. Cegielska-Taras T, Nogala-Kałucka M, Szala L, Siger A (2016) Study of variation of tocochromanol and phytosterol contents in black and yellow seeds of Brassica napus L. doubled haploid populations. Acta Sci Pol Technol Aliment 15(3):321–332. https://doi.org/10.17306/J.AFS.2016.3.31

    Article  CAS  PubMed  Google Scholar 

  30. Siger A, Michalak M, Lembicz J, Nogala-Kałucka M, Cegielska-Taras T, Szała L (2018) Genotype × environment interaction on tocochromanol and plastochromanol-8 content in seeds of doubled haploids obtained from F1 hybrid black × yellow seeds of winter oilseed rape (Brassica napus L.). J Sci Food Agric 98(9):3263–3270. https://doi.org/10.1002/jsfa.8829

    Article  CAS  PubMed  Google Scholar 

  31. Trojak-Goluch A, Laskowska D, Kursa K (2016) Morphological and chemical characteristics of doubled haploids of flue-cured tobacco combining resistance to Thielaviopsis basicola and TSWV. Breed Sci 66(2):293–299. https://doi.org/10.1270/jsbbs.66.293

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma H, Li G, Würschum T, Zhang Y, Zheng D, Yang X, Li J, Liu W, Yan J, Chen S (2018) Genome-wide association study of haploid male fertility in maize (Zea Mays L.). Front Plant Sci 9:974–974. https://doi.org/10.3389/fpls.2018.00974

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chaikam V, Gowda M, Nair SK, Melchinger AE, Boddupalli PM (2019) Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica 215(8):138–138. https://doi.org/10.1007/s10681-019-2459-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallais A (1990) Quantitative genetics of doubled haploid populations and application to the theory of line development. Genetics 124(1):199–206

    Article  CAS  Google Scholar 

  35. Singh S, Dey SS, Bhatia R, Kumar R, Sharma K, Behera TK (2019) Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoS One 14(8):e0210772. https://doi.org/10.1371/journal.pone.0210772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daetwyler HD, Hayden MJ, Spangenberg GC, Hayes BJ (2015) Selection on optimal haploid value increases genetic gain and preserves more genetic diversity relative to genomic selection. Genetics 200(4):1341. https://doi.org/10.1534/genetics.115.178038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strigens A, Schipprack W, Reif JC, Melchinger AE (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One 8(2):e57234–e57234. https://doi.org/10.1371/journal.pone.0057234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brauner PC, Müller D, Schopp P, Böhm J, Bauer E, Schön C-C, Melchinger AE (2018) Genomic prediction within and among doubled-haploid libraries from maize landraces. Genetics 210(4):1185. https://doi.org/10.1534/genetics.118.301286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Longin CFH, Utz HF, Reif JC, Schipprack W, Melchinger AE (2006) Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance. Theor Appl Genet 112(5):903–912. https://doi.org/10.1007/s00122-005-0192-z

    Article  PubMed  Google Scholar 

  40. Longin CFH, Utz HF, Melchinger AE, Reif JC (2007) Hybrid maize breeding with doubled haploids: II. Optimum type and number of testers in two-stage selection for general combining ability. Theor Appl Genet 114(3):393–402. https://doi.org/10.1007/s00122-006-0422-z

    Article  CAS  PubMed  Google Scholar 

  41. Longin CFH, Utz HF, Reif JC, Wegenast T, Schipprack W, Melchinger AE (2007) Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance. Theor Appl Genet 115(4):519–527. https://doi.org/10.1007/s00122-007-0585-2

    Article  PubMed  Google Scholar 

  42. Wegenast T, Longin CFH, Utz HF, Melchinger AE, Maurer HP, Reif JC (2008) Hybrid maize breeding with doubled haploids. IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance. Theor Appl Genet 117(2):251–260. https://doi.org/10.1007/s00122-008-0770-y

    Article  PubMed  Google Scholar 

  43. Wegenast T, Utz HF, Longin CFH, Maurer HP, Dhillon BS, Melchinger AE (2010) Hybrid maize breeding with doubled haploids: V. Selection strategies for testcross performance with variable sizes of crosses and S(1) families. Theor Appl Genet 120(4):699–708. https://doi.org/10.1007/s00122-009-1187-y

    Article  PubMed  Google Scholar 

  44. Marulanda JJ, Mi X, Melchinger AE, Xu J-L, Würschum T, Longin CFH (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129(10):1901–1913. https://doi.org/10.1007/s00122-016-2748-5

    Article  CAS  PubMed  Google Scholar 

  45. Melchinger AE, Technow F, Dhillon BS (2011) Gene stacking strategies with doubled haploids derived from biparental crosses: theory and simulations assuming a finite number of loci. Theor Appl Genet 123(8):1269–1279. https://doi.org/10.1007/s00122-011-1665-x

    Article  PubMed  Google Scholar 

  46. Mi X, Wegenast T, Utz HF, Dhillon BS, Melchinger AE (2011) Best linear unbiased prediction and optimum allocation of test resources in maize breeding with doubled haploids. Theor Appl Genet 123(1):1–10. https://doi.org/10.1007/s00122-011-1561-4

    Article  PubMed  Google Scholar 

  47. Shim Y-S, Pauls KP, Kasha KJ (2009) Transformation of isolated barley (Hordeum vulgare L.) microspores: I. the influence of pretreatments and osmotic treatment on the time of DNA synthesis. Genome 52(2):166–174. https://doi.org/10.1139/g08-112

    Article  CAS  PubMed  Google Scholar 

  48. Shim Y-S, Pauls KP, Kasha KJ (2009) Transformation of isolated barley (Hordeum vulgare L.) microspores: II. Timing of pretreatment and temperatures relative to results of bombardment. Genome 52(2):175–190. https://doi.org/10.1139/g08-113

    Article  CAS  PubMed  Google Scholar 

  49. Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9(3):408–417. https://doi.org/10.1111/j.1467-7652.2010.00561.x

    Article  CAS  PubMed  Google Scholar 

  50. Otto I, Müller A, Kumlehn J (2015) Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures. Methods Mol Biol 1223:85–99. https://doi.org/10.1007/978-1-4939-1695-5_7

    Article  CAS  PubMed  Google Scholar 

  51. Rustgi S, Ankrah NO, Brew-Appiah RAT, Sun Y, Liu W, von Wettstein D (2017) Doubled haploid transgenic wheat lines by microspore transformation. Methods Mol Biol 1679:213–234. https://doi.org/10.1007/978-1-4939-7337-8_13

    Article  CAS  PubMed  Google Scholar 

  52. Lee SY, Cheong JI, Kim TS (2003) Production of doubled haploids through anther culture of M1 rice plants derived from mutagenized fertilized egg cells. Plant Cell Rep 22(3):218–223. https://doi.org/10.1007/s00299-003-0663-0

    Article  CAS  PubMed  Google Scholar 

  53. Lu Y, Dai S, Gu A, Liu M, Wang Y, Luo S, Zhao Y, Wang S, Xuan S, Chen X, Li X, Bonnema G, Zhao J, Shen S (2016) Microspore induced doubled haploids production from ethyl methanesulfonate (EMS) soaked flower buds is an efficient strategy for mutagenesis in Chinese cabbage. Front Plant Sci 7:1780–1780. https://doi.org/10.3389/fpls.2016.01780

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ferrie AMR, Bhowmik P, Rajagopalan N, Kagale S (2020) CRISPR/Cas9-mediated targeted mutagenesis in wheat doubled haploids. Methods Mol Biol 2072:183–198. https://doi.org/10.1007/978-1-4939-9865-4_15

    Article  CAS  PubMed  Google Scholar 

  55. Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate NJ, Que Q (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37(3):287–292. https://doi.org/10.1038/s41587-019-0038-x

    Article  CAS  PubMed  Google Scholar 

  56. Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12(4):597–602. https://doi.org/10.1016/j.molp.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  57. Machczyńska J, Zimny J, Bednarek PT (2015) Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. Plant Mol Biol 89(3):279–292. https://doi.org/10.1007/s11103-015-0368-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Front Plant Sci 5:738–738. https://doi.org/10.3389/fpls.2014.00738

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li H, Soriano M, Cordewener J et al (2014) The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. Plant Cell 26(1):195–209. https://doi.org/10.1105/tpc.113.116491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CLC, Voermans W, Woudenberg L, de Wit JPC, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7(9):837–845. https://doi.org/10.1111/j.1467-7652.2009.00450.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Weyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weyen, J. (2021). Applications of Doubled Haploids in Plant Breeding and Applied Research. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2287. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1315-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1315-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1314-6

  • Online ISBN: 978-1-0716-1315-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics