Skip to main content

Neutron Activation Analysis: Application in Bioanalytical Sciences

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Development of methods for neutron activation analysis (NAA) and their applications in the bioanalytical sciences is reviewed. All over the world, radiochemical laboratories are involved in the investigation of trace elements and their chemical and biochemical roles in the biological, ecological, medical, and environmental research. NAA is classified as a reference method; the accuracy of NAA makes it valuable for comparison with other trace element analytical techniques. The use of neutron activation analysis in bioanalytical sciences has been demonstrated in this chapter, as well as the effectiveness of this technique for solving practical problems that sometimes cannot be solved by other analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szpunar, J. (2005). Advances in analytical methodology for bioinorganic speciation analysis: Metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst, 130, 442–465.

    Article  CAS  PubMed  Google Scholar 

  2. Gao, Y., Chen, C., & Chai, Z. (2007). Advanced nuclear analytical techniques for metalloproteomics. Journal of Atomic Spectrometry, 22, 856–866.

    Article  CAS  Google Scholar 

  3. Chai, Z., Mao, X., Hu, Z., Zhang, Z., Chen, C., Feng, W., Hu, S., & Ouyang, H. (2002). Overview of methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental sciences. Analytical and Bioanalytical Chemistry, 372, 407–411.

    Article  CAS  PubMed  Google Scholar 

  4. Koningsberger, D. C., & Pins, R. (1988). X-ray absorption principles, applications, techniques of EXAFS and XANES. Wiley.

    Google Scholar 

  5. Sham, T.-K. I. (Ed.). (2002). Chemical application of synchrotron radiation. World Scientific Publishing.

    Google Scholar 

  6. Gao, Y. (2010). X-ray fluorescence. In C. Chen, Z. Chai, & Y. Gao (Eds.), Nuclear analytical techniques for metallomics and metalloproteomics (p. 62). RSC Publishing.

    Chapter  Google Scholar 

  7. Qin, Y., & Chen, C. (2010). Mössbauer spectroscopy. In C. Chen, Z. Chai, & Y. Gao (Eds.), Nuclear analytical techniques for metallomics and metalloproteomics (p. 128). RSC Publishing.

    Google Scholar 

  8. Li, Y., & Chen, C. (2010). X-ray absorption spectroscopy. In C. Chen, Z. Chai, & Y. Gao (Eds.), Nuclear analytical techniques for metallomics and metalloproteomics (Vol. 16). RSC Publishing.

    Google Scholar 

  9. Garcia, J. S., Schmidt de Magalhaes, C., & Arruda, M. A. Z. (2006). Trends in metal-binding and metalloprotein analysis. Talanta, 69, 1–15.

    Article  CAS  PubMed  Google Scholar 

  10. Sabbioni, E., Di Gioacchino, M., Farina, M., Groppi, F., & Manenti, S. (2018). Radioanalytical and nuclear techniques in trace metal toxicology research. Journal of Radioanalytical and Nuclear Chemistry, 381, 1749–1763.

    Article  CAS  Google Scholar 

  11. Chai, Z. F., Zhang, Z. Y., Feng, W. Y., Chen, C. Y., Xu, D. D., & Hou, X. I. (2004). Study of chemical speciation of trace elements by molecular activation analysis and other nuclear techniques. Journal of Analytical Atomic Spectrometry, 19, 26–33.

    Article  CAS  Google Scholar 

  12. Alfassi, Z. B. (1990). Activation analysis. CRC Press.

    Google Scholar 

  13. Polkowska-Motrenko, H., Danko, B., & Dybczyński, R. (2004). Metrological assessment of the high accuracy RNAA method of Co determination in biological materials. Analytical and Bioanalytical Chemistry, 379, 221–226.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Z. (2010). Neutron activation analysis. In C. Chen, Z. Chai, & Y. Gao (Eds.), Nuclear analytical techniques for metallomics and metalloproteomics (Vol. 44). RSC Publishing.

    Google Scholar 

  15. ISO/IEC Guide 99:2007 International vocabulary of metrology – basic and general concept and associated terms (VIM), Geneva, 2007.

    Google Scholar 

  16. BIPM Proc. 4th meeting of CCQM. Bureau International des Poids et Measures, Paris, France: 71, 1998.

    Google Scholar 

  17. BIPM Proc. 5th meeting of CCQM. Bureau International des Poids et Measures, Paris, France, 1999.

    Google Scholar 

  18. Greenberg, R. R., Bode, P., & De Nadai, F. E. A. (2011). Neutron activation analysis: A primary method of measurement. Spectrochimica Acta Part B, 66, 193–241.

    Article  CAS  Google Scholar 

  19. Bulska, E. (2012). Chemical metrology (2nd ed.). Malamut. (in Polish).

    Google Scholar 

  20. Chajduk, E., & Polkowska-Motrenko, H. (2017). Application of ICP-MS, INAA and RNAA to the determination of some “difficult” elements in infant formulas. Journal of Radioanalytical and Nuclear Chemistry, 311, 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  21. Chajduk, E., & Polkowska-Motrenko, H. (2019). The use of HPLC-NAA and HPLC-ICP-MS for the speciation of As in infant food. Food Chemistry, 292, 129–133.

    Article  CAS  PubMed  Google Scholar 

  22. Polkowska-Motrenko, H., Danko, B., & Dybczyński, R. (2005). Potential of radiochemical neutron activation analysis as a primary ratio method. Chemia Analityczna, 50, 155–167.

    CAS  Google Scholar 

  23. Chajduk, E., Polkowska-Motrenko, H., & Dybczyński, R. (2008). The use of definitive methods based on RNAA for the determination of selenium and arsenic in materials used in proficiency testing. Nukleonika, 53(Suppl. 2), 49–54.

    Google Scholar 

  24. Carioni, V. M. O., Nomura, C. S., Yu, L. L., & Zeisler, R. (2014). Use of neutron activation analysis and LC–ICP-MS in the development of candidate reference materials for As species determination. Journal of Radioanalytical and Nuclear Chemistry, 299, 241–248.

    Article  CAS  Google Scholar 

  25. Slejkovec, Z., Falnoga, I., Goessler, W., van Elteren, J. T., Raml, R., Podgornic, H., & Cernelc, P. (2008). Analytical artefacts in the speciation of arsenic in clinical samples. Analytica Chimica Acta, 607, 83–91.

    Article  CAS  PubMed  Google Scholar 

  26. Davis, W. C., Zeisler, R., Sieber, J. R., & Yu, L. L. (2010). Methods for the separation and quantification of arsenic species in SRM 2669: Arsenic species in frozen human urine. Analytical and Bioanalytical Chemistry, 396, 3041–3050.

    Article  CAS  PubMed  Google Scholar 

  27. Yu, L. L., Wei, C., Zeisler, R., Tong, J., Oflaz, R., Bao, H., & Wang, J. (2015). An approach for identification and determination of arsenic species in the extract of kelp. Analytical and Bioanalytical Chemistry, 407, 3517–3524.

    Article  CAS  PubMed  Google Scholar 

  28. Juncos, R., Arcagni, M., Squadrone, S., Rizzo, A., Arribere, M., Barriga, J. P., Battini, M. A., Campbell, L. M., Brizio, P., Abete, M. C., & Ribeiro, G. S. (2019). Interspecific differences in the bioaccumulation of arsenic in three Patagonian top predator fish: Organ distribution and arsenic speciation. Ecotoxicology and Environmental Safety, 168, 431–442.

    Article  CAS  PubMed  Google Scholar 

  29. Miura, T., Chiba, K., Kuroiwa, T., Narukawa, T., Hioki, A., & Matsue, H. (2010). Accurate determination of arsenic in arsenobetaine standard solutions of BCR-626 and NMIJ CRM 7901-a by neutron activation analysis coupled with internal standard method. Talanta, 82, 1143–1148.

    Article  CAS  PubMed  Google Scholar 

  30. Shi, Y., & Chatt, A. (2018). Speciation analysis of inorganic and organic arsenic in Canadian seafoods by chemical separation and neutron activation. Journal of Radioanalytical and Nuclear Chemistry, 318, 785–795.

    Article  CAS  Google Scholar 

  31. Truus, K., Vaher, M., Koel, M., Mahar, A., & Taure, I. (2004). Analysis of bioactive ingredients in the brown alga Fucus vesiculosus by capillary electrophoresis and neutron activation analysis. Analytical and Bioanalytical Chemistry, 379, 849–852.

    Article  CAS  PubMed  Google Scholar 

  32. Shi, Y., & Chatt, A. (2014). Simultaneous determination of inorganic As(III), As(V), Sb(III), Sb(V), and Se(IV) species in natural waters by APDC/MIBK-NAA. Journal of Radioanalytical and Nuclear Chemistry, 299, 867–877.

    Article  CAS  Google Scholar 

  33. Schutz, C. L., Brochhausen, C., Hampel, G., Iffland, D., Kuczewski, B., Otto, G., Schmitz, T., Stieghorst, C., & Kratz, J. V. (2012). Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. Analytical and Bioanalytical Chemistry, 404, 1887–1895.

    CAS  PubMed  Google Scholar 

  34. Isaak-Olive, K., & Chatt, A. (2014). Expanded uncertainties of preconcentration neutron activation measurements of extractable organo-chlorine, bromine and iodine compounds in bovine milk lipids. Journal of Radioanalytical and Nuclear Chemistry, 302, 1213–1224.

    Article  CAS  Google Scholar 

  35. Isaak-Olive, K., Kyaw, T. T., & Chatt, A. (2018). Estimation of anthropogenic organo-chlorine, bromine and iodine compounds in apolar lipid fractions of bovine milk by solid-phase extraction and neutron activation analysis (SPE-NAA). Journal of Radioanalytical and Nuclear Chemistry, 318, 247–257.

    Article  CAS  Google Scholar 

  36. Isaak-Olive, K., & Chatt, A. (2012). Studies of total, organic and inorganic iodine in Canadian bovine milk samples with varying milk fat content using ion-exchange chromatography and neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 294, 479–486.

    Article  CAS  Google Scholar 

  37. Mello, P. A., Barin, J. S., Duarte, F. A., Bizzi, C. A., Diehl, L. O., Muller, E. I., & Flores, E. M. M. (2013). Analytical methods for the determination of halogens in bioanalytical sciences: A review. Analytical and Bioanalytical Chemistry, 405, 7615–7642.

    Article  CAS  PubMed  Google Scholar 

  38. Pavelka, S., Vobecky, M., & Babicky, A. (2008). Halogen speciation in the rat thyroid: Simultaneous determination of bromine and iodine by short-term INAA. Journal of Radioanalytical and Nuclear Chemistry, 278, 575–579.

    Article  CAS  Google Scholar 

  39. Bode, P., Bueno, M. I. M. S., Bortoleto, G. G., Hoffmann, G., van den Ingh, T. S. G. A. M., & Rothuizen, J. (2008). Neutron activation analysis and X-ray Rayleigh and Raman scattering of hair and nail clippings as noninvasive bioindicators for Cu liver status in Labrador Retrievers. Analytical and Bioanalytical Chemistry, 390, 1653–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayawickreme, C. K., & Chatt, A. (1988). Characterization of protein-bound metal species by bioanalytical and neutron activation techniques. Journal of Radioanalytical and Nuclear Chemistry, 124, 257–279.

    Article  CAS  Google Scholar 

  41. Feng, W., Qian, Q., Ding, W., & Chai, Z. (1999). Comparison of chromium distribution in organs and subcellular fraction of normal and diabetics rats by using enriched stable isotope Cr-50 tracer. Biological Trace Element Research, 71-72, 121–129.

    Article  CAS  PubMed  Google Scholar 

  42. Ding, W. J., Qian, Q. F., & Hou, X. L. (2000). Determination of chromium combined with DNA, RNA and proteins in Cr-rich brewer’s yeast by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 244, 259–262.

    Article  CAS  Google Scholar 

  43. Bartolini, M. E., Pekar, J., Chettle, D. R., McNeill, F., Scott, A., Sykes, J., & Prato, F. S. (2003). An investigation of the toxicity of gadolinium based MRI contrast agents using neutron activation analysis. Magnetic Resonance Imaging, 21, 541–544.

    Article  CAS  PubMed  Google Scholar 

  44. Falnoga, I., Kregar, I., Skreblin, M., Tusek-Znidaric, M., & Stegnar, P. (1993). Interaction of mercury in rat brain. Biological Trace Element Research, 37, 71–83.

    Article  CAS  PubMed  Google Scholar 

  45. Andrasi, E., Cs, B., Stibilj, V., & Dermelj, M. (2004). Iodine concentration in different human brain parts. Analytical and Bioanalytical Chemistry, 378, 129–133.

    Article  CAS  PubMed  Google Scholar 

  46. Hou, X., Chen, C., Qian, Q., & Chai, C. (1999). Study on chemical species of iodine in human liver. Biological Trace Element Research, 69, 69–76.

    Article  CAS  PubMed  Google Scholar 

  47. Hou, X., Chai, C., Qian, Q., Yan, X., & Fan, X. (1997). Chemical species of iodine in some seaweeds (I). Science of the Total Environment, 204, 215–221.

    Article  Google Scholar 

  48. Hou, X., Yan, X., & Chai, C. (2000). Chemical species of iodine in some seaweeds II. Iodine-bound biological macromolecules. Journal of Radioanalytical and Nuclear Chemistry, 245, 461–467.

    Article  CAS  Google Scholar 

  49. Isaak-Olive, K. S., Acharya, R., & Chatt, A. (2008). Fractionation analysis of iodine in bovine milk by preconcentration neutron activation analysis. Talanta, 77, 827–832.

    Article  CAS  Google Scholar 

  50. Hou, X. (1999). Study on chemical species of inorganic elements in some marine algae by neutron activation analysis combined with chemical and biochemical separation techniques. Journal of Radioanalytical and Nuclear Chemistry, 242, 49–61.

    Article  CAS  Google Scholar 

  51. Khan, A. M., Bakar, N. K. A., Bakar, A. F. A., & Ashraf, M. A. (2017). Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: A review. Environmental Science and Pollution Research, 24, 22764–22789.

    Article  CAS  PubMed  Google Scholar 

  52. Chen, C., Zhang, P., & Chai, Z. (2001). Distribution of some rare earth elements and their binding species with proteins in human liver studied by instrumental neutron activation analysis combined with biochemical techniques. Analytica Chimica Acta, 439, 19–27.

    Article  CAS  Google Scholar 

  53. Fan, T. W. M., Pruszkowski, E., & Shuttleworth, S. (2002). Speciation of selenoproteins in Se-contaminated wildlife by gel electrophoresis and laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 17, 1621–1623.

    Article  CAS  Google Scholar 

  54. Chery, C. C., Gunter, D., Cornelis, R., Vanhaecke, T., & Moens, L. (2003). Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: Application to selenium. Electrophoresis, 24, 3305–3313.

    Article  CAS  PubMed  Google Scholar 

  55. Chen, C. Y., Zhao, J. J., Zhang, P. P., & Chai, Z. F. (2002). Speciation and subcellular location of Se-containing proteins in human liver studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and hydride generation-atomic fluorescence spectrometric detection. Analytical and Bioanalytical Chemistry, 372, 426–430.

    Article  CAS  PubMed  Google Scholar 

  56. Jaswal, S. K., Prakash, R., Acharya, R., Nathaniel, T. N., Reddy, A. V. R., & Prakash, N. T. (2012). Bioaccessibility of selenium from Se-rich food grains of seleniferous region of Punjab, India as analysed by instrumental neutron activation analysis. CyTA–Journal of Food, 10, 160–164.

    Article  CAS  Google Scholar 

  57. Yamasaki, K., Sakuma, Y., Sasaki, J., Matsumoto, K., Anzai, K., Matsuoka, K., Honda, C., Tsukada, M., Endo, K., & Enomoto, S. (2011). Biliary excretion of essential trace elements in rats under oxidative stress caused by selenium deficiency. Analytical and Bioanalytical Chemistry, 401, 2531–2538.

    Article  CAS  PubMed  Google Scholar 

  58. Serfor-Armah, Y., Carboo, D., Akuamoah, R. K., & Chatt, A. (2018). Micelle-mediated extraction and neutron activation determination of nanogram levels of vanadium in seaweeds. Journal of Radioanalytical and Nuclear Chemistry, 318, 2039–2047.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Chajduk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chajduk, E., Polkowska-Motrenko, H. (2022). Neutron Activation Analysis: Application in Bioanalytical Sciences. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_50

Download citation

Publish with us

Policies and ethics