Skip to main content

Radiobiology and Radiation Dosimetry in Nuclear Medicine

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

Radionuclide therapy (RNT) uses systemically administered radiopharmaceuticals directed to a specific cancer-associated target to provide low-dose rate (LDR) treatment. The radiation dose is delivered to the tumor cells by continuous, but declining, exposure that is a function of the initial uptake and the variable half-life. The average dose rate for RNT is typically of the order of 2–8 Gy/day, and the maximum absorbed dose may be up to 50 Gy delivered over a period of many days. This is in marked contrast to the situation with external beam radiotherapy (EBRT), where the dose is delivered at a high-dose rate (HDR), typically 1–5 Gy/min, and also to the dose rate at which brachytherapy is delivered, typically 1–5 Gy/h. The mechanisms by which cells respond to LDR exposures are different from those occurring at HDR. LDR exposures tend to promote loss of clonogenic potential in some cell types (e.g., lymphomas) by activating apoptotic responses, whereas high doses tend to cause necrosis as their primary mechanism of cytotoxicity. The ability to induce apoptosis varies inversely with dose rate. Many cell types exhibit an initial hypersensitive response at doses below ∼25 cGy, followed by a region of increasing radioresistance up to ∼50 cGy. This phenomenon probably involves an alteration in the cellular processing/repair of DNA damage as a function of dose. Radiation damage to cells is due primarily to indirect effects such as formation of free radicals in water (with their diffusion and subsequent interaction with cellular components, mostly DNA) and to some degree direct damage to DNA. Different tissues and different individuals have different abilities to respond to and repair this damage. The value of LDR therapy with radionuclides in patients with differentiated thyroid carcinoma, somatostatin receptor-expressing tumors, neuroendocrine tumors, lymphoma, liver tumors, neuroendocrine malignancies, prostate cancer, and treatment of metastatic bone pain is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASCT:

Autologous stem cell transplantation

BED:

Biologic effective dose

BSA:

Body surface area

CRPC:

Castration-resistant prostate cancer

CT:

X-ray computed tomography

CTDI:

CT dose index

3D-ID:

3D-internal

DMSA:

Dimercaptosuccinic acid

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTANOC:

DOTA-1-Nal3-octreotide

DOTATATE:

DOTA-Tyr3-octreotate

DSB:

Double-strand breaks

DTC:

Differentiated thyroid cancer

DTPA:

Diethylenetriaminepentaacetic acid

DVH:

Dose–volume histograms

EANM:

European Association of Nuclear Medicine

EBRT:

External beam radiation therapy

ECD:

Ethyl cysteinate dimer

ED:

Effective dose

EU:

European Union

[18F]FDG:

2-deoxy-2-[18F]fluoro-d-glucose

FDA:

The United States Food and Drug Administration

FISH:

Fluorescence in situ hybridization

FSH:

Follicle-stimulating hormone

GBE:

Ginkgo biloba extract

GI:

Gastrointestinal

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

γ-H2AX:

Phosphorylated member X of the H2A histone family

HCC:

Hepatocellular carcinoma

HDR:

High-dose rate

HMPAO:

Hexamethylpropylenamine oxine

ICRU:

International Commission on Radiological Units

LDH–IRR:

Low-dose hyper-radiosensitivity–increased radioresistance

LDR:

Low-dose rate

LET:

Linear energy transfer

LPL:

Lethal–potentially lethal

LQ:

Linearquadratic

LSF:

Lung shunt fraction

LSS:

Life span study

MAA:

Macroaggregated albumin

MAG3:

Mercaptoacetyltriglycine

MDP:

Methylene diphosphonate

MIBG:

Meta-iodobenzylguanidine

MIRD:

Medical internal radiation dose

mCRPC:

Metastatic castration-resistant prostate cancer

MRI:

Magnetic resonance imaging

MN:

Micronuclei

NAT:

Noradrenaline transporter

NHL:

Non-Hodgkin’s lymphoma

NSCLC:

Non-small cell lung cancer

NT:

Non-tumor tissue

NTCP:

Normal tissue complication probability

OLINDA:

Organ-level internal dose assessment

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PET/MRI:

Positron emission tomography/Magnetic resonance imaging

PRLT:

PSMA-radioligand therapy

PRRT:

Peptide receptor radionuclide therapy

PSMA:

Prostate-specific membrane antigen

RBE:

Relative biological effectiveness

RE:

Relative effectiveness per unit dose

RILD:

Radiation-induced liver disease

RIT:

Radioimmunotherapy

RNT:

Radionuclide therapy

ROI:

Region of interest

ROS:

Reactive oxygen species

SF:

Surviving fraction

SNM:

Society of Nuclear Medicine

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/Computed tomography

STASIS:

Stress or aberrant signaling-induced senescence

SUV:

Standardized uptake values

Sv:

Unit of radiation absorption in the International System of Units (SI), which takes into account the relative biological effectiveness (RBE) of ionizing radiation

TACE:

Transarterial chemoembolization

TARE:

Trans-arterial radioembolization

TBA:

Total-body absorbed

TCP:

Tumor control probability

TNF:

Tumor necrosis factor

TRAIL:

TNF-related apoptosis-inducing ligand

VOI:

Volume of interest

WBD:

Whole-body radiation dose

WBS:

Whole-body scan

References

  1. Brans B, Linden O, Giammarile F, et al. Clinical applications of newer radionuclide therapies. Eur J Cancer. 2006;42:994.

    Article  CAS  PubMed  Google Scholar 

  2. Larson SM, Krenning EP. A pragmatic perspective on molecular targeted radionuclide therapy. J Nucl Med. 2005;46(Suppl 1):1S.

    PubMed  Google Scholar 

  3. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46(Suppl 1):4S.

    PubMed  Google Scholar 

  4. Sgouros G. Dosimetry of internal emitters. J Nucl Med. 2005;46(Suppl 1):18S.

    PubMed  Google Scholar 

  5. Murray D, Mc Ewan AJ. Radiobiology of systemic radiation therapy. Cancer Biother Radiopharm. 2007;22:1–23.

    CAS  PubMed  Google Scholar 

  6. Dale R, Carabe-Fernandez A. The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm. 2005;20:47–51.

    CAS  PubMed  Google Scholar 

  7. McBride WH, Chiang CS, Olson JL, et al. A sense of danger from radiation. Radiat Res. 2004;162:1–19.

    Article  CAS  PubMed  Google Scholar 

  8. Roninson IB. Tumor senescence as a determinant of drug response in vivo. Drug Resist Updat. 2002;5:204.

    Article  CAS  PubMed  Google Scholar 

  9. Erenpreisa J, Cragg MS. Mitotic death: a mechanism of survival? A review. Cancer Cell Int. 2001;1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Nardo GL, Schlom J, Buchsbaum DJ, et al. Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer. 2002;94(Suppl 4):1332.

    Google Scholar 

  11. Meyn RE. Apoptosis and response to radiation: implications for radiation therapy. Oncology (Huntingt). 1997;11:349.

    CAS  Google Scholar 

  12. Joiner MC, Marples B, Lambin P, et al. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys. 2001;49:379–89.

    Article  CAS  PubMed  Google Scholar 

  13. Dixon KL. The radiation biology of radioimmunotherapy. Nucl Med Commun. 2003;24:951–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wolff S. The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect. 1998;106(Suppl 1):277–83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2000.

    Google Scholar 

  16. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. Revisedth ed. New York: The Society of Nuclear Medicine; 1991.

    Google Scholar 

  17. Snyder WS, Ford MR, Warner GG, et al. MIRD pamphlet no. 11 – “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. New York: Society of Nuclear Medicine; 1975.

    Google Scholar 

  18. Baechler S, Hobbs RF, Prideaux AR, et al. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry. Med Phys. 2008;35:1123–34.

    Article  PubMed  Google Scholar 

  19. Siegel J. MIRD pamphlet no 16 – techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37S–61.

    CAS  PubMed  Google Scholar 

  20. Bolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet no 17: the dosimetry of nonuniform activity distributions – radionuclide S values at the voxel level. J Nucl Med. 1999;40:11S–36.

    CAS  PubMed  Google Scholar 

  21. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 1996;37:538–46.

    CAS  PubMed  Google Scholar 

  22. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  23. Sgouros G. Treatment planning for internal emitter therapy: methods, applications, and clinical implications. In: Stelson A, Stabin M, Sparks R, editors. Presented at the Sixth International Radiopharmaceutical Dosimetry Symposium held May 7–10, 1996 in Gatlinburg: Oak Ridge Associated Unversities; 1999, p. 13–25.

    Google Scholar 

  24. Tagesson M, Ljungberg M, Strand S-E. The SIMDOS Monte Carlo code for conversion of activity distributions to absorbed dose and dose-rate distributions. In: Stelson A, Stabin M, Sparks R, editors. Presented at the Sixth International Radiopharmaceutical Dosimetry Symposium held May 7–10, 1996 in Gatlinburg: Oak Ridge Associated Universities; 1999, p. 425–440.

    Google Scholar 

  25. Brans B, Bodei L, Giammarile F, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sapienza MT, Willegaignon J. Radionuclide therapy: current status and prospects for internal dosimetry in individualized therapeutic planning. Clinics. 2019;74:e835.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Strigari L, Konijnenberg M, Chiesa C, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41:1976–88.

    Article  CAS  PubMed  Google Scholar 

  28. European Medicines Agency. Topic E9 note for guidance on statistical considerations in the design of clinical trials. CPMP/ICH/363/96; 1998 [Internet]. Available from: www.ema.europa.eu/en/ich-e9-statistical-principles-clinical-trials. Accessed July 18, 2019

    Google Scholar 

  29. Taprogge J, Leek F, Flux GD. Physics aspects of setting up a multicenter clinical trial involving internal dosimetry of radioiodine treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2019;63:271–7.

    Article  PubMed  Google Scholar 

  30. Zimmerman BE, Grošev D, Buvat I, et al. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification: an IAEA phantom study. Z Med Phys. 2017;27:98–112.

    Article  PubMed  Google Scholar 

  31. Van Nostrand D. Sites performing dosimetry for selection of activity for 131I therapy for differentiated thyroid cancer. J Nucl Med. 2019;60:20N–2N.

    PubMed  Google Scholar 

  32. Gleisner KS, Spezi E, Solny P, et al. Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Phys. 2017;4:28.

    Article  Google Scholar 

  33. Council of the European Union. European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom. Official J EU. 2014;L13:1–73.

    Google Scholar 

  34. Konijnenberg M, Herrmann K, Kobe C, et al. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur J Nucl Med Mol Imaging. 2021;48:67–72.

    Google Scholar 

  35. Eberlein U, Cremonesi M, Lassmann M. Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive? J Nucl Med. 2017;58:97S–103S.

    Article  CAS  PubMed  Google Scholar 

  36. Lassmann M, Eberlein U. The Relevance of Dosimetry in Precision Medicine. J Nucl Med. 2018;59:1494–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maxon HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin N Am. 1990;19:685–718.

    Article  Google Scholar 

  38. Schlumberger M, Pacini F. Thyroid tumors. 5th ed. Paris: Editions Nucléon; 2003.

    Google Scholar 

  39. Van Nostrand D, Atkins F, Yeganeh F, et al. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121–34.

    Article  PubMed  Google Scholar 

  40. Benua RS, Cicale NR, Sonenberg M, et al. Relation of radioiodine dosimetry to results and complications in treatment of metastatic thyroid cancer. Am J Roentgenol Radium Therapy, Nucl Med. 1962;87:171–82.

    CAS  Google Scholar 

  41. Maxon HR. Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med. 1999;43:313–23.

    CAS  PubMed  Google Scholar 

  42. Lassmann M, Hänscheid H, Chiesa C, et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35:1405–12.

    Article  PubMed  Google Scholar 

  43. Tuttle RM, Leboeuf R, Robbins RJ, et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587–91.

    PubMed  Google Scholar 

  44. Traino AC, Ferrari M, Cremonesi M, et al. Influence of total body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol. 2007;52:5231–48.

    Article  CAS  PubMed  Google Scholar 

  45. Sgouros G, Song H, Ladenson PW, et al. Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. J Nucl Med. 2006;47:1977–84.

    CAS  PubMed  Google Scholar 

  46. Song H, Prideaux A, Du Y, et al. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med. 2006;47:1985–94.

    CAS  PubMed  Google Scholar 

  47. Luster M, Clarke SE, Dietlein M, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:1941–59.

    Article  CAS  PubMed  Google Scholar 

  48. Freudenberg LS, Jentzen W, Stahl A, et al. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S48–56.

    Article  PubMed  Google Scholar 

  49. Weber M, Binse I, Nagarajah J, et al. The role of 124I PET/CT lesion dosimetry in differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2019;63:235–52.

    Article  PubMed  Google Scholar 

  50. Jentzen W, Bockisch A, Ruhlmann M. Assessment of simplified blood dose protocols for the estimation of the maximum tolerable activity in thyroid cancer patients undergoing radioiodine therapy using 124I. J Nucl Med. 2015;56:832–8.

    Article  CAS  PubMed  Google Scholar 

  51. Jentzen W, Moldovan AS, Ruhlmann M, et al. Lowest effective 131I activity for thyroid remnant ablation of differentiated thyroid cancer patients. Dosimetry-based model for estimation. Nucl Med (Stuttg). 2015;54:137–43.

    CAS  Google Scholar 

  52. Freudenberg LS, Jentzen W, Görges R, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 2007;46:121–128.

    Google Scholar 

  53. Capoccetti F, Criscuoli B, Rossi G, et al. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:536–45.

    CAS  PubMed  Google Scholar 

  54. Capoccetti F, Biggi E, Rossi GC, et al. Differentiated thyroid carcinoma: diagnosis and dosimetry using 124I PET/CT. Clin Transl Imaging. 2013;1:185–93.

    Article  Google Scholar 

  55. Pettinato C, Spezi E, Nanni C, et al. Pretherapeutic dosimetry in patients affected by metastatic thyroid cancer using 124I PET/CT sequential scans for 131I treatment planning. Clin Nucl Med. 2014;39:e367–74.

    Article  PubMed  Google Scholar 

  56. Hobbs RF, Wahl RL, Lodge MA, et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 2009;50: 1844–738.

    Google Scholar 

  57. Sgouros G, Kolbert KS, Sheikh A, et al. Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  58. Rosenbaum-Krumme S, Nagarajah J, Ruhlmann M, et al. 124I-PET/CT images of differentiated thyroid cancer patients. Distinguishing lymph node metastases from thyroid remnants using kinetic quantities. Nucl Med (Stuttg) 2012;51:213–6.

    Google Scholar 

  59. Jentzen W, Hoppenbrouwers J, van Leeuwen P, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55:1759–65.

    Article  CAS  PubMed  Google Scholar 

  60. Jentzen W, Verschure F, van Zon A, et al. 124I PET assessment of response of bone metastases to initial radioiodine treatment of differentiated thyroid cancer. J Nucl Med 2016;57:1499–504.

    Google Scholar 

  61. Wierts R, Brans B, Havekes B, et al. Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/ CT. J Nucl Med. 2016;57:1027–32.

    Article  CAS  PubMed  Google Scholar 

  62. Plyku D, Hobbs RF, Huang K, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in 124I PET/CT-based dosimetry for 131I therapy of metastatic differentiated thyroid cancer. J Nucl Med. 2017;58:1146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Freudenberg LS, Jentzen W, Petrich T, et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging. 2010;37:2267–76.

    Article  CAS  PubMed  Google Scholar 

  64. Freudenberg LS, Frömke C, Petrich T, et al. Thyroid remnant dose: 124I-PET/CT dosimetric comparison of rhTSH versus thyroid hormone withholding before radioiodine remnant ablation in differentiated thyroid cancer. Exp Clin Endocrinol Diabetes. 2010;118:393–9.

    Article  CAS  PubMed  Google Scholar 

  65. Van Nostrand D, Khorjekar GR, O’Neil J, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med. 2012;53:359–62.

    Article  PubMed  Google Scholar 

  66. Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dunn LA, Sherman EJ, Baxi SS, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J Clin Endocrinol Metab. 2019;104:1417–28.

    Article  PubMed  Google Scholar 

  68. Rosenbaum-Krumme SJ, Freudenberg LS, Jentzen W, et al. Effects of rosiglitazone on radioiodine negative and progressive differentiated thyroid carcinoma as assessed by 124I PET/CT imaging. Clin Nucl Med. 2012;37:e47–52.

    Article  PubMed  Google Scholar 

  69. Binse I, Poeppel TD, Ruhlmann M, et al. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT? Eur J Nucl Med Mol Imaging. 2016;43:1011–7.

    Article  CAS  PubMed  Google Scholar 

  70. Nagarajah J, Jentzen W, Hartung V, et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38:1862–8.

    Article  CAS  PubMed  Google Scholar 

  71. Wierts R, Jentzen W, Quick HH, et al. Quantitative performance evaluation of 124I PET/MRI lesion dosimetry in differentiated thyroid cancer. Phys Med Biol. 2017;19:63.

    Google Scholar 

  72. Jentzen W, Phaosricharoen J, Gomez B, et al. Quantitative performance of 124I PET/MR of neck lesions in thyroid cancer patients using 124I PET/CT as reference. EJNMMI Physics. 2018;5:5–13.

    Article  Google Scholar 

  73. Dercle L, Deandreis D, Terroir M, et al. Evaluation of 124I PET/CT and 124I PET/MRI in the management of patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2016;43:1006–10.

    Article  PubMed  Google Scholar 

  74. van Essen M, Krenning EP, Kam BL, et al. Peptide-receptor radionuclide therapy for endocrine tumours. Nat Rev Endocrinol. 2009;5:382–93.

    Article  PubMed  Google Scholar 

  75. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015a;42:5–19.

    Article  CAS  PubMed  Google Scholar 

  76. Bodei L, Kidd M, Modlin IM, et al. Gene transcript analysis blood values correlate with 68Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumours and can define disease status. Eur J Nucl Med Mol Imaging. 2015b;42:1341–52.

    Article  CAS  PubMed  Google Scholar 

  77. Bodei L, Kwekkeboom DJ, Kidd M, et al. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin Nucl Med. 2016a;46:225–387.

    Article  PubMed  Google Scholar 

  78. Bodei L, Kidd M, Modlin IM, et al. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016b;43:839–51.

    Article  CAS  PubMed  Google Scholar 

  79. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumours. N Engl J Med. 2017;376:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bodei L, Ćwikla JB, Kidd M, et al. The role of peptide receptor radionuclide therapy in advanced/metastatic thoracic neuroendocrine tumours. J Thorac Dis. 2017;9(Suppl 15):S1511–23.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brabander T, Teunissen JJ, Van Eijck CH, et al. Peptide receptor radionuclide therapy of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2016;30:103–14.

    Article  CAS  PubMed  Google Scholar 

  82. Brabander T, van der Zwan WA, Teunissen JJM, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0,Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumours. Clin Cancer Res. 2017;23:4617–24.

    Article  CAS  PubMed  Google Scholar 

  83. Garske-Román U, Sandström M, Fröss Baron K, et al. Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45:970–88.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cybulla M, Weiner SM, Otte A. End-stage renal disease after treatment with 90Y-DOTATOC. Eur J Nucl Med. 2001;28:1552–4.

    Article  CAS  PubMed  Google Scholar 

  85. Cremonesi M, Ferrari ME, Bodei L, et al. Correlation of dose with toxicity and tumour response to 90 Y- and 177 Lu-PRRT provides the basis for optimization through individualized treatment planning. Eur J Nucl Med Mol Imaging. 2018;45:2426–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Basu S, Parghane RV, Kamaldeep, et al. Peptide receptor radionuclide therapy of neuroendocrine tumours. Semin Nucl Med. 2020;50:447–64.

    Article  PubMed  Google Scholar 

  87. Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [177Lu-DOTA0,Tyr3]octreotate and [177Lu-DOTA0,Tyr3]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;(3): 1346–51.

    Google Scholar 

  88. Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging. 2011;38:192–200.

    Article  CAS  PubMed  Google Scholar 

  89. Sandström M, Garske-Román U, Granberg D, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54:33–41.

    Article  PubMed  Google Scholar 

  90. Guerriero F, Ferrari ME, Botta F, et al. Kidney dosimetry in 177Lu and 90Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors. Biomed Res Int. 2013;2013:935351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sandström M, Ilan E, Karlberg A, et al. Method dependence, observer variability and kidney volumes in radiation dosimetry of 177Lu-DOTATATE therapy in patients with neuroendocrine tumours. EJNMMI Phys. 2015;2:24.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gustafsson J, Brolin G, Cox M, et al. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy. Phys Med Biol. 2015;60:8329–46.

    Article  CAS  PubMed  Google Scholar 

  93. Ljungberg M, Celler A, Konijnenberg MW, et al. MIRD pamphlet no. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57:151–62.

    Article  CAS  PubMed  Google Scholar 

  94. Del Prete M, Arsenault F, Saighi N, et al. Accuracy and reproducibility of simplified QSPECT dosimetry for personalized 177Lu-octreotate PRRT. EJNMMI Phys. 2018;5(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wessels BW, Konijnenberg MW, Dale RG, et al. MIRD pamphlet no. 20: the effect of model assumptions on kidney dosimetry and response-implications for radionuclide therapy. J Nucl Med. 2008;49:1884–99.

    Article  PubMed  Google Scholar 

  96. Cremonesi M, Ferrari M, Di Dia A, et al. Recent issues on dosimetry and radiobiology for peptide receptor radionuclide therapy. Q J Nucl Med Mol Imaging. 2011;55:155–67.

    CAS  PubMed  Google Scholar 

  97. Ilan E, Sandström M, Wassberg C, et al. Dose response of pancreatic neuroendocrine tumours treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56:177–82.

    Article  PubMed  Google Scholar 

  98. Sarnelli A, Guerriero F, Botta F, et al. Therapeutic schemes in 177Lu and 90Y-PRRT: radiobiological considerations. Q J Nucl Med Mol Imaging. 2017;61:216–31.

    Article  PubMed  Google Scholar 

  99. Chauvin M, Borys D, Botta F, et al. OpenDose: open access resources for nuclear medicine dosimetry. J Nucl Med. 2020;61:1514–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Andersson M, Johansson L, Eckerman K, et al. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7(1):88.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hippelainen ET, Tenhunen MJ, Maenpaa HO, et al. Dosimetry software Hermes Internal Radiation Dosimetry: from quantitative image reconstruction to voxel-level absorbed dose distribution. Nucl Med Commun. 2017;38:357–65.

    Article  PubMed  Google Scholar 

  102. Besemer AE, Yang YM, Grudzinski JJ, et al. Development and validation of RAPID: a patient-specific Monte Carlo three-dimensional internal dosimetry platform. Cancer Biother Radiopharm. 2018;33:155–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kafrouni M, Allimant C, Fourcade M, et al. Retrospective voxel-based dosimetry for assessing the ability of the body-surface-area model to predict delivered dose and radioembolization outcome. J Nucl Med. 2018;59:1289–95.

    Article  CAS  PubMed  Google Scholar 

  104. Maughan NM, Garcia-Ramirez J, Arpidone M, et al. Validation of post-treatment PET-based dosimetry software for hepatic radioembolization of Yttrium-90 microspheres. Med Phys. 2019;46:2394–402.

    Article  PubMed  Google Scholar 

  105. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–703.

    Article  CAS  PubMed  Google Scholar 

  106. Minarik D, Ljungberg M, Segars P, et al. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging. Phys Med Biol. 2009;54:5873–83.

    Article  CAS  PubMed  Google Scholar 

  107. Martí-Climent JM, Prieto E, Elosúa C, et al. PET optimization for improved assessment and accurate quantification of 90Y-microsphere biodistribution after radioembolization. Med Phys. 2014;41:092503.

    Article  PubMed  Google Scholar 

  108. Willowson KP, Tapner M. QUEST Investigator Team, et al. A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: the QUEST Phantom Study. Eur J Nucl Med Mol Imaging. 2015;42:1202–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fabbri C, Bartolomei M, Mattone V, et al. 90Y-PET/CT imaging quantification for dosimetry in peptide receptor radionuclide therapy: analysis and corrections of the impairing factors. Cancer Biother Radiopharm 2015;30:200–210

    Google Scholar 

  110. Cremonesi M, Botta F, Di Dia A, et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging. 2010;54:37–51.

    CAS  PubMed  Google Scholar 

  111. Pauwels S, Barone R, Walrand S. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):92S–8.

    CAS  PubMed  Google Scholar 

  112. Baechler S, Hobbs RF, Boubaker A, et al. Three-dimensional radiobiological dosimetry of kidneys for treatment planning in peptide receptor radionuclide therapy. Med Phys. 2012;39:6118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ezziddin S, Lohmar J, Yong-Hing CJ, et al. Does the pretherapeutic tumour SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin Nucl Med. 2012;37:e141–7.

    Article  PubMed  Google Scholar 

  114. Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, et al. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38:1788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seregni E, Maccauro M, Chiesa C, et al. Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy. Eur J Nucl Med Mol Imaging. 2014;41:223–30.

    Article  CAS  PubMed  Google Scholar 

  116. Zemczak A, Kołodziej M, Gut P, et al. Effect of peptide receptor radionuclide therapy (PRRT) with tandem isotopes – [90Y]Y/[177Lu]Lu-DOTATATE in patients with disseminated neuroendocrine tumours depending on [18F]FDG PET/CT qualification in Polish multicentre experience – do we need [18F]FDG PET/CT for qualification to PRRT? Endokrynol Pol. 2020;71:240–8.

    CAS  PubMed  Google Scholar 

  117. Kunikowska J, Zemczak A, Kołodziej M, et al. Tandem peptide receptor radionuclide therapy using 90Y/177Lu-DOTATATE for neuroendocrine tumours efficacy and side-effects – polish multicenter experience. Eur J Nucl Med Mol Imaging. 2020;47:922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sandström M, Garske U, Granberg D, et al. Individualized dosimetry in patients undergoing therapy with 90Y-DOTA-D-Phe1-Tyr3 octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25.

    Article  PubMed  Google Scholar 

  119. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cremonesi M, Ferrari M, Zoboli S, et al. Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr3-octreotide: implications for internal radio- therapy with 90Y-DOTATOC. Eur J Nucl Med. 1999;26:877–86.

    Article  CAS  PubMed  Google Scholar 

  121. Helisch A, Förster GJ, Reber H, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTAPhe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1386–92.

    Article  CAS  PubMed  Google Scholar 

  122. Del Prete M, Buteau FA, Beauregard JM. Personalized 177Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study. Eur J Nucl Med Mol Imaging. 2017;44:1490–500.

    Article  PubMed  Google Scholar 

  123. Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garkavij M, Nickel M, Sjögreen-Gleisner K, et al. 177Lu-[DOTA0,Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: analysis of dosimetry with impact on future therapeutic strategy. Cancer 2010;116(Suppl 4): 1084–92.

    Google Scholar 

  125. Bergsma H, Konijnenberg MW, van der Zwan WA, et al. Nephrotoxicity after PRRT with 177Lu-DOTA-octreotate. Eur J Nucl Med Mol Imaging. 2016;43:1802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hindorf C, Chittenden S, Causer L, et al. Dosimetry for 90Y-DOTATOC therapies in patients with neuroendocrine tumors. Cancer Biother Radiopharm. 2007;22:130–5.

    CAS  PubMed  Google Scholar 

  127. Sundlöv A, Sjögreen-Gleisner K, Svensson J, et al. Individualised 177Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol Imaging. 2017;44:1480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kairemo K, Kangasmaki A. 4D SPECT/CTacquisition for 3D dose calculation and dose planning in 177Lu-peptide receptor radionuclide therapy: applications for clinical routine. Recent Results Cancer Res. 2013;194:537–50.

    Article  CAS  PubMed  Google Scholar 

  129. Rolleman EJ, Melis M, Valkema R, et al. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging. 2010;37:1018–31.

    Article  PubMed  Google Scholar 

  130. Sundlöv A, Gustafsson J, Brolin G, et al. Feasibility of simplifying renal dosimetry in 177Lu peptide receptor radionuclide therapy. EJNMMI Phys. 2018;5(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Freedman N, Sandström M, Kuten J, et al. Personalized radiation dosimetry for PRRT-how many scans are really required? EJNMMI Phys. 2020;7(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Huizing DMV, de Wit-van der Veen BJ, Verheij M, et al. Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI Res. 2018;8(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Huizing DMV, Peters SMB, Versleijen MWJ, et al. A head-to-head comparison between two commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy. EJNMMI Phys. 2020;7(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Willowson KP, Ryu H, Jackson P, et al. A comparison of 2D and 3D kidney absorbed dose measures in patients receiving 177Lu-DOTATATE. Asia Ocean J Nucl Med Biol. 2018a;6:113–9.

    PubMed  PubMed Central  Google Scholar 

  135. Willowson K, Eslick E, Ryu H, et al. Feasibility and accuracy of single time point imaging for renal dosimetry following 177Lu-DOTATATE (‘Lutate’) therapy. EJNMMI Phys. 2018b;5(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bouchet LG, Bolch WE, Blanco HP, et al. MIRD Pamphlet No 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med. 2003;44:1113–47.

    PubMed  Google Scholar 

  137. Green A, Flynn A, Pedley RB, et al. Nonuniform absorbed dose distribution in the kidney: the influence of organ architecture. Cancer Biother Radiopharm. 2004;19:371–7.

    PubMed  Google Scholar 

  138. Konijnenberg M, Melis M, Valkema R, et al. Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med. 2007;48:134–42.

    CAS  PubMed  Google Scholar 

  139. Larsson M, Bernhardt P, Svensson JB, et al. Estimation of absorbed dose to the kidneys in patients after treatment with 177Lu-octreotate: comparison between methods based on planar scintigraphy. EJNMMI Res. 2012;2:49.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumour imaging. J Nucl Med. 2007;48:932–45.

    Article  PubMed  Google Scholar 

  141. Finocchiaro D, Berenato S, Grassi E, et al. Partial volume effect of SPECT images in PRRT with 177Lu labelled somatostatin analogues: a practical solution. Phys Med. 2019;57:153–9.

    Article  PubMed  Google Scholar 

  142. Beauregard JM, Hofman MS, Kong G, et al. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39:50–6.

    Article  CAS  PubMed  Google Scholar 

  143. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.

    Article  CAS  PubMed  Google Scholar 

  144. Bodei L, Cremonesi M, Kidd M, et al. Peptide receptor radionuclide therapy for advanced neuroendocrine tumours. Thorac Surg Clin. 2014;24:24333–49.

    Article  Google Scholar 

  145. Bushnell DL, Bodeker KL. Overview and current status of peptide receptor radionuclide therapy. Surg Oncol Clin N Am. 2020;29:317–26.

    Article  PubMed  Google Scholar 

  146. Bodei L, Cremonesi M, Ferrari M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.

    Article  CAS  PubMed  Google Scholar 

  147. Del Prete M, Buteau FA, Arsenault F, et al. Personalized 177Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial. Eur J Nucl Med Mol Imaging. 2019;46:728–42.

    Article  PubMed  Google Scholar 

  148. Bodei L, Kidd M, Singh A, et al. PRRT neuroendocrine tumour response monitored using circulating transcript analysis: the NETest. Eur J Nucl Med Mol Imaging. 2020;47:895–906.

    Article  CAS  PubMed  Google Scholar 

  149. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40:122–35.

    Article  PubMed  Google Scholar 

  150. Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005;352:441–449.

    Google Scholar 

  151. Wahl RL. Tositumomab and 131I therapy in non-Hodgkin’s lymphoma. J Nucl Med. 2005;46(Suppl 1):128S–40.

    CAS  PubMed  Google Scholar 

  152. Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3262–9.

    Article  CAS  PubMed  Google Scholar 

  153. Aricò D, Grana CM, Vanazzi A, et al. The role of dosimetry in the high activity 90Y-ibritumomab tiuxetan regimens: two cases of abnormal biodistribution. Cancer Biother Radiopharm. 2009;24:271–5.

    PubMed  Google Scholar 

  154. Wagner HN, Wiseman GA, Marcus CS, et al. Administration guidelines for radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43:267–72.

    CAS  PubMed  Google Scholar 

  155. Tennvall J, Fischer M, Bischof Delaloye A, et al. EANM procedure guideline for radio-immunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2007;34:616–22.

    Article  PubMed  Google Scholar 

  156. Wiseman GA, Kornmehl E, Leigh B, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med. 2003;44:465–74.

    CAS  PubMed  Google Scholar 

  157. Fisher DR, Shen S, Meredith RF. MIRD dose estimate report No. 20: radiation absorbed-dose estimates for 111In- and 90Y-ibritumomab tiuxetan. J Nucl Med. 2009;50:644–52.

    Article  CAS  PubMed  Google Scholar 

  158. Bodei L, Cremonesi M, Grana C, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1038–46.

    Article  CAS  PubMed  Google Scholar 

  159. Cremonesi M, Ferrari M, Grana CM, et al. High-dose radioimmunotherapy with 90Y-ibritumomab Tiuxetan: comparative dosimetric study for tailored treatment. J Nucl Med. 2007;48:1871–9.

    Article  PubMed  Google Scholar 

  160. Blakkisrud J, Londalen A, Dahle J, et al. Red marrow-absorbed dose for non-Hodgkin lymphoma patients treated with 177Lu-lilotomab satetraxetan, a novel anti-CD37 antibody-radionuclide conjugate. J Nucl Med. 2017;58:55–61.

    Article  CAS  PubMed  Google Scholar 

  161. Malenge MM, Patzke S, Ree AH et al. 177Lu-lilotomab satetraxetan has the potential to counteract resistance to rituximab in non-Hodgkin lymphoma. J Nucl Med 2020;61:1468–1475.

    Google Scholar 

  162. Blakkisrud J, Holtedahl JE, Løndalen A, et al. Biodistribution and dosimetry results from a phase 1 trial of therapy with the antibody-radionuclide conjugate 177Lu-lilotomab satetraxetan. J Nucl Med. 2018;59:704–10.

    Article  CAS  PubMed  Google Scholar 

  163. Blakkisrud J, Løndalen A, Martinsen A, et al. Tumor-absorbed dose for non-Hodgkin lymphoma patients treated with the anti-CD37 antibody radionuclide conjugate 177Lu-lilotomab satetraxetan. J Nucl Med. 2017;58:48–54.

    Article  CAS  PubMed  Google Scholar 

  164. Stokke C, Blakkisrud J, Løndalen A, et al. Pre-dosing with lilotomab prior to therapy with 177Lu-lilotomab satetraxetan significantly increases the ratio of tumor to red marrow absorbed dose in non-Hodgkin lymphoma patients. Eur J Nucl Med Mol Imaging. 2018;45:1233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lewandowski RJ, Riaz A, Ryu RK, et al. Optimization of radioembolic effect with extended-shelf-life yttrium-90 microspheres: results from a pilot study. J Vasc Interv Radiol. 2009;20:1557–63.

    Article  PubMed  Google Scholar 

  166. Kennedy AS, McNeillie P, Dezarn WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74:1494–500.

    Article  CAS  PubMed  Google Scholar 

  167. Reinders MTM, Smits MLJ, van Roekel C, et al. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med. 2019;49:237–43.

    Article  PubMed  Google Scholar 

  168. Prince JF, Smits ML, Krijger GC, et al. Radiation emission from patients treated with holmium-166 radioembolization. J Vasc Interv Radiol. 2014;25:1956–63.

    Article  PubMed  Google Scholar 

  169. Braat AJAT, Prince JF, van Rooij R, et al. Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: a cohort study. Eur Radiol. 2018;28:920–8.

    Article  PubMed  Google Scholar 

  170. Knesaurek K, Machac J, Muzinic M, et al. Quantitative comparison of yttrium-90 (90Y)-microspheres and technecium-99m (99mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Tehnol Cancer Res Treat. 2010;9:253–61.

    Article  CAS  Google Scholar 

  171. Jiang M, Fishman A, Nowakowski FS, et al. Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and yttrium-90 bremstrahlung imaging studies in SIR-spere radioembolization: associations with angiography. J Nucl Med Radiat Ther. 2012;3:1.

    Article  Google Scholar 

  172. Wondergem M, Smits MLJ, Elschot M, et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization J Nucl Med 2013;54:1294–1301.

    Google Scholar 

  173. Cremonesi M, Chiesa C, Strigari L, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4:210.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jadoul A, Bernard C, Lovinfosse P, et al. Comparative dosimetry between 99mTc-MAA SPECT/CT and 90Y PET/CT in primary and metastatic liver tumors. Eur J Nucl Med Mol Imaging. 2020;47:828–37.

    Article  CAS  PubMed  Google Scholar 

  175. Richetta E, Pasquino M, Poli M, et al. M. PET-CT post therapy dosimetry in radioembolization with resin 90Y microspheres: comparison with pre-treatment SPECT-CT 99mTc-MAA results. Phys Med. 2019;64:16–23.

    Article  PubMed  Google Scholar 

  176. Gnesin S, Canetti L, Adib S, et al. A partition model-based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in radioembolization of hepatocellular aarcinoma: a quantitative agreement comparison. J Nucl Med. 2016;57:1672–8.

    Article  CAS  PubMed  Google Scholar 

  177. Haste P, Tann M, Persohn S, et al. Correlation of technetium-99m macroaggregated albumin and yttrium-90 glass microsphere biodistribution in hepatocellular carcinoma: a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT. J Vasc Interv Radiol. 2017;28:722–30.

    Article  PubMed  Google Scholar 

  178. Thomas MA, Mahvash A, Abdelsalam M, et al. Planning dosimetry for 90Y radioembolization with glass microspheres: Evaluating the fidelity of 99mTc-MAA and partition model predictions. Med Phys. 2020;47:5333–42.

    Article  CAS  PubMed  Google Scholar 

  179. Maughan NM, Fowler KJ, Laforest R, et al. Correlation between pre-treatment 99mTc-MAA and post-treatment 90Y PET. Eur J Nucl Med Mol Imaging. 2016;43(Suppl 1): S1 OP 15.

    Google Scholar 

  180. Chiesa C, Mira M, De Nile MC, et al. Discrepancy between 99mTc-MAA SPECT and 90Y glass microspheres PET lung dosimetry in radioembolization of Hepatocarcinoma. Eur J Nucl Med Mol Imaging. 2016;43(Suppl 1): S11 EP 458.

    Google Scholar 

  181. Smits MLJ, Dassen MG, Prince JF, et al. The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging. 2020;47:798–806.

    Article  CAS  PubMed  Google Scholar 

  182. Gulec SA, Sztejnberg ML, Siegel JA, et al. Hepatic structural dosimetry in 90Y microsphere treatment: a Monte Carlo modeling approach based on lobular microanatomy. J Nucl Med. 2010;51:301–10.

    Article  PubMed  Google Scholar 

  183. Ferrari M, Cremonesi M, Bartolomei M, et al. Different evaluations for safe 90Y-microspheres in selective internal radiation therapy (SIRT). Eur J Nucl Med Mol Imaging. 2007;34(Suppl 2):S178.

    Google Scholar 

  184. Ho S, Lau WY, Leung TW, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52.

    Article  CAS  PubMed  Google Scholar 

  185. Cremonesi M, Ferrari M, Bartolomei M, et al. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35:2088–96.

    Article  CAS  PubMed  Google Scholar 

  186. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78. Erratum in: J Vasc Interv Radiol. 2006;17:1594.

    Article  PubMed  Google Scholar 

  187. Riaz A, Lewandowski RJ, Kulik LM, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30.

    Article  PubMed  Google Scholar 

  188. Walrand S, Hesse M, Chiesa C, et al. The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in post-therapy PET imaging. J Nucl Med. 2014;55:135–40.

    Article  CAS  PubMed  Google Scholar 

  189. Gaba RC, Lewandowsi RJ, Kulik LM, et al. Radiation lobectomy: preliminary findings of hepatic volumetric response to lobar yttrium-90 radioembolization. Ann Surg Oncol. 2009;16:1587–96.

    Article  PubMed  Google Scholar 

  190. Strigari L, Sciuto R, Rea S, et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y SIR spheres: radiobiological considerations. J Nucl Med. 2010;51:1377–85.

    Article  CAS  PubMed  Google Scholar 

  191. Flamen P, Vanderlinden B, Delatte P, et al. CORRIGENDUM: multimodality imaging can predict the metabolic response of unresectable colorectel liver metastases to radioembolization therapy with yttrium-90 labeled resin micropheres. Phys Med Biol. 2014;59:2549.

    Article  Google Scholar 

  192. Chiesa C, Mira M, Maccauro M, et al. Radioembolization of hepatocarcinoma with 90Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42:1718–38.

    Article  CAS  PubMed  Google Scholar 

  193. Chiesa C, Mira M, Bhoori S, et al. Radioembolization of hepatocarcinoma with 90Y glass microspheres: treatment optimization using the dose-toxicity relationship. Eur J Nucl Med Mol Imaging. 2020;47:3018–32.

    Article  CAS  PubMed  Google Scholar 

  194. Salem R, Padia SA, Lam M, et al. Clinical and dosimetric considerations for 90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging. 2019;46:1695–704.

    Article  PubMed  Google Scholar 

  195. Levillain J, Bagni O, Deroose CM, et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging. 2021;48:1570–84.

    Google Scholar 

  196. Garin E, Lenoir L, Rolland Y, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53:255–63.

    Article  CAS  PubMed  Google Scholar 

  197. Garin E, Lenoir L, Edeline J, et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging. 2013;40:1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Garin E, Tselikas L, Guiu B, et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6:17–29.

    Article  PubMed  Google Scholar 

  199. Giammarile F, Chiti A, Lassmann M, et al. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  PubMed  Google Scholar 

  200. Monsieurs M, Brans B, Bacher K, et al. Patient dosimetry for neuroendocrine tumours based on 123I-MIBG pretherapy scans and 131I-MIBG post therapy scans. Eur J Nucl Med. 2002;29:1581–7.

    Article  CAS  Google Scholar 

  201. Fielding SL, Flower MA, Ackery D, et al. Dosimetry of iodine-131 metaiodobenzylguanidine in resistant neuroblastoma: results of a UK study. Eur J Nucl Med. 1991;18:308–16.

    Article  CAS  PubMed  Google Scholar 

  202. Matthay KK, Quach A, Franc BL, et al. 131I-Metaiodobenzylguanidine (131I-MIBG) double infusion with autologous stem cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy (NANT) phase I study. J Clin Oncol 2009;27: 1020–5.

    Google Scholar 

  203. Buckley SE, Chittenden S, Saran FH, et al. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50:1518–24.

    Article  CAS  PubMed  Google Scholar 

  204. Matthay KK, Jessica C, Villablanca J, et al. Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. J Clin Oncol. 2006;24:500–6.

    Article  CAS  PubMed  Google Scholar 

  205. Monsieurs MA, Thierens HM, Vral A, et al. Patient dosimetry after I-131-MIBG therapy for neuroblastoma and carcinoid tumours. Nucl Med Commun. 2001;22:367–74.

    Article  CAS  PubMed  Google Scholar 

  206. DuBois SG, Messina J, Maris JM, et al. Haematological toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol. 2004;22:2452–60.

    Article  CAS  PubMed  Google Scholar 

  207. Matthay KK, Panina C, Huberty J, et al. Correlation of tumour and whole-body dosimetry with tumour response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med. 2001;42:1713–21.

    CAS  PubMed  Google Scholar 

  208. Flower MA, Fielding SL. Radiation dosimetry for 131I-mIBG therapy of neuroblastoma. Phys Med Biol. 1996;41:1933–40.

    Article  CAS  PubMed  Google Scholar 

  209. Gaze MN, Chang YC, Flux GD, et al. Feasibility of dosimetry-based high-dose I-131-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm. 2005;20:195–9.

    CAS  PubMed  Google Scholar 

  210. Koral KF, Huberty JP, Frame B, et al. Hepatic absorbed radiation dosimetry during I-131 metaiodobenzylguanadine (MIBG) therapy for refractory neuroblastoma. Eur J Nucl Med Mol Imaging. 2008;35:2105–12.

    Article  CAS  PubMed  Google Scholar 

  211. Trieu M, DuBois SG, Pon E, et al. Impact of whole-body radiation dose on response and toxicity in patients with neuroblastoma after therapy with 131I-metaiodobenzylguanidine (MIBG). Pediatr Blood Cancer. 2016;63:436–42.

    Article  CAS  PubMed  Google Scholar 

  212. Minguez P, Flux G, Genolla J, et al. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with 131I-metaiodobenzylguanidine with implications for the activity to administer. Med Phys. 2015;42:3969–78.

    Article  CAS  PubMed  Google Scholar 

  213. George SL, Falzone N, Chittenden S, et al. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nucl Med Commun. 2016;37:466–72.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lee CL, Wahnishe H, Sayre GA, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Seo Y, Gustafson WC, Dannoon SF, et al. Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol Imaging Biol. 2012;14:735–42.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Huang SY, Bolch WE, Lee C, et al. Patient-specific dosimetry using pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) dynamic PET/CT imaging before [131I]mIBG targeted radionuclide therapy for neuroblastoma. Mol Imaging Biol. 2015;17:284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Jentzen W, Richter M, Poeppel TD, et al. Discrepant salivary gland response after radioiodine and MIBG therapies. Q J Nucl Med Mol Imaging. 2017;61:331–9.

    Article  PubMed  Google Scholar 

  218. Aboian MS, Huang S, Hernandez-Pampaloni M, et al. 124I-MIBG PET-CT to monitor metastatic disease in children with relapsed neuroblastoma. J Nucl Med 2021;62:43–47.

    Google Scholar 

  219. Hartung-Knemeyer V, Rosenbaum-Krumme S, Buchbender C, et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J Clin Endocrinol Metab. 2012;97:3833–4.

    Article  CAS  PubMed  Google Scholar 

  220. Gear J, Chiesa C, Lassmann M, et al. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Physics. 2020;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:89–104.

    Article  PubMed  Google Scholar 

  222. Krishnamurthy GT, Krishnamurthy S. Radionuclides for metastatic bone pain palliation: a need for rational re-evaluation in the new millennium. J Nucl Med. 2000;41:688–91.

    CAS  PubMed  Google Scholar 

  223. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.

    Article  CAS  PubMed  Google Scholar 

  224. Taylor Jr AJ. Strontium-89 for the palliation of bone pain due to metastatic disease. J Nucl Med. 1994;35:2054.

    PubMed  Google Scholar 

  225. Eary JF, Collins C, Stabin M, et al. Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med. 1993;34:1031–6.

    CAS  PubMed  Google Scholar 

  226. Graham MC, Scher HI, Liu GB, et al. Rhenium-186-labeled hydroxyethylidene diphosphonate dosimetry and dosing guidelines for the palliation of skeletal metastases from androgen-independent prostate cancer. Clin Cancer Res. 1999;5:1307–18.

    CAS  PubMed  Google Scholar 

  227. Liepe K, Kropp J, Runge R, et al. Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer. 2003;89:625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lewington VJ. Bone-seeking radiopharmaceuticals. J Nucl Med. 2005;46:38S–47.

    CAS  PubMed  Google Scholar 

  229. Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    Article  PubMed  Google Scholar 

  230. Pacilio M, Ventroni G, Basile C, et al. Improving the dose–myelotoxicity correlation in radiometabolic therapy of bone metastases with 153Sm-EDTMP. Eur J Nucl Med Mol Imaging. 2014;41:238–52.

    Article  CAS  PubMed  Google Scholar 

  231. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  232. Flux GD. Imaging and dosimetry for radium-223: the potential for personalized treatment. Br J Radiol. 2017;90:20160748.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Brito AE, Etchebehere E. Radium-223 as an approved modality for treatment of bone metastases. Semin Nucl Med. 2019;50:177–92.

    Article  Google Scholar 

  234. Poeppel TD, Handkiewicz-Junak D, Andreeff M, et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:824–45.

    Article  CAS  PubMed  Google Scholar 

  235. Sgouros G, Roeske JC, McDevitt MR, et al. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51:311–28.

    Article  CAS  PubMed  Google Scholar 

  236. Hobbs RF, Song H, Watchman CJ, et al. A bone marrow toxicity model for Ra-223 α-emitter radiopharmaceutical therapy. Phys Med Biol. 2012;57:3207–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chittenden SJ, Hindorf C, Parker CC, et al. A phase 1, open-label study of the biodistribution, pharmacokinetics, and dosimetry of 223Ra-dichloride in patients with hormone-refractory prostate cancer and skeletal metastases. J Nucl Med. 2015;56:1304–9.

    Article  CAS  PubMed  Google Scholar 

  238. Pacilio M, Ventroni G, Cassano B, et al. A case report of image-based dosimetry of bone metastases with Alpharadin (223Ra-dichloride) therapy: inter-fraction variability of absorbed dose and follow-up. Ann Nucl Med. 2016;30:163–8.

    Article  PubMed  Google Scholar 

  239. Pacilio M, Ventroni G, De Vincentis G, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting radichloride. Eur J Nucl Med Mol Imaging. 2016;43:21–33.

    Article  CAS  PubMed  Google Scholar 

  240. Lassmann M, Nosske D. Dosimetry of 223Rachloride: dose to normal organs and tissues. Eur J Nucl Med Mol Imaging. 2013;40:207–12.

    Article  CAS  PubMed  Google Scholar 

  241. Carrasquillo JA, O’Donoghue JA, Pandit-Taskar N, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castrationresistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:1384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yoshida K, Kaneta T, Takano S, et al. Pharmacokinetics of single dose radium-223 dichloride (BAY 88–8223) in Japanese patients with castration-resistant prostate cancer and bone metastases. Ann Nucl Med. 2016;30:453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sun M, Niaz MO, Nelson A, et al. Review of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Cureus 2020;12(6). e8921.

    Google Scholar 

  244. Haberkorn U, Eder M, Kopka K, et al. New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res. 2016;22:9–15.

    Article  CAS  PubMed  Google Scholar 

  245. Rahbar K, Afshar-Oromieh A, Jadvar H, et al. PSMA theranostics: current status and future directions. Mol Imaging. 2018;17:1–9.

    Google Scholar 

  246. Kratochwil C, Fendler WP, Eiber M, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44.

    Article  PubMed  Google Scholar 

  247. Kulkarni HR, Singh A, Langbein T, et al. Theranostics of prostate cancer: from molecular imaging to precision molecular radiotherapy targeting the prostate specific membrane antigen. Br J Radiol. 2018;91(1091):20180308.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Langbein T, Weber W, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60:13S–9S.

    Article  CAS  PubMed  Google Scholar 

  249. Guideline Program Oncology. Interdisciplinary S3-guideline for the early detection, diagnosis and treatment of the different stages of prostate cancer [in German]. Berlin: German Cancer Society DKG, AWMF; 2018.

    Google Scholar 

  250. Delker A, Fendler WP, Kratochwil C, et al. Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:42–51.

    Article  CAS  PubMed  Google Scholar 

  251. Okamoto S, Thieme A, Allmann J, et al. Radiation Dosimetry for 177Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. J Nucl Med. 2017;58:445–50.

    Article  CAS  PubMed  Google Scholar 

  252. Violet J, Jackson P, Ferdinandus J, et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med. 2019;60:517–23.

    Article  CAS  PubMed  Google Scholar 

  253. Yadav MP, Ballal S, Tripathi M, et al. Post-therapeutic dosimetry of 177Lu-DKFZ-PSMA-617 in the treatment of patients with metastatic castration-resistant prostate cancer. Nucl Med Commun. 2017;38:91–8.

    Article  PubMed  Google Scholar 

  254. Wang J, Zang J, Wang H, et al. Pretherapeutic 68Ga-PSMA-617 PET may indicate the dosimetry of 177Lu-PSMA-617 and 177Lu-EB-PSMA-617 in main organs and tumor lesions. Clin Nucl Med. 2019;44:431–8.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Begum NJ, Thieme A, Eberhardt N, et al. The effect of total tumor volume on the biologically effective dose to tumor and kidneys for 177Lu-labeled PSMA peptides. J Nucl Med. 2018;59:929–33.

    Article  CAS  PubMed  Google Scholar 

  256. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMAtargeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 2016;57:1941–1944.

    Google Scholar 

  257. Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59:795–802.

    Article  CAS  PubMed  Google Scholar 

  258. Sathekge M, Bruchertseifer F, Knoesen O, et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 2019;46: 129–138.

    Google Scholar 

  259. International Atomic Energy Agency. Cytogenetic analysis for radiation dose assessment, Technical report series, 405. Vienna: IAEA; 2001.

    Google Scholar 

  260. Léonard A, Rueff J, Gerber GB, et al. Usefulness and limits of biological dosimetry based on cytogenetic methods. Radiat Prot Dosim. 2005;115:448–54.

    Article  Google Scholar 

  261. M’Kacher R, Schlumberger M, Lagal JC, et al. Biologic dosimetry in thyroid cancer patients after repeated treatments with iodine-131. J Nucl Med. 1998;39:825–9.

    PubMed  Google Scholar 

  262. Chimeno JM, Natividad Sebastià N, Irene Torres-Espallardo I, et al. Assessment of the dicentric chromosome assay as a biodosimetry tool for more personalized medicine in a case of a high risk neuroblastoma 131 I-mIBG treatment. Int J Radiat Biol. 2019;95:314–20.

    Article  CAS  PubMed  Google Scholar 

  263. Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res. 1985;147:29–36.

    Article  CAS  PubMed  Google Scholar 

  264. Sommer S, Buraczewska I, Kruszewski M. Micronucleus assay: the state of art, and future directions. Int J Mol Sci. 2020;21:1534.

    Article  CAS  PubMed Central  Google Scholar 

  265. Livingston GK, Khvostunov IK, Gregoire E, et al. Cytogenetic effects of radioiodine therapy: a 20-year follow-up study. Radiat Environ Biophys. 2016;55:203–13.

    Article  PubMed  Google Scholar 

  266. Watanabe N, Yokoyama K, Kimuya S, et al. Radiosensitivity after iodine-131 therapy for thyroid cancer using the micronucleus assay. J Nucl Med. 1988;39:436–44.

    Google Scholar 

  267. Watanabe N, Kanegane H, Kinuya S, et al. The radiotoxicity of 131I therapy of thyroid cancer: assessment by micronucleus assay of B lymphocytes. J Nucl Med. 2004;45:608–11.

    CAS  PubMed  Google Scholar 

  268. Nascimento AC, Lipsztein JL, Corbo R, et al. 131I biokinetics and cytogenetic dose estimates in ablation treatment of thyroid carcinoma. Health Phys 2010;99: 457–463.

    Google Scholar 

  269. Vrndic OB, Milosevic-Djordjevic OM, Mijatovic-Teodorovic LC, et al. Correlation between micronuclei frequency in peripheral blood lymphocytes and retention of 131I in thyroid cancer patients. Tohoku J Exp Med. 2013;229:115–24.

    Article  PubMed  Google Scholar 

  270. Popova L, Hadjidekova V, Hadjiev T, et al. Cytokinesis-block micronucleus test in patients undergoing radioiodine therapy for differentiated thyroid carcinoma. Hell J Nucl Med. 2005;8:54–7.

    PubMed  Google Scholar 

  271. Gutierrez S, Carbonell E, Galofre P, et al. Cytogenetic damage after 131-iodine treatment for hyperthyroidism and thyroid cancer. A study using the micronucleus test. Eur J Nucl Med. 1999;26:589–96.

    Google Scholar 

  272. Monsieurs MA, Thierens HM, van de Wiele CV, et al. Estimation of risk based on biological dosimetry for patients treated with radioiodine. Nucl Med Commun. 1999;20:911–7.

    Article  CAS  PubMed  Google Scholar 

  273. Dardano A, Ballardin M, Caraccio N, et al. The effect of ginkgo biloba extract on genotoxic damage in patients with differentiated thyroid carcinoma receiving thyroid remnant ablation with iodine-131. Thyroid. 2012;22:318–24.

    Article  CAS  PubMed  Google Scholar 

  274. Livingston GK, Foster AE, Elson HR. Effect of in vivo exposure to iodine-131 on the frequency and persistence of micronuclei in human lymphocytes. J Toxicol Environ Health. 1993;40:367–75.

    Article  CAS  PubMed  Google Scholar 

  275. Fairbaim DW, Olive PL, O’Neill KL. The Comet assay: a comprehensive review. Mutat Res. 1995;339:37–59.

    Article  Google Scholar 

  276. Anderson D, Plewa MJ. The international comet assay workshop. Mutagenesis. 1998;13:67–73.

    Article  CAS  PubMed  Google Scholar 

  277. Schmeiser HH, Muehlbauer K-R, Mier W, et al. DNA damage in human whole blood caused by radiopharmaceuticals evaluated by the comet assay. Mutagenesis. 2019;20:239–44.

    Article  Google Scholar 

  278. Gutierrez S, Carbonell E, Galofre P, et al. Application of the single cell gel electrophoresis (SCGE) assay to the detection of DNA damage induced by 131I treatment in hyperthyroidism patients. Mutagenesis. 1998;13:95–8.

    Article  CAS  PubMed  Google Scholar 

  279. Rothkamm K, Horn S. γ-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita. 2009;45:265–71.

    CAS  PubMed  Google Scholar 

  280. Quimby E. The development of radiation dosimetry in nuclear medicine. In: Medical radionuclides: radiation dose and effects. AEC Symposium Series 20. Washington, DC: U.S. Atomic Energy Commission; 1970. p. 7–15.

    Google Scholar 

  281. Lassmann M, Hanscheid H, Gassen D, et al. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2010;51:1318–25.

    Article  PubMed  Google Scholar 

  282. Eberlein U, Scherthan H, Bluemel C, et al. DNA damage in peripheral blood lymphocytes of thyroid cancer patients after radioiodine therapy. J Nucl Med. 2016;57:173–9.

    Article  CAS  PubMed  Google Scholar 

  283. Doai M, Watanabe N, Takahashi T, et al. Sensitive immunodetection of radiotoxicity after iodine-131 therapy for thyroid cancer using gamma-H2AX foci of DNA damage in lymphocytes. Ann Nucl Med. 2013;27:233–8.

    Article  CAS  PubMed  Google Scholar 

  284. Denoyer D, Lobachevsky P, Jackson P, et al. Analysis of 177Lu-octreotate therapy–induced DNA damage in peripheral blood lymphocytes of patients with neuroendocrine tumors. J Nucl Med. 2015;56:505–11.

    Article  CAS  PubMed  Google Scholar 

  285. Eberlein U, Nowak C, Bluemel C, et al. DNA Damage in blood lymphocytes in patients after Lu-177 peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2015;42:1739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. May MS, Brand M, Wuest W, et al. Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing 18F-FDG PET/CT examinations. Eur J Nucl Med Mol Imaging. 2012;39:1712–9.

    Article  CAS  PubMed  Google Scholar 

  287. Schumann S, Eberlein U, Muhtadi R, et al. DNA damage in leukocytes after internal ex-vivo irradiation of blood with the alpha-emitter Ra-223. Sci Rep. 2018;8(1):2286.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Schumann S, Eberlein U, Jessica Müller J, et al. Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224. EJNMMI Res. 2018;8:77.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Stephan G, Kampen WU, Nosske D, Roos H. Chromosomal aberrations in peripheral lymphocytes of patients treated with radium-224 for ankylosing spondylitis. Radiat Environ Biophys. 2005;44:23–8.

    Article  CAS  PubMed  Google Scholar 

  290. Stenvall A, Larsson E, Holmqvist B, et al. Quantitative γ-H2AX immunofluorescence method for DNA double-strand break analysis in testis and liver after intravenous administration of 111InCl3. EJNMMI Res. 2020;10:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Eberlein U, Scherthan H, Bluemel C, et al. DNA damage in peripheral blood lymphocytes of thyroid cancer patients after radioiodine therapy. J Nucl Med. 2016;57:2173–9.

    Article  Google Scholar 

  292. Amis Jr ES, Butler PF, Applegate KE, et al. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007;4:272–84.

    Article  PubMed  Google Scholar 

  293. Mettler Jr FA, Bhargavan M, Faulkner K, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources – 1950–2007. Radiology. 2009;253:520–31.

    Article  PubMed  Google Scholar 

  294. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  295. Goske MJ, Applegate KE, Bell C, et al. Image gently: providing practical educational tools and advocacy to accelerate radiation protection for children worldwide. Semin Ultrasound CT MR. 2010;31:57–63.

    Article  PubMed  Google Scholar 

  296. Goske MJ, Applegate KE, Boylan J, et al. Image gently (SM): a national education and communication campaign in radiology using the science of social marketing. J Am Coll Radiol. 2008;5:1200–5.

    Article  PubMed  Google Scholar 

  297. Goske MJ, Applegate KE, Boylan J, et al. The image gently campaign: working together to change practice. AJR Am J Roentgenol. 2008;190:273–4.

    Article  PubMed  Google Scholar 

  298. Goske MJ, Frush DP, Schauer DA. Image gently campaign promotes radiation protection for children. Radiat Prot Dosim. 2009;135:276.

    Article  Google Scholar 

  299. Harrison JD, Streffer C. The ICRP protection quantities, equivalent and effective dose: their basis and application. Radiat Prot Dosim. 2007;127:12–8.

    Article  CAS  Google Scholar 

  300. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources (I–VII), Oak Ridge National Laboratory Report ORNL/TM-8381/V1–7. Springfield: National Technical Information Service, Dept of Commerce; 1987.

    Google Scholar 

  301. Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med. 1998;42:93–112.

    CAS  PubMed  Google Scholar 

  302. Treves ST, Davis RT, Fahey FH. Administered radiopharmaceutical doses in children: a survey of 13 pediatric hospitals in North America. J Nucl Med. 2008;49:1024–7.

    Article  PubMed  Google Scholar 

  303. Stabin MG, Stubbs JB, Toohey RE. Radiation dose estimates for radiopharmaceuticals. Washington, DC: US Nuclear Regulatory Commission; 1996. (NRC. Report No.: NUREG/CR-6345).

    Book  Google Scholar 

  304. Brenner D, Elliston C, Hall E, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96.

    Article  CAS  PubMed  Google Scholar 

  305. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298:317–23.

    Article  CAS  PubMed  Google Scholar 

  306. Martin CJ. Effective dose: how should it be applied to medical exposures? Br J Radiol. 2007;80:639–47.

    Article  CAS  PubMed  Google Scholar 

  307. Fahey FH, Palmer MR, Strauss KJ, et al. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology. 2007;243:96–104.

    Article  PubMed  Google Scholar 

  308. Kamel E, Hany TF, Burger C, et al. CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging. 2002;29:346–50.

    Article  CAS  PubMed  Google Scholar 

  309. Brix G, Lechel U, Glatting G, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.

    CAS  PubMed  Google Scholar 

  310. Groves AM, Owen KE, Courtney HM, et al. 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol. 2004;77:662–5.

    Article  CAS  PubMed  Google Scholar 

  311. Huda W, Vance A. Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol. 2007;188:540–6.

    Article  PubMed  Google Scholar 

  312. Preston DL, Pierce DA, Shimizu Y, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res. 2004;162:377–89.

    Article  CAS  PubMed  Google Scholar 

  313. NRC. National Research Council, Committee on the Biological Effects of Ionizing Radiation (BEIR V). Health effects of exposure to low levels of ionizing radiations. Washington, DC: National Academy Press; 1990.

    Google Scholar 

  314. NRC. National Research Council, Committee on the Biological Effects of Ionizing Radiation (BEIR VII-phase 2). Health risks from exposure to low levels of ionizing radiation. Washington, DC: National Academy Press; 2006.

    Google Scholar 

  315. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168:1–64.

    Article  CAS  PubMed  Google Scholar 

  316. Brenner DJ, Elliston CD, Hall EJ, et al. Estimates of the cancer risks from pediatric CT radiation are not merely theoretical: comment on “point/counterpoint: in x-ray computed tomography, technique factors should be selected appropriate to patient size against the proposition”. Med Phys. 2001;28:2387–8.

    Article  CAS  PubMed  Google Scholar 

  317. van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359:1388–93.

    Article  PubMed  Google Scholar 

  318. Neel JV, Schull WJ, Awa AA, et al. The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. Am J Hum Genet. 1990;46:1053–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Neel JV, Lewis SE. The comparative radiation genetics of humans and mice. Annu Rev Genet. 1990;24:327–62.

    Article  CAS  PubMed  Google Scholar 

  320. Edmonds CJ, Smith T. The long-term hazards of the treatment of thyroid cancer with radioiodine. Br J Radiol. 1986;59:45–51.

    Article  CAS  PubMed  Google Scholar 

  321. Sarkar SD, Beierwaltes WH, Gill SP, et al. Subsequent fertility and birth histories of children and adolescents treated with 131I for thyroid cancer. J Nucl Med. 1976;17:460–4.

    CAS  PubMed  Google Scholar 

  322. Handelsman DJ, Turtle JR. Testicular damage after radioactive iodine (I-131) therapy for thyroid cancer. Clin Endocrinol. 1985;18:465–72.

    Article  Google Scholar 

  323. Cloutier RJ, Smith SA, Watson EE, et al. Dose to the fetus from radionuclides in the bladder. Health Phys. 1973;5:147–61.

    Article  Google Scholar 

  324. Hedrick WR, DiSimone RN, Wolf BH, et al. Absorbed dose to the fetus during bone scintigraphy. Radiology. 1988;168:245–8.

    Article  CAS  PubMed  Google Scholar 

  325. Husak V, Wiedermann M. Radiation absorbed dose estimates to the embryo from some nuclear medicine procedures. Eur J Nucl Med. 1980;5:205–7.

    Article  CAS  PubMed  Google Scholar 

  326. Marcus CS, Mason GR, Kuperus JH, et al. Pulmonary imaging in pregnancy. Maternal risk and fetal dosimetry. Clin Nucl Med. 1985;10:1–4.

    Article  PubMed  Google Scholar 

  327. Ponto JA. Fetal dosimetry from pulmonary imaging in pregnancy. Revised estimates. Clin Nucl Med. 1986;1:108–9.

    Article  Google Scholar 

  328. Smith EM, Warner GG. Estimates of radiation dose to the embryo from nuclear medicine procedures. J Nucl Med. 1976;17:836–9.

    CAS  PubMed  Google Scholar 

  329. Stabin MG, Watson EE, Marcus CS, et al. Radiation dosimetry for the adult female and fetus from iodine-131 administration in hyperthyroidism. J Nucl Med. 1991;32:808–13.

    CAS  PubMed  Google Scholar 

  330. Watson E, Stabin M, Eckerman K, et al. Model 2: mathematical models of the pregnant woman at the end of the first and third trimesters. In: Schlafke-Stelson A, Watson E, editors. Proceedings of the fourth international radiopharmaceutical dosimetry symposium (Conf-85113 (DE86010102)). 89 Oak Ridge: US Dept of Energy and Oak Ridge Associated Universities; 1986. p. 104.

    Google Scholar 

  331. Stewart A. Oxford survey of childhood cancers. Nurs Mirror Midwives J. 1971;133:25–6.

    CAS  PubMed  Google Scholar 

  332. Zanzonico PB, Becker DV. Radiation hazards in children born to mothers exposed to 131-iodine. In: Beckers C, Reinwein D, editors. The thyroid and pregnancy. Stuttgart: Schattauer; 1991. p. 189–202.

    Google Scholar 

  333. Ahlgren L, Ivarsson S, Johansson L, et al. Excretion of radionuclides in human breast milk after the administration of radiopharmaceuticals. J Nucl Med. 1985;26:1085–90.

    CAS  PubMed  Google Scholar 

  334. Mountford PJ, Coakley AJ. Guidelines for breast feeding following maternal radiopharmaceutical administration [editorial]. Nucl Med Commun. 1986;7:399–401.

    Article  CAS  PubMed  Google Scholar 

  335. Mountford PJ, Coakley AJ. A review of the secretion of radioactivity in human breast milk: data, quantitative analysis and recommendations. Nucl Med Commun. 1989;10:15–27.

    Article  CAS  PubMed  Google Scholar 

  336. Romney B, Nickoloff E, Esser P, et al. Radionuclide administration to nursing mothers: mathematically derived guidelines. Radiology. 1986;160:549–54.

    Article  CAS  PubMed  Google Scholar 

  337. Rubow S, Klopper J, Wasserman H, et al. The excretion of radiopharmaceuticals in human breast milk: additional data and dosimetry [see comments]. Eur J Nucl Med. 1994;21:144–53.

    Article  CAS  PubMed  Google Scholar 

  338. Weaver J, Kamm M, Dobson R. Excretion of radioiodine in human milk. JAMA. 1960;173:872–5.

    Article  CAS  Google Scholar 

  339. Mettler Jr FA, Huda W, Yoshizumi TT, et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Salvatori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Salvatori, M. et al. (2022). Radiobiology and Radiation Dosimetry in Nuclear Medicine. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics