1 Introduction

In recent years, high-order Hopfield recurrent neural networks have attracted the attention of many scientists : mathematicians, computer scientists, physicists and other. This is due to the fact that high-order neural networks have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks [110].

Time delays, which is inevitably encountered in the neural networks, is often one of the main sources to cause poor performance, make the dynamic behaviors become more complex, may destabilize the stable equilibria and admit oscillations, bifurcation and chaos [7, 1420]. Therefore, it is of prime importance to consider the delay effects on the stability of neural networks. Recently, Xiao and Meng [6] studied the high-order Hopfield neural networks (HHNNs) with time-varying delays described by

$$\begin{aligned} x'_{i}(t)= & {} - c_{i}(t) x_{i}(t) +\sum \limits _{j=1}^{n} a_{ij}(t) g_{j} (x_{j}(t-\tau _{ij}(t))) \\&+\sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n} b_{ijl}(t) g_{j}(x_{j}(t-\sigma _{ij}(t))) g_{l}(x_{l}(t-\nu _{ij}(t))) \end{aligned}$$

In addition, the time delay in the negative feedback terms which is known as leakage have a tendency to destabilize the system [2124] and have great impact on the dynamical behavior of neural networks. This is to say, it is necessary to consider the effect of leakage delays when studying the stability of state estimation of neural networks.

Moreover, it is known that the existence and the stability of the almost periodic solution play a key role in characterizing the behavior of dynamical system [2532]. Thus, it is worth while to continue to investigate the existence and stability of almost periodic solution to high-order neutral networks.

The dynamics of evolving processes is usually subjected to suddenly changes such as shocks, harvesting, and natural disasters [1113]. Often these short-term perturbations are treated as having acted instantaneously or in the form of impulses. High-order recurrent neural networks are often subject to impulsive perturbations that in turn affect the dynamical behaviors. Xu et al. [8] studied the following impulsive high-order Hopfield type neural networks with delays as follows

$$\begin{aligned} \left\{ \begin{array}{ll} c_{i} x'_{i}(t)&{}= - \frac{x_{i}(t)}{R_{i}} +\sum \limits _{j=1}^{n} T_{ij} g_{j} (x_{j}(t-\tau _{j})) \\ &{}\quad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n} T_{ijl} g_{j}(x_{j}(t-\tau _{j})) g_{l}(x_{l}(t-\tau _{l})) \\ &{}\quad +\,I_{i}, \, \, \, t \in \mathbb {R},\, t \ne t_{k},\, k \in \mathbb {Z} \\ \varDelta x_{i}(t_{k})&{}= d_{i} x_{i}(t^{-}) +\sum \limits _{j=1}^{n} W_{ij} h_{j} (x_{j}(t^{-}-\tau _{j})) \\ &{}\quad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n} W_{ijl} h_{j}(x_{j}(t^{-}-\tau _{j})) g_{l}(x_{l}(t^{-}-\tau _{l})) \end{array} \right. \end{aligned}$$

There have been extensive results on the existence and stability of equilibrium points, periodic solutions, almost periodic solutions and anti-periodic solutions for high-order neural networks. However, to the best of our knowledge, there are no published papers considering the piecewise differentiable pseudo almost periodic solutions for impulsive high-order Hopfield neural networks with time-varying delays in the leakage terms.

In this paper, we discuss piecewise differentiable pseudo almost periodic solutions for impulsive high-order Hopfield neural networks (IHOHNNs) with time-varying delays in the leakage terms

$$\begin{aligned} \left\{ \begin{array}{ll} x'_{i}(t)&{}= - c_{i}(t) x_{i}(t-\rho (t)) +\sum \limits _{j=1}^{n} a_{ij}(t) g_{j} (x_{j}(t-\tau _{ij}(t))) \\ &{}\quad + \sum \limits _{j=1}^{n} b_{ij}(t)\int _{0}^{\infty } d_{ij}(u) g_{j} (x_{j}(t-u)) du\\ &{}\quad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n} \alpha _{ijl}(t) g_{j}(x_{j}(t-\sigma _{ij}(t))) g_{l}(x_{l}(t-\nu _{ij}(t))) \\ &{}\quad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n} \beta _{ijl}(t)\int _{0}^{\infty } h_{ijl}(u) g_{j}(x_{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(x_{l}(t-u)) du \\ &{}\quad + J_{i}(t), \, \, \, t \in \mathbb {R},\, t \ne t_{k},\, k \in \mathbb {Z} \\ \varDelta x_{i}(t_{k})&{}= x_{i}(t^{+}_{k}) - x_{i}(t^{-}_{k}) = I_{k}(x_{i}(t_{k})) \end{array} \right. \end{aligned}$$
(1)

in which n corresponds to the number of units in a neural network, \(x_{i}(t)\) corresponds to the state vector of the \(i^{th}\) unit at the time \(t, c_{i}(t)> 0\) represents the rate with which the \(i^{th}\) unit will reset its potential to the resting state in isolation when disconnected from the network and external inputs at the time \(t, a_{ij}(.), b_{ij}(.)\) and \(\alpha _{ijl}(.), \beta _{ijl}(.)\) are respectively the first-order connection weights and the second-order connection weights of the neural network, \(0 \le \tau _{ij}(t), \sigma _{ij}(t), \nu _{ij}(t) \le \tau , 0 \le \rho (t) \le \rho ^{+}\) correspond to the transmission delays, \(d_{ij}(.), h_{ijl}(.)\) and \(k_{ijl}(.)\) correspond to the transmission delay kernels, \(J_{i}(t)\) denote the external inputs at time t, and \(g_{j}\) is the activation function of signal transmission. The sequence \(\{ t_{k}\}\) has no finite accumulation point and \(I_{k} : \mathbb {R}^{n} \longrightarrow \mathbb {R}, k \in \mathbb {Z}\).

The main aim of this article is to establish some sufficient conditions for the existence, uniqueness and exponential stability of piecewise differentiable pseudo almost periodic solutions of Eq. (1).

Throughout this paper, for \(i,j,l \!=\! 1,2,\dots ,n\), it will be assumed that \(a_{ij}, b_{ij}, \alpha _{ijl}, \beta _{ijl}, J_{i}\!: \mathbb {R} \longrightarrow \mathbb {R}\) are pseudo almost periodic functions, and let the positive constant \(\overline{a}_{ij}, \overline{b}_{ij}, \overline{\alpha }_{ijl}, \overline{\beta }_{ijl}\) and \(\overline{J}_{i}\) such that

$$\begin{aligned} \overline{a}_{ij}= & {} \sup _{t \in \mathbb {R}}|a_{ij}(t) |, \overline{b}_{ij} = \sup _{t \in \mathbb {R}}|b_{ij}(t) |\\ \overline{\alpha }_{ijl}= & {} \sup _{t \in \mathbb {R}}|\alpha _{ijl}(t) |, \overline{\beta }_{ijl} = \sup _{t \in \mathbb {R}}|\beta _{ijl}(t) |,\, \, \overline{J}_{i} = \sup _{t \in \mathbb {R}}|J_{i}(t) |. \end{aligned}$$

We also assume that the following conditions (H1)–(H6) hold.

  1. (H1)

    For each \( j = \{1,2,\dots ,n\}\), there exist nonnegative constants \( L^{g}_{j}\) and \( M^{g}_{j}\) such that

    $$\begin{aligned} g_{j}(0)= 0, \, \, \, |g_{j}(u)- g_{j}(v)|\le L^{g}_{j} |u-v |, \, \, and \, |g_{j}(u)|\le M^{g}_{j}, \, \, \, \hbox { for all } \, u,v \in \mathbb {R}. \end{aligned}$$
  2. (H2)

    For \(i,j,l \in \{1,2,\dots ,n\}\), the delay kernels, \(d_{ij},h_{ijl},k_{ijl} : [0, \infty ) \longrightarrow \mathbb {R}\) are continuous, and there exist nonnegative constants \(d^{+}_{ij},h^{+}_{ijl},k^{+}_{ijl},\eta _{d}, \eta _{h}, \eta _{k} \) such that

    $$\begin{aligned} |d_{ij}(u)|\le d^{+}_{ij} e^{-\eta _{d} u }, \, |h_{ijl}(u)|\le h^{+}_{ijl} e^{-\eta _{h} u }, \, |k_{ijl}(u)|\le k^{+}_{ijl} e^{-\eta _{k} u }. \end{aligned}$$
  3. (H3)

    For all \(1\le i \le n\) the functions \(t \mapsto c_{i}(t)\) are almost periodic and

    $$\begin{aligned} 0<c_{i*} = \inf _{t \in \mathbb {R}} \big ( c_{i}(t) \big ),\, \, c^{+}_{i} = \sup _{t \in \mathbb {R}} \big ( c_{i}(t) \big ).\, \, \end{aligned}$$
  4. (H4)

    \(I_{k} \in PAP(\mathbb {Z},\mathbb {R}^{n})\) and there exists a constant \(L_{1}\) such that \(0<L_{1}<1\) and

    $$\begin{aligned} \parallel I_{k}(u)-I_{k}(v)\parallel \le L_{1} \parallel u-v\parallel ,\, \, u,v \in \mathbb {R}^{n},\, k \in \mathbb {Z}. \end{aligned}$$
  5. (H5)

    Assume that there exist nonnegative constants Lp and q such that

    $$\begin{aligned}&\max _{1 \le i \le n} \max \left\{ \frac{\overline{J}_{i}}{c_{i*}}, \left( 1+\frac{c_{i}^{+}}{c_{i*}}\right) \overline{J}_{i}\right\} = L\\&p= \max _{ 1 \le i \le n} \max \left\{ \Big (c^{-1}_{i*} \big [ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \right. \\&\quad \quad +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{L_{1}}{1-e^{-c_{i*}}}\Big ),\left( \left( 1+ \frac{c^{+}_{i}}{c_{i*}}\right) \big [ c_{i}^{+} \rho ^{+}\right. \\&\qquad \left. +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \right. \\&\quad \quad \left. \left. +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{c_{i}^{+}L_{1}}{1-e^{-c_{i*}}}\right) \right\} <1,\\ \end{aligned}$$
    $$\begin{aligned}&q = \max _{1 \le i \le n} \max \left\{ \left( c^{-1}_{i*} \left[ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}\right. \right. \right. \\&\quad \quad + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} \left( L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}\right) \\&\quad \quad \left. \left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} \left( L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}\right) \right] + \frac{L_{1}}{1-e^{-c_{i*} }} \right) ,\left( \left( 1+\frac{c^{+}_{i}}{c_{i*} }\right) \left[ c_{i}^{+} \rho ^{+}\right. \right. \\&\quad \quad +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}\\&\quad \quad + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} \left( L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}\right) \\&\quad \quad \left. \left. \left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} \left( L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}\right) \right] + \frac{ c_{i}^{+}L_{1}}{1-e^{-c_{i*} }} \right) \right\} < 1. \end{aligned}$$
  6. (H6)

    There exist positive constants \(p_{i}\) and \( q_{i}\), such that: for \(t \in [0, \infty ), i = 1,2,\dots ,n\)

    $$\begin{aligned}&p_{i}c_{i}(t) - q_{i} c_{i}^{+} \rho ^{+} - \sum _{j=1}^{n} p_{j} |a_{ij}(t) |L_{j}^{g} -\sum _{j=1}^{n} p_{j} |b_{ij}(t) |\frac{d_{ij}}{\eta _{d}} L_{j}^{g} \nonumber \\&\quad - \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |[ p_{j} L_{j}^{g} M_{l}^{g}+ p_{l} M_{j}^{g} L_{l}^{g}] \nonumber \\&\quad - \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\frac{h_{ijl}^{+}}{\eta _{h}} \frac{k_{ijl}^{+}}{\eta _{k}}[ p_{j} L_{j}^{g} M_{l}^{g}+ p_{l} M_{j}^{g} L_{l}^{g}]> 0,\\&q_{i}- p_{i}c_{i}(t) - q_{i} c_{i}^{+} \rho ^{+} - \sum _{j=1}^{n} p_{j} |a_{ij}(t) |L_{j}^{g} -\sum _{j=1}^{n} p_{j} |b_{ij}(t) |\frac{d_{ij}}{\eta _{d}} L_{j}^{g} \nonumber \\&\quad - \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |[ p_{j} L_{j}^{g} M_{l}^{g}+ p_{l} M_{j}^{g} L_{l}^{g}] \nonumber \\&\quad - \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\frac{h_{ijl}^{+}}{\eta _{h}} \frac{k_{ijl}^{+}}{\eta _{k}}[ p_{j} L_{j}^{g} M_{l}^{g}+ p_{l} M_{j}^{g} L_{l}^{g}] > 0, \end{aligned}$$

Throughout this paper, we will first recall some basic definitions and lemmas which are used in what follows.

  • \(\mathbb {N}, \mathbb {Z}\) and \(\mathbb {R}\) stand for the set of natural numbers, integer numbers and real numbers, respectively.

  • \(C(\mathbb {R},\mathbb {R}^{n})\): the set of continuous functions from \(\mathbb {R}\) to \(\mathbb {R}^{n}\).

  • \(BC(\mathbb {R},\mathbb {R}^{n})\): the set of bounded continuous functions from \(\mathbb {R}\) to \(\mathbb {R}^{n}\). Note that \((BC(\mathbb {R},\mathbb {R}^{n}),\parallel . \parallel _{\infty })\) is a Banach space where \(\parallel . \parallel _{\infty } \) denotes the sup norm

    $$\begin{aligned} \parallel f \parallel _{\infty }:= \max _{1 \le i \le n} \sup _{t \in \mathbb {R}} |f_{i}(t) |. \end{aligned}$$
  • Let T be the set consisting of all real sequences \(\{t_{i}\}_{i \in \mathbb {Z}}\) such that \( \alpha = \inf \limits _{i \in \mathbb {Z}} ( t_{i+1} - t_{i}) > 0.\) It is immediate that this condition implies that \(\lim \limits _{i \rightarrow +\infty } t_{i} = +\infty \) and \(\lim \limits _{i \rightarrow -\infty } t_{i} = -\infty \).

  • \(PC(\mathbb {R},\mathbb {R}^{n})\): the space of all piecewise continuous functions \(f : \mathbb {R} \rightarrow \mathbb {R}^{n} \) such that

    • f(.) is continuous at t for any \(t \not \in \{t_{i}, i \in \mathbb {Z}\}\),

    • \(f(t_{i}^{+}), f(t_{i}^{-})\) exists and \(f(t_{i}^{-})= f(t_{i})\) for all \(i \in \mathbb {Z}\).

  • \(PC([-\tau , 0],\mathbb {R}^{n}) \!=\! \big \{ f : [-\tau , 0] \rightarrow \mathbb {R}^{n} | f(t^{-})= f(t), \hbox { for } t \in [-\tau , 0], f(t^{+}) \hbox { exists on} \mathbb {R} \hbox { and } f(t^{+})= f(t) \hbox { for all but at most a finite number of points } \hbox { on } [-\tau , 0]. \big \},\)

  • \(PC^{1}([-\tau , 0],\mathbb {R}^{n}) \!= \!\big \{ f : [-\tau , 0] \!\rightarrow \! \mathbb {R}^{n} | f'(t^{+}) \hbox { and } f'(t^{-})) \hbox { exist }, f'(t) \!=\! f'(t^{-}) \hbox { for} t \in [-\tau , 0], f'(t^{+})=f'(t) \hbox { for all but at most a finite number of points} \hbox {on } [-\tau , 0]. \big \},\)

  • \(l^{\infty }(\mathbb {Z},\mathbb {R}^{n})= \big \{ x : \mathbb {Z} \rightarrow \mathbb {R}^{n} : \parallel x \parallel = \sup \limits _{n \in \mathbb {Z}} \parallel x(n) \parallel < \infty \big \}.\)

Definition 1

[32]. A function \(f \in C(\mathbb {R},\mathbb {R}^{n})\) is called (Bohr) almost periodic if for each \(\varepsilon > 0\) there exists \(L(\varepsilon )>0\) such that every interval of length \(L(\varepsilon )>0\) contains a number \(\tau \) with the property that \(\parallel f(t+\tau )-f(t) \parallel _{\infty } < \varepsilon ,\) for each \(t\in \mathbb {R}\).

The number \(\tau \) above is called an \(\varepsilon \)-translation number of f, and the collection of all such functions will be denoted as \(AP(\mathbb {R},\mathbb {R}^{n})\).

Definition 2

[32]. A sequence \(\{x_{n}\}\) is called almost periodic if for any \(\epsilon > 0\), there exists a relatively dense set of its \(\epsilon \)-periods, i.e., there exists a natural number \(l = l(\epsilon )\), such that for \(k \in \mathbb {Z}\), there is at least one number p in \([k,k+l]\), for which inequality \(\parallel x_{n+p} - x_{n} \parallel < \epsilon \) holds for all \(n \in \mathbb {N}\). Denote by \(AP(\mathbb {Z},\mathbb {R}^{n})\), the set of such sequences.

Define

$$\begin{aligned} PAP_{0}(\mathbb {Z},\mathbb {R}^{n}):= \{x \in l^{\infty }(\mathbb {Z},\mathbb {R}^{n}): \lim _{n\longrightarrow \infty } \frac{1}{2n} \sum _{k=-n}^{n} \parallel x(k)\parallel = 0 \}. \end{aligned}$$

Remark 1

Notice that

  1. 1.

    A sequence vanishing at infinity is a \(PAP_{0}(\mathbb {Z},\mathbb {R})\) sequence.

  2. 2.

    The sequence \((x(n))_{n \in \mathbb {Z}}\) defined by

    $$\begin{aligned} x(n)= \left\{ \begin{array}{ll} 1, &{} n = 2^{k}, \\ 0, &{} n \ne 2^{k}, \end{array} \right. \end{aligned}$$

    is an example of a \(PAP_{0}(\mathbb {Z},\mathbb {R})\) sequence which not vanishing at infinity.

  3. 3.

    For \(k \in \mathbb {N}\), the sequence \((x(n))_{n \in \mathbb {Z}}\) defined by

    $$\begin{aligned} x(n)= \left\{ \begin{array}{ll} k, &{} n = 2^{k^{2}}, \\ 0, &{} n \ne 2^{k^{2}}, \end{array} \right. \end{aligned}$$

    is an example of an unbounded \(PAP_{0}(\mathbb {Z},\mathbb {R})\) sequence.

Definition 3

[32]. A sequence \(\{x_{n}\}_{n \in \mathbb {Z}} \in l^{\infty }(\mathbb {Z},\mathbb {R}^{n})\) is called pseudo almost periodic if \( x_{n} = x_{n}^{1}+ x_{n}^{2}\), where \(x_{n}^{1} \in AP(\mathbb {Z},\mathbb {R}^{n}), x_{n}^{2} \in PAP_{0}(\mathbb {Z},\mathbb {R}^{n})\). Denote by \(PAP(\mathbb {Z},\mathbb {R}^{n})\) the set of such sequences.

For \(\{t_{i}\}_{i \in \mathbb {Z}} \in T, \{t_{i}^{j}\}\) defined by

$$\begin{aligned} \{t_{i}^{j} = t_{i+j} - t_{i}\},\, i,j \in \mathbb {Z}. \end{aligned}$$

It is easy to verify that the numbers \(t_{i}^{j}\) satisfy

$$\begin{aligned} t_{i+k}^{j}- t_{i}^{j} = t_{i+j}^{k}- t_{i}^{k}, t_{i}^{j}- t_{i}^{k} = t_{i+k}^{j-k}, \hbox { for } i,j,k \in \mathbb {Z}. \end{aligned}$$

Definition 4

[34]. A function \(f \in PC(\mathbb {R},\mathbb {R}^{n})\) is said to be piecewise almost periodic if the following conditions are fulfilled:

  1. 1.

    \(\{t_{i}^{j} = t_{i+j} - t_{i}\}, i,j \in \mathbb {Z}\) are equipotentially almost periodic, that is, for any \(\epsilon > 0\), there exists a relatively dense set in \(\mathbb {R}\) of \(\epsilon \)-almost periods common for all of the sequences \(\{t_{i}^{j}\}\).

  2. 2.

    For any \(\epsilon > 0\), there exists a positive number \(\delta = \delta (\epsilon )\) such that if the points \(t'\) and \(t''\) belong to the same interval of continuity of f and \(|t'-t''|<\delta \), then \(\parallel f(t') - f(t'')\parallel < \epsilon \).

  3. 3.

    For any \(\epsilon > 0\), there exists a relatively dense set \(\varOmega _{\epsilon }\) in \(\mathbb {R}\) such that if \(\tau \in \varOmega _{\epsilon }\), then

    $$\begin{aligned} \parallel f(t+ \tau ) - f(t)\parallel < \epsilon \end{aligned}$$

    for all \(t \in \mathbb {R}\) which satisfy the condition \( |t- t_{i}|> \epsilon ,\, i \in \mathbb {Z}.\)

We denote by \(AP_{T}(\mathbb {R},\mathbb {R}^{n})\) the space of all piecewise almost periodic functions. Obviously, \(AP_{T}(\mathbb {R},\mathbb {R}^{n})\) endowed with the supremum norm is a Banach space. Throughout the rest of this paper, we always assume that \(\{t_{i}^{j}\}\) are equipotentially almost periodic. Let \(UPC(\mathbb {R},\mathbb {R}^{n})\) be the space of all functions \(f \in PC(\mathbb {R},\mathbb {R}^{n})\) such that f satisfies the condition (2) in Definition 4.

Define

$$\begin{aligned} PAP_{T}^{0}(\mathbb {R},\mathbb {R}^{n})= & {} \{f \in PC(\mathbb {R},\mathbb {R}^{n}),\lim _{r \longrightarrow \infty } \frac{1}{2r} \int ^{r}_{-r} \parallel f(t)\parallel dt= 0 \}. \end{aligned}$$

Definition 5

[32]. A function \(f \in PC(\mathbb {R},\mathbb {R}^{n})\) is said to be piecewise pseudo almost periodic if it can be decomposed \(f= g+ h\), where \(g \in AP_{T}(\mathbb {R},\mathbb {R}^{n})\) and \(h \in PAP_{T}^{0}(\mathbb {R},\mathbb {R}^{n})\). Denote by \(PAP_{T}(\mathbb {R},\mathbb {R}^{n})\) the set of all such functions. \(PAP_{T}(\mathbb {R},\mathbb {R}^{n})\) is a Banach space when endowed with the supremum norm.

Remark 2

The functions g and h in Definition 5 are respectively called the almost periodic component and the ergodic perturbation of the pseudo almost periodic function f. The decomposition given in Definition 5 is unique. For instance, the function

$$\begin{aligned}f(t)=\left\{ \begin{array}{ll} \sin ^{2}(\sqrt{3}t)+ \cos ^{2}(\pi t) + \frac{1}{1+t^{2}} , &{} t \ne t_{k}, k \in \mathbb {Z}, \\ \frac{1}{4}\sin (\sqrt{3}t) + \frac{1}{1+t^{2}} , &{} t = t_{k}, k \in \mathbb {Z}, \end{array} \right. \end{aligned}$$

is a piecewise pseudo almost periodic function, where

$$\begin{aligned} t_{k}= k + \frac{1}{6}|\sin k - \sin \sqrt{2}k |. \end{aligned}$$

Hence, it is easy to see that f(.) is more general than our traditional piecewise almost periodic functions since the ergodic perturbations are introduced.

Lemma 1

[37]. Suppose that both functions f and its derivative \(f'\) are in \(PAP(\mathbb {R},\mathbb {R}).\) That is, \(f= g+h\) and \(f'= g'+h'\), where \(g,g' \in AP(\mathbb {R},\mathbb {R})\) and \(h,h' \in PAP_{0}(\mathbb {R},\mathbb {R})\). Then the functions g and h are continuous differentiable.

Remark 3

Let \( E=\{ f |f,f' \in PAP(\mathbb {R},\mathbb {R}^{n})\}\) equipped with the induced norm defined by

$$\begin{aligned} \parallel f \parallel _{E} = \max \{\parallel f \parallel _{\infty }, \parallel f' \parallel _{\infty } \}. \end{aligned}$$

Follows from [37] that \((PAP(\mathbb {R},\mathbb {R}^{n}),\parallel . \parallel _{E} )\) is a Banach space.

The initial conditions associated with (1) are of the form

$$\begin{aligned} x_{i}(s) = \varphi _{i}(s), \, s \in (-\infty , 0], \, i=1,2,\ldots ,n, \end{aligned}$$

where \(\varphi (.)\) and \(\varphi '(.)\) are real-valued piecewise continuous functions defined on \((-\infty , 0]\).

Lemma 2

[28]. Let \(c_{i}(.)\) be an almost periodic function on \(\mathbb {R}\) and

$$\begin{aligned} M[c_{i}]=\lim _{T\rightarrow +\infty } \int _{t}^{t+T}c_{i}(s)ds > 0, \, \, i=1,\dots ,n. \end{aligned}$$

Then the linear system

$$\begin{aligned} x'(t)= diag\Big (-c_{1}(t),-c_{2}(t),\dots ,-c_{n}(t)\Big )x(t) \end{aligned}$$
(2)

admits an exponential dichotomy on \(\mathbb {R}\).

Lemma 3

[36]. The inhomogeneous linear system

$$\begin{aligned} x'(t)= -c(t) x(t) + f(t) \end{aligned}$$

has a unique bounded solution for a vector \(f \in C(\mathbb {R}, \mathbb {R}^n)\) if and only if the inhomogeneous linear system (31) has exponential dichotomy.

The rest of this paper is organized as follow. The existence and the uniqueness of piecewise differentiable pseudo almost-periodic solutions of Eq. (1) in the suitable convex set are discussed in Sect. 2. Some sufficient conditions on the global exponential stability of piecewise differentiable pseudo almost periodic solutions of Eq. (1) are established in Sect. 3. A numerical example is given in Sect. 4 to illustrate the effectiveness of our results. Finally, we draw conclusion in Sect. 5.

2 Existence of piecewise differentiable pseudo almost periodic solution

In this section, let us recall some lemmas and theorems, which are of importance in proving the main results of this paper.

Lemma 4

[30]. If \(\varphi \in PAP_{T}(\mathbb {R},\mathbb {R}^{n})\), then \(\varphi (.-h) \in PAP_{T}(\mathbb {R},\mathbb {R}^{n})\).

Lemma 5

[30]. If \(\varphi , \psi \in PAP_{T}(\mathbb {R},\mathbb {R})\), then \(\varphi \times \psi \in PAP_{T}(\mathbb {R},\mathbb {R})\).

Lemma 6

If \( g \in C(\mathbb {R},\mathbb {R})\) a \(L^g-\)lipschitz function, \(\varphi (.) \in PAP_{T}(\mathbb {R},\mathbb {R})\) and \( \sigma \in C(\mathbb {R},\mathbb {R})\) then \(g(\varphi (.-\sigma (.))) \in PAP_{T}(\mathbb {R},\mathbb {R})\)

Proof

We have \(\varphi = \varphi _{1}+ \varphi _{2},\) where \(\varphi _{1} \in AP_{T}(\mathbb {R},\mathbb {R})\) and \(\varphi _{2} \in PAP_{T}^{0}(\mathbb {R},\mathbb {R}).\) Let

$$\begin{aligned} E(t)= & {} g(\varphi (t-\sigma (t)))=g(\varphi _{1}(t-\sigma (t)) \\&+\, [g(\varphi _{1}(t-\sigma (t))+\varphi _{2}(t-\sigma (t))) -g(\varphi _{1}(t-\sigma (t)))]\\= & {} E_{1}(t) + E_{2}(t). \end{aligned}$$

Firstly, it follows from Theorem 2.11 in [29] that \(E_{1}(.)\in AP_{T}(\mathbb {R},\mathbb {R})\). Then, we show that \(E_{.}(t) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\) because

$$\begin{aligned} \lim _{T\longrightarrow \infty } \frac{1}{2T} \int _{-T}^{T} |E_{2}(t) |dt= & {} \lim _{T\longrightarrow \infty } \frac{1}{2T} \int _{-T}^{T} |g(\varphi _{1}(t-\sigma (t))+\varphi _{2}(t-\sigma (t)))\\&-\, g(\varphi _{1}(t-\sigma (t))) |dt \nonumber \\&\le \lim _{T\longrightarrow \infty } \frac{ L^{g}}{2T} \int _{-T}^{T} |\varphi _{2}(t-\sigma (t))|dt = 0. \end{aligned}$$

Thus \(E_{2}(.) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). So, \(E(.) \in PAP_{T}(\mathbb {R},\mathbb {R})\). The proof is complete. \(\square \)

Theorem 1

Under the conditions (H1)-(H2), and for all \(1\le j \le n \) , \(x_{j}(.) \in PAP_{T}(\mathbb {R},\mathbb {R}) \), then for all \( 1\le i \le n \), the function \(\phi _{i} : t \longmapsto \int _{-\infty }^{t} d_{ij}(t-s) g_{j}(x_{j}(s)) ds\) belongs to \(PAP_{T}(\mathbb {R},\mathbb {R})\).

Proof

For \(x_{j}(.) \in PAP_{T}(\mathbb {R},\mathbb {R})\), it follows from Lemma 6 that \(g_{j}(x_{j}(.)) \in PAP_{T}(\mathbb {R},\mathbb {R})\). Let \(g_{j}(x_{j}(.))= u_{j}(.)+ v_{j}(.)\), where \(u_{j} \in AP_{T}(\mathbb {R},\mathbb {R})\) and \(v_{j} \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\), then

$$\begin{aligned} \phi _{i}(t)= & {} \int _{-\infty }^{t} d_{ij}(t-s) g_{j}(x_{j}(s)) ds = \int _{-\infty }^{t} d_{ij}(t-s) u_{j}(s) ds+ \int _{-\infty }^{t} d_{ij}(t-s) v_{j}(s) ds\\:= & {} \phi ^{1}_{i}(t) + \phi ^{2}_{i}(t). \end{aligned}$$

First, \(\phi ^{1}_{i}(.) \in AP_{T}(\mathbb {R},\mathbb {R})\).

It is not difficult to see that \(\phi ^{1}_{i}(.) \in UPC(\mathbb {R},\mathbb {R})\). Let \(t_{k}< t\le t_{k+1}\).

For \(\epsilon > 0\), let \(\varOmega _{\epsilon }\) be a relatively dense set of \(\mathbb {R}\) formed by \(\epsilon \)-periods of \(u_j\). For \(\tau \in \varOmega _{\epsilon }\) and \( 0< h < \min \{\epsilon , \frac{\alpha }{2}\},\)

$$\begin{aligned} |\phi _{i}^{1}(t+\tau )- \phi _{i}^{1}(t) |\le & {} \int _{-\infty }^{t} |d_{ij}(t-s) ||u_{j}(s+\tau ) - u_{j}(s) |ds\\\le & {} \sum _{l=-\infty }^{k-1} \int _{t_{l}+h}^{t_{l+1}-h} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds\\&+ \sum _{l=-\infty }^{k-1} \int _{t_{l}}^{t_{l}+h} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds\\&+ \sum _{l=-\infty }^{k-1} \int _{t_{l+1}-h}^{t_{l+1}} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds\\&+ \int _{t_{k}}^{t} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds.\\ \end{aligned}$$

Since \(u_j \in AP_{T}(\mathbb {R},\mathbb {R})\), one has \(|u_{j}(t+\tau ) - u_{j}(t) |\le \epsilon \), for all \(t \in [ t_{l}+h, t_{l+1}-h]\) and \(l \in \mathbb {Z}, l \le k,\)

then

$$\begin{aligned}&\sum _{l=-\infty }^{k-1} \int _{t_{l}+h}^{t_{l+1}-h} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds \\&\quad \le \epsilon \sum _{l=-\infty }^{k-1} \int _{t_{l}+h}^{t_{l+1}-h} |d_{ij}(t-s)|ds\\&\quad \le \epsilon d^+_{ij} \sum _{l=-\infty }^{k-1} \int _{t_{l}+h}^{t_{l+1}-h} e^{- \eta _{d} (t-s)} ds\\&\quad \le \frac{\epsilon d^+_{ij}}{\eta _{d}} \sum _{l=-\infty }^{k-1} e^{- \eta _{d} (t-t_{l+1}+h)} \\&\quad \le \frac{\epsilon d^+_{ij}}{\eta _d} \sum _{l=-\infty }^{k-1} e^{- \eta _{d} \alpha (k-l-1)} \\&\quad \le \frac{\epsilon d^+_{ij}}{\eta _d (1- e^{- \eta _{d} \alpha })}. \end{aligned}$$

On the other hand,

$$\begin{aligned}&\sum _{l=-\infty }^{k-1} \int _{t_{l}}^{t_{l}+h} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds \\&\quad \le 2 d^+_{ij} |u_{j} |_{\infty } \sum _{l=-\infty }^{k-1} \int _{t_{l}}^{t_{l}+h} e^{- \eta _{d} (t-s)} ds\\&\quad \le 2 d^+_{ij} |u_{j} |_{\infty } \epsilon e^{\eta _{d} h} \sum _{l=-\infty }^{k-1} e^{- \eta _{d} (t-t_{l})} ds\\&\quad \le 2 d^+_{ij} |u_{j} |_{\infty } \epsilon e^{\eta _{d} h} e^{- \eta _d (t-t_{k})} \sum _{l=-\infty }^{k-1} e^{- \eta _{d} \alpha (k-l)} ds\\&\quad \le \frac{2d^+_{ij} |u_{j}|_{\infty } \epsilon e^{\frac{(\eta _{d} \alpha )}{2}}}{1-e^{- \eta _{d} \alpha }} \end{aligned}$$

Similarly, one has

$$\begin{aligned} \sum _{l=-\infty }^{k-1} \int _{t_{l+1}-h}^{t_{l+1}} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds\le & {} S_{1}\epsilon ,\\ \int _{t_{k}}^{t} |d_{ij}(t-s)||u_{j}(s+\tau ) - u_{j}(s) |ds\le & {} S_{2}\epsilon , \end{aligned}$$

where \(S_{1},S_{2}\) are some positive constants. Hence, \(\phi ^{1}_{i}(.) \in AP_{T}(\mathbb {R},\mathbb {R})\).

Second \(\phi ^{2}_{i}(.) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\).

In fact, for \(r > 0\), one has

$$\begin{aligned} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |\phi _{i}^{2}(t)|dt= & {} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |\int _{-\infty }^{t} d_{ij}(t-s) v_{j}(s) ds |dt\\= & {} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |\int _{0}^{\infty } d_{ij}(s) v_{j}(t-s) ds |dt \\\le & {} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \big ( \int _{0}^{\infty } d^+_{ij} e^{-\eta _{d} s} |v_{j}(t-s) |ds\big ) dt \\\le & {} \int _{0}^{\infty } d^+_{ij} e^{-\eta _{d} s} \big ( \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |v_{j}(t-s) |dt\big ) ds. \\ \end{aligned}$$

Since \(v_{i}(.) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\), it follows that \(v_{i}(.-s) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\) for each \(s \in \mathbb {R}\) by Lemma 4. Using the Lebesgues dominated convergence theorem, we have \(\phi ^{2}_{i}(.) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). This completes the proof. \(\square \)

Similarly, we can obtain:

Corollary 1

Under the conditions (H1)-(H2), and for all \(1\le j \le n \) , \(x_{j}(.) \in PAP_{T}(\mathbb {R},\mathbb {R}) \), then for all \( 1\le i \le n \), the function \(\phi _{i} : t \longmapsto \int _{-\infty }^{t} h_{ijl}(t-s) g_{j}(x_{j}(s)) ds\) belongs to \( PAP_{T}(\mathbb {R},\mathbb {R})\).

Corollary 2

Under the conditions (H1)-(H2), and for all \(1\le l \le n \) , \(x_{j}(.) \in PAP_{T}(\mathbb {R},\mathbb {R}) \), then for all \( 1\le i \le n \), the function \(\phi _{i} : t \longmapsto \int _{-\infty }^{t} k_{ijl}(t-s) g_{l}(x_{l}(s)) ds\) belongs to \( PAP_{T}(\mathbb {R},\mathbb {R})\).

Lemma 7

Suppose that assumptions (H1)–(H3) hold. Define the nonlinear operator \( X_{\varphi }(.)\) as follows, for each \(\varphi =(\varphi _{1},\ldots ,\varphi _{n}) \in PAP_{T}(\mathbb {R},\mathbb {R}^{n})\) and \(\varphi ' =(\varphi '_{1},\ldots ,\varphi '_{n}) \in PAP_{T}(\mathbb {R},\mathbb {R}^{n})\)

$$\begin{aligned} X_{\varphi }(t) = \left( \begin{array}{c} \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{1}(u) du } F_{1}(s)ds \\ \vdots \\ \int _{-\infty }^{t} e^{-\int _{s}^{t} c_{n}(u) du } F_{n}(s)ds \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} F_{i}(s)= & {} c_{i}(s) \int _{s-\rho (s)}^{s}\varphi ^{'}_{i}(u)du + \sum _{j=1}^{n} a_{ij}(s) g_{j} (\varphi _{j}(s-\tau _{ij}(s)))\\&+ \sum _{j=1}^{n} b_{ij}(s)\int _{0}^{\infty } d_{ij}(u) g_{j} (\varphi _{j}(s-u)) du\\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(s) g_{j}(\varphi _{j}(s-\sigma _{ij}(s))) g_{l}(\varphi _{l}(s-\nu _{ij}(s)))\\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(s)\int _{0}^{\infty } h_{ijl}(u) g_{j}(\varphi _{j}(s-u)) du \\&\int _{0}^{\infty } k_{ijl}(u) g_{l}(\varphi _{l}(s-u)) du + J_{i}(s), \end{aligned}$$

then \( X_{\varphi }\) maps \(PAP_{T}(\mathbb {R},\mathbb {R}^{n})\) into itself.

Proof

First, note that, for all \(1 \le i \le n\), the function

$$\begin{aligned} s\mapsto F_{i}(s)= & {} c_{i}(s) \int _{s-\rho (s)}^{t}\varphi ^{'}_{i}(u)du + \sum _{j=1}^{n} a_{ij}(s) g_{j} (\varphi _{j}(s-\tau _{ij}(s)))\\&+ \sum _{j=1}^{n} b_{ij}(s)\int _{0}^{\infty } d_{ij}(u) g_{j} (\varphi _{j}(s-u)) du\\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(s) g_{j}(\varphi _{j}(s-\sigma _{ij}(s))) g_{l}(\varphi _{l}(s-\nu _{ij}(s)))\\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(s)\int _{0}^{\infty } h_{ijl}(u) g_{j}(\varphi _{j}(s-u)) du \\&\int _{0}^{\infty } k_{ijl}(u) g_{l}(\varphi _{l}(s-u)) du + J_{i}(s), \end{aligned}$$

is in \(PAP_{T}(\mathbb {R},\mathbb {R})\) by using Lemmas 4, 5, 6, Theorem 1, Corollary 1 and 2. Consequently, for all \(1 \le i \le n, F_{i}\) can be expressed as

$$\begin{aligned} F_{i}=F_{i}^{1}+F_{i}^{2}, \end{aligned}$$

where \(F_{i}^{1} \in AP_{T}(\mathbb {R},\mathbb {R})\) and \(F_{i}^{2} \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). So

$$\begin{aligned} \Big (X_{\varphi }(t)\Big )_i= & {} \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u)du} F_{i}^{1}(s)ds + \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u) du} F_{i}^{2}(s)ds \\= & {} G_{i}^{1}(t) +G_{i}^{2}(t). \end{aligned}$$

(i) Firstly, we prove that \(G_{i}^{1}(.) \in UPC(\mathbb {R},\mathbb {R})\). Let \(t^{'},t^{''} \in (t_{k},t_{k+1}), k \in \mathbb {Z}, t^{''} < t^{'}\), then

$$\begin{aligned} |G_{i}^{1}(t^{'}) - G_{i}^{1}(t^{''}) |= & {} |\int _{-\infty }^{t^{'}} e^{-\int _{s}^{t^{'}}c_{i}(u)du} F_{i}^{1}(s)ds - \int _{-\infty }^{t^{''}} e^{-\int _{s}^{t^{''}}c_{i}(u) du} F_{i}^{1}(s)ds |\\\le & {} |\int _{-\infty }^{t^{''}} \left[ e^{-\int _{s}^{t^{'}}c_{i}(u)du}- e^{-\int _{s}^{t^{''}}c_{i}(u)du}\right] F_{i}^{1}(s)ds |\\&+ |\int _{t^{''}}^{t^{'}} e^{-\int _{s}^{t^{'}}c_{i}(u) du} F_{i}^{1}(s)ds |\\\le & {} |e^{-\int _{t^{''}}^{t^{'}}c_{i}(u)du}- 1 |\int _{-\infty }^{t^{''}} e^{-\int _{s}^{t^{''}} c_{i}(u)du} |F_{i}^{1}(s)|ds \\&+ \int _{t^{''}}^{t^{'}} e^{-\int _{s}^{t^{'}}c_{i}(u) du} |F_{i}^{1}(s)|ds \\\le & {} ( (t^{'}-t^{''})c_{i}^{+}) \int _{-\infty }^{t^{''}} e^{-(t^{''}-s) c_{i*}} |F_{i}^{1}(s)|ds \\&+\int _{t^{''}}^{t^{'}} e^{-(t^{'}-s) c_{i*}} |F_{i}^{1}(s)|ds, \\ \end{aligned}$$

It is easy to see that for any \(\epsilon > 0\), there exists

$$\begin{aligned} 0< \delta < \min \left\{ \frac{c_{i*} \epsilon }{2 c^{+}_{i} \parallel F_{i}^{1}\parallel }, \frac{ \epsilon }{2 \parallel F_{i}^{1}\parallel } \right\} \end{aligned}$$

and for a suitable \(t^{'}, t^{''}\) satisfying \(0< t^{'} - t^{''} < \delta \) one has

$$\begin{aligned} |G_{i}^{1}(t^{'}) - G_{i}^{1}(t^{''}) |\le & {} \Big [ (t^{'}-t^{''})c_{i}^{+} \int _{-\infty }^{t^{''}} e^{-(t^{''}-s) c_{i*}} ds + \int _{t^{''}}^{t^{'}} e^{-(t^{'}-s) c_{i*}} ds\Big ] \parallel F_{i}^{1}\parallel \\\le & {} \frac{\epsilon }{2} + \frac{\epsilon }{2} = \epsilon , \end{aligned}$$

which implies that \(G_{i}^{1}(.) \in UPC(\mathbb {R},\mathbb {R})\).

(ii) Secondly, we prove that \(G_{i}^{1}(.) \in AP_{T}(\mathbb {R},\mathbb {R})\). Since \(F_{i}^{1} \in AP_{T}(\mathbb {R},\mathbb {R})\), for \(\epsilon > 0 \), there exists a relatively dense set \(\varOmega _{\epsilon }\) such that for \(\tau \in \varOmega _{\epsilon }, t \in \mathbb {R}, |t- t_{k} |> \epsilon , i \in \mathbb {Z}\), then

$$\begin{aligned} G_{i}^{1}(t+\tau )-G_{i}^{1}(t)= & {} \int _{-\infty }^{t+\tau } e^{-\int _{s}^{t+\tau }c_{i}(u) du } F_{i}^{1}(s)ds - \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u) du } F_{i}^{1}(s)ds \nonumber \\= & {} \int _{-\infty }^{t+\tau } e^{-\int _{s-\tau }^{t}c_{i}(\rho +\tau ) d\rho } F_{i}^{1}(s)ds-\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u) du } F_{i}^{1}(s)ds \nonumber \\= & {} \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(m +\tau ) dm } F_{i}^{1}(s+\tau )ds - \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(m +\tau ) dm } F_{i}^{1}(s)ds \nonumber \\&+ \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(m +\tau ) dm } F_{i}^{1}(s)ds - \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u) du } F_{i}^{1}(s)ds \nonumber \\= & {} \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u +\tau ) du } (F_{i}^{1}(s+\tau )- F_{i}^{1}(s))ds\nonumber \\&+ \int _{-\infty }^{t} (e^{-\int _{s}^{t}c_{i}(u +\tau ) du } - e^{-\int _{s}^{t}c_{i}(u) du } ) F_{i}^{1}(s)ds \end{aligned}$$

So there exists \(\theta \in ]0, 1[\) such that

$$\begin{aligned} |G_{i}^{1}(t+\tau )-G_{i}^{1}(t) |\le & {} \parallel F_{i}^{1}\parallel \int \limits _{-\infty }^{t}\left( e^{-\int \limits _{s}^{t}c_{i}\left( u +\tau \right) du }-e^{-\int \limits _{s}^{t}c_{i}\left( u \right) du }\right) ds\\&+\int \limits _{-\infty }^{t}e^{-\int \limits _{s}^{t}c_{i}\left( u +\tau \right) du }\big | F_{i}^{1} \left( s+\tau \right) -F_{i}^{1}\left( s\right) \big | ds \\\le & {} \int \limits _{-\infty }^{t}\Big ( e^{-\big [\int \limits _{s}^{t}c_{ij}\left( u +\tau \right) du + \theta (\int \limits _{s}^{t}c_{i}\left( u\right) du-\int \limits _{s}^{t}c_{i}\left( u+\tau \right) du)\big ]}\\&\quad \int _s^t |c_{i}(u)-c_{i}(u+\tau )|du \Big )ds \parallel F_{i}^{1}\parallel \\&+\int \limits _{-\infty }^{t}e^{-\int \limits _{s}^{t}c_{i}\left( u +\tau \right) du }\big | F_{i}^{1} \left( s+\tau \right) -F_{i}^{1}\left( s\right) \big | ds\\\le & {} \int \limits _{-\infty }^{t}\Big ( e^{-\big [\int \limits _{s}^{t}c_{i}\left( u +\tau \right) du + \theta (\int \limits _{s}^{t}c_{i}\left( u\right) du-\int \limits _{s}^{t}c_{i}\left( u +\tau \right) du)\big ]}\\ \end{aligned}$$
$$\begin{aligned}&\quad \int _s^t |c_{i}(u)-c_{i}(u+\tau )|du \Big )ds \parallel F_{i}^{1}\parallel \\&+\int \limits _{-\infty }^{t}e^{-c_{i*}(t-s)}\big | F_{i}^{1} \left( s+\tau \right) -F_{i}^{1}\left( s\right) \big | ds\\\le & {} \int \limits _{-\infty }^{t}\Big \{ e^{-c_{i*}(t-s)} e^{- \theta \big (\int \limits _{s}^{t}\big |c_{i}\left( u \right) -c_{i}\left( u +\tau \right) \big | du \big )}\\&\quad \int _s^t |c_{i}(u)-c_{i}(u+\tau )|du \Big \}ds \parallel F_{i}^{1}\parallel \\&+ \int \limits _{-\infty }^{t}e^{-c_{i*}(t-s)} \big | F_{i}^{1} \left( s+\tau \right) -F_{i}^{1}\left( s\right) \big | ds\\\le & {} \parallel F_{i}^{1}\parallel \int \limits _{-\infty }^{t}\Big \{ e^{-c_{i*}(t-s)} \int _s^t |c_{i}(u)-c_{i}(u +\tau )|du \Big \}ds\\&+\int \limits _{-\infty }^{t}e^{-c_{i*}(t-s)} \big | F_{i}^{1} \left( s+\tau \right) -F_{i}^{1}\left( s\right) \big | ds\\= & {} \int \limits _{-\infty }^{t}\varPhi _{i}(t,s)ds+\int \limits _{-\infty }^{t}\varPsi _{i}(t,s)ds \end{aligned}$$

where

$$\begin{aligned} \varPhi _{i}(t,s)=e^{-c_{i*}(t-s)}\parallel F_{i}^{1}\parallel \int _s^t |c_{i}(u)-c_{i}(u+\tau )|du \end{aligned}$$

and

$$\begin{aligned} \varPsi _{i}(t,s)=e^{-c_{i*}(t-s)} \big | F_{i}^{1} \left( s+\tau \right) -F_{i}^{1}\left( s\right) \big |. \end{aligned}$$

We obtain immediately that, \(G_{i}^{1} \in AP_{T}(\mathbb {R},\mathbb {R})\).

Now, we turn our attention to \(G_{i}^{2}\).

$$\begin{aligned} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |G_{i}^{2}(t) |dt\le & {} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \int _{-\infty }^{t} e^{-(t-s)c_{i*}} |F_{i}^{2}(s) |ds dt\\\le & {} I_{1} + I_{2}, \end{aligned}$$

where

$$\begin{aligned} I_{1} = \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \left( \int _{-r}^{t} e^{-(t-s)c_{i*}} |F_{i}^{2}(s) |ds \right) dt \end{aligned}$$

and

$$\begin{aligned} I_{2} = \lim _{r \longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \left( \int _{- \infty }^{-r} e^{-(t-s)c_{i*}} |F_{i}^{2}(s)|ds\right) dt. \end{aligned}$$

Pose \(m= t-s\), then by Fubini’s theorem one has

$$\begin{aligned} I_{1}= & {} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \left( \int _{-r}^{t} e^{-(t-s)c_{i*}} |F_{i}^{2}(s) |ds\right) dt\\= & {} \lim _{r \longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \left( \int _{0}^{t+r} e^{-m c_{i*}} |F_{i}^{2}(t-m) |dm \right) dt\\\le & {} \lim _{r \longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \left( \int _{0}^{+ \infty }e^{-m c_{i*}} |F_{i}^{2}(t-m) |dm\right) dt\\\le & {} \int _{0}^{+ \infty } e^{-m c_{i*}} \left( \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |F_{i}^{2}(t-m) |dt \right) dm \\ \end{aligned}$$

since the function \(F_{i}^{2}(.) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\), and by the Lebesgue dominated convergence theorem, we obtain

$$\begin{aligned} I_{1}= 0. \end{aligned}$$

On the other hand, notice that \(\parallel F_{i}^{2}\parallel = \sup \limits _{t \in \mathbb {R}} |F_{i}^{2}(t) |< \infty \) then

$$\begin{aligned} I_{2}= & {} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} \left( \int _{- \infty }^{-r} e^{-(t-s)c_{i*}} |F_{i}^{2}(s)|ds\right) dt\\\le & {} \lim _{r \longrightarrow \infty } \frac{1}{2r} \int _{- \infty }^{- r} e^{s c_{i*}} |F_{i}^{2}(s)|ds \int _{-r}^{r} e^{- t c_{i*}} dt\\= & {} \lim _{r\longrightarrow \infty } \frac{\parallel F_{i}^{2}\parallel }{2r c_{i*}} \int _{-r}^{r} e^{-(r+t) c_{i*}} dt\\= & {} 0, \end{aligned}$$

then

$$\begin{aligned} \lim _{r\longrightarrow \infty } \frac{1}{2r} \int _{-r}^{r} |\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i} (u)du } F_{i}^{2}(s) ds |dt =0. \end{aligned}$$

Consequently, the function \(G_{i}^{2}\) belongs to \(PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). So \((X_{\varphi })\) belongs to \(PAP_{T}(\mathbb {R},\mathbb {R}^{n}).\) \(\square \)

Lemma 8

Suppose that assumption (H4) hold. For each \(\varphi =(\varphi _{1},\ldots ,\varphi _{n}) \in PAP_{T}(\mathbb {R},\mathbb {R}^{n})\), we have

$$\begin{aligned} \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k})) \in PAP_{T}(\mathbb {R},\mathbb {R}). \end{aligned}$$

Proof

We will show that \( \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k})) \in PAP_{T}(\mathbb {R},\mathbb {R}).\) It is not difficult to see that\( \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k})) \in UPC(\mathbb {R},\mathbb {R})\). By Corollary 2.1 (see [30]), \(I_{k}(x_{i}(t_{k})) \in PAP(\mathbb {Z},\mathbb {R})\), then let \(I_{k}(x_{i}(t_{k})) = I_{k}^{1} + I_{k}^{2}\) where \( I_{k}^{1} \in AP(\mathbb {Z},\mathbb {R})\) and \( I_{k}^{2} \in PAP_{0}(\mathbb {Z},\mathbb {R})\), so

$$\begin{aligned} \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(x_{i}(t_{k})) = \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}^{1}+ \sum \limits _{t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}^{2} \end{aligned}$$
$$\begin{aligned} = \varPhi _{1}(t) + \varPhi _{2}(t). \end{aligned}$$

Since \(\{ t_{j}^{k}\} ,k,j \in \mathbb {Z}\) are equipotentially almost periodic, then (see Lemma 3.2, [30]), for any \(\epsilon > 0\), there exists relative dense sets of real numbers \(\varOmega _{\epsilon }\) and integers \(Q_{\epsilon }\), such that for \(t_{k}< t\le t_{k+1}, \tau \in \varOmega _{\epsilon }, q \in Q_{\epsilon }, |t- t_{k}|> \epsilon \), \(|t- t_{k+1}|> \epsilon , k \in \mathbb {Z}\), one has

$$\begin{aligned} t+\tau>&t_{k} + \epsilon + \tau> t_{k+q},\\ t_{k+q+1}>&t_{k+1} - \epsilon + \tau > t + \tau , \end{aligned}$$

that is \( t_{k+q}> t + \tau > t_{k+q+1}; \) then

$$\begin{aligned} \parallel \varPhi _{1}(t+\tau ) - \varPhi _{1}(t) \parallel= & {} \parallel \sum \limits _{ t_{k}<t+ \tau } e^{- \int _{t_{k}}^{t+ \tau } c_{i}(u) du} I_{k}^{1} - \sum \limits _{ t_{k}<t } e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}^{1} \parallel \\\le & {} \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} \parallel I_{k+q}^{1}- I_{k}^{1} \parallel \\\le & {} \epsilon \sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} \\\le & {} \epsilon \frac{1}{1 - e^{-c_{i*}}}, \end{aligned}$$

So, \(\varPhi _{1}(.) \in AP_{T}(\mathbb {R},\mathbb {R})\).

Next, we show that \(\varPhi _{2}(.) \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). For a given \(k \in \mathbb {Z}\), define the function \(\chi (t)\) by

$$\begin{aligned} \chi (t) = e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}^{2}, \, \, \, t_{k} < t \le t_{k+1}, \end{aligned}$$

then

$$\begin{aligned} \lim _{t\rightarrow \infty } \parallel \chi (t) \parallel = \lim _{t\rightarrow \infty } \parallel e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}^{2} \parallel \le \lim _{t\rightarrow \infty } e^{-(t-t_{k}) c_{i*}} \sup _{k \in \mathbb {Z}}\parallel I_{k}^{2} \parallel =0, \end{aligned}$$

then \(\chi \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). Define \(\chi _{n} :\mathbb {R} \rightarrow \mathbb {R}\) by

$$\begin{aligned} \chi _{n}(t) = e^{- \int _{t_{k-n}}^{t} c_{i}(u) du} I_{k-n}^{2}, \, \, \, t_{k} < t \le t_{k+1}, \, n \in \mathbb {N}. \end{aligned}$$

So \(\chi _{n} \in PAP^{0}_{T}(\mathbb {R},\mathbb {R})\). Moreover,

$$\begin{aligned} \parallel \chi _{n}(t) \parallel= & {} \parallel e^{- \int _{t_{k-n}}^{t} c_{i}(u) du} I_{k-n}^{2} \parallel \\\le & {} e^{-(t-t_{k-n}) c_{i*}} \sup _{k \in \mathbb {Z}}\parallel I_{k}^{2} \parallel \\\le & {} e^{-(t-t_{k}) c_{i*}} e^{- c_{i*} \alpha k} \sup _{k \in \mathbb {Z}}\parallel I_{k}^{2} \parallel . \end{aligned}$$

therefore, the series \(\varSigma _{n=1}^{\infty } \chi _{n}\) is uniformly convergent on \(\mathbb {R}\). By Lemma 2.2 (see [30]), one has

$$\begin{aligned} \varPhi _{2}(t) = \sum \limits _{ t_{k}<t } e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}^{2}= \sum _{n=0}^{\infty } \chi _{n} \in PAP_{T}^{0}(\mathbb {R},\mathbb {R}). \end{aligned}$$

So, \( \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(x_{i}(t_{k})) \in PAP_{T}(\mathbb {R},\mathbb {R}). \) \(\square \)

Theorem 2

Suppose that assumptions (H1)–(H4) hold. Define the nonlinear operator \(\varGamma \) as follows, for each \(\varphi =(\varphi _{1},\ldots ,\varphi _{n}) \in PAP_{T}(\mathbb {R},\mathbb {R}^{n}),\) and \(\varphi ' =(\varphi '_{1},\ldots ,\varphi '_{n}) \in PAP_{T}(\mathbb {R},\mathbb {R}^{n}),\)

$$\begin{aligned} (\varGamma _{\varphi })_{i}(t):= (X_{\varphi })_{i}(t) + \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k})), \end{aligned}$$

then \(\varGamma \) maps \(PAP_{T}(\mathbb {R},\mathbb {R}^n)\) into itself and

$$\begin{aligned} (\varGamma _{\varphi })_{i}'(t):= F_{i}(t)- c_{i}(t) \int _{-\infty }^{t} e^{-\int _{s}^{t} c_{i}(u) du } F_{i}(s)ds- c_{i}(t) \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k})), \end{aligned}$$

and \(\varGamma ^{'}\) maps \(PAP_{T}(\mathbb {R},\mathbb {R}^n)\) into itself.

Theorem 3

Let conditions (H1)–(H5) hold. Then, there exists a unique piecewise differentiable pseudo almost periodic solution of system (1) in the region

$$\begin{aligned} B = \Big \{\varphi / \varphi ,\varphi ' \in PAP_{T}(\mathbb {R},\mathbb {R}^{n}),\parallel \varphi - \varphi _{0} \parallel _{E} \le \frac{p L }{1-p}\Big \}, \end{aligned}$$

where

$$\begin{aligned} \varphi _{0}(t)= \Big (\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{1}(u)du} J_{1}(s)ds ,\ldots ,\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{n}(u)du} J_{n}(s)ds \Big )^{T}. \end{aligned}$$

Proof

It is easy to see that \(B = \Big \{\varphi / \varphi ,\varphi ' \in PAP_{T}(\mathbb {R},\mathbb {R}^{n}), \parallel \varphi - \varphi _{0} \parallel _{E} \le \frac{p L }{1-p}\Big \}\) is a closed convex subset of \(PAP_{T}(\mathbb {R},\mathbb {R}^{n})\). According to the definition of the norm of Banach space \(PAP_{T}(\mathbb {R},\mathbb {R}^{n})\), we get

$$\begin{aligned} \parallel \varphi _{0} \parallel _{E}= & {} \max \Big \{ \parallel \varphi _{0} \parallel _{\infty },\parallel \varphi '_{0} \parallel _{\infty } \Big \} \nonumber \\\le & {} \max _{1 \le i \le n} \max \Big \{ \frac{\overline{J}_{i}}{c_{i*}}, \left( 1+\frac{c_{i}^{+}}{c_{i*}}\right) \overline{J}_{i}\Big \} = L. \end{aligned}$$
(3)

Therefore, for \(\forall \varphi \in B\), we have

$$\begin{aligned} \parallel \varphi \parallel _{E} \le \parallel \varphi - \varphi _{0} \parallel _{E} + \parallel \varphi _{0} \parallel _{E} \le \frac{pL}{1-p} + L = \frac{L}{1-p}. \end{aligned}$$
(4)

In view of (H1), we have

$$\begin{aligned} |g_{j}(u)|\le L_{j}^{g} |u |, \hbox { for all }u \in \mathbb {R}, j=1,2,\dots ,n. \end{aligned}$$
(5)

Now, we prove that the mapping \(\varGamma \) is a self-mapping from B to B. In fact, for all \( \varphi \in B\), by using the estimate just obtained together with (4), (5), Lemmas 2, 3, 7 and 8 we obtain

$$\begin{aligned}&\parallel \varGamma _{\varphi } - \varphi _{0} \parallel _{\infty }\\&\quad = \max _{1 \le i \le n} \sup _{t \in \mathbb {R}} \Big \{ |\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u)du} \left[ c_{i}(s) \int _{s-\rho (s)}^{s}\varphi ^{'}_{i}(m)dm \right. \\&\left. \qquad + \sum _{j=1}^{n} a_{ij}(s) g_{j} (\varphi _{j}(s-\tau _{ij}(s)))\right. \\&\left. \qquad + \sum _{j=1}^{n} b_{ij}(s)\int _{0}^{\infty } d_{ij}(u) g_{j} (\varphi _{j}(s-u)) du\right. \\&\left. \qquad + \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(s) g_{j}(\varphi _{j}(s-\sigma _{ij}(s))) g_{l}(\varphi _{l}(s-\nu _{ij}(s)))\right. \\&\left. \qquad + \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(s)\int _{0}^{\infty } h_{ijl}(u) g_{j}(\varphi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\varphi _{l}(s-u)) du \right] ds \\&\qquad + \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k}))|\Big \} \\ \end{aligned}$$
$$\begin{aligned}&\le \max _{1 \le i \le n} \sup _{t \in \mathbb {R}} \Big \{ \int _{-\infty }^{t} e^{- c_{i*} (t-s)} \left[ c_{i}^{+} \rho ^{+}\parallel \varphi ' \parallel _{\infty } \right. \\&\left. \qquad + \sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \varphi \parallel _{\infty }+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \varphi \parallel _{\infty } + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \parallel \varphi \parallel _{\infty }\right. \\&\left. \qquad +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \parallel \varphi \parallel _{\infty }\right] ds + \sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} L_{1} \parallel \varphi \parallel _{\infty } \Big \}\\&\le \max _{1 \le i \le n} \Big \{c^{-1}_{i*} \big [ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \\&\qquad +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{L_{1}}{1-e^{-c_{i*}}}\Big \} \parallel \varphi \parallel _{E} \end{aligned}$$

On the other hand

$$\begin{aligned}&\parallel (\varGamma _{\varphi } - \varphi _{0})' \parallel _{\infty }\\= & {} \max _{1 \le i \le n} \sup _{t \in \mathbb {R}} \Big \{ |c_{i}(t) \int _{t-\rho (t)}^{t}\varphi ^{'}_{i}(m)dm + \sum _{j=1}^{n} a_{ij}(s) g_{j} (\varphi _{j}(t-\tau _{ij}(t)))\\&+ \sum _{j=1}^{n} b_{ij}(t)\int _{0}^{\infty } d_{ij}(u) g_{j} (\varphi _{j}(t-u)) du\\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(t) g_{j}(\varphi _{j}(t-\sigma _{ij}(t))) g_{l}(\varphi _{l}(t-\nu _{ij}(t)))\\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(t)\int _{0}^{\infty } h_{ijl}(u) g_{j}(\varphi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\varphi _{l}(t-u)) du \\&-\, c_{i}(t)\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u)du} \left[ c_{i}(s) \int _{s-\rho (s)}^{s}\varphi ^{'}_{i}(m)dm + \sum _{j=1}^{n} a_{ij}(s) g_{j} (\varphi _{j}(s-\tau _{ij}(s)))\right. \\&\left. + \sum _{j=1}^{n} b_{ij}(s)\int _{0}^{\infty } d_{ij}(u) g_{j} (\varphi _{j}(s-u)) du\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(s) g_{j}(\varphi _{j}(s-\sigma _{ij}(s))) g_{l}(\varphi _{l}(s-\nu _{ij}(s)))\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(s)\int _{0}^{\infty } h_{ijl}(u) g_{j}(\varphi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\varphi _{l}(s-u)) du \right] ds \\&-\,c_{i}(t) \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u) du} I_{k}(\varphi _{i}(t_{k}))|\Big \} \\ \end{aligned}$$
$$\begin{aligned}\le & {} \max _{1 \le i \le n} \sup _{t \in \mathbb {R}} \Big \{ \left[ c_{i}^{+} \rho ^{+}\parallel \varphi ' \parallel _{\infty } + \sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \varphi \parallel _{\infty }+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \varphi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \parallel \varphi \parallel _{\infty }+\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \parallel \varphi \parallel _{\infty }\right] \\&+\,c_{i}^{+}\int _{-\infty }^{t} e^{- c_{i*} (t-s)} \left[ c_{i}^{+} \rho ^{+}\parallel \varphi ' \parallel _{\infty } + \sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \varphi \parallel _{\infty }+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \varphi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \parallel \varphi \parallel _{\infty }+\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \parallel \varphi \parallel _{\infty }\right] ds \\&+\,c_{i}^{+} \sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} L_{1} \parallel \varphi \parallel _{\infty } \Big \}\\\le & {} \max _{1 \le i \le n} \Big \{\left( 1+ \frac{c^{+}_{i}}{c_{i*}}\right) \big [ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \\&+\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{c_{i}^{+}L_{1}}{1-e^{-c_{i*}}}\Big \} \parallel \varphi \parallel _{E} \end{aligned}$$

where \(i = 1, 2,\dots ,n.\) So we can write

$$\begin{aligned} \parallel \varGamma _{\varphi } - \varphi _{0} \parallel _{E}= & {} \max \{ \parallel \varGamma _{\varphi } - \varphi _{0} \parallel _{\infty }, \parallel (\varGamma _{\varphi } - \varphi _{0})' \parallel _{\infty }\}\\\le & {} \max _{ 1 \le i \le n} \max \bigg \{ \Big \{c^{-1}_{i*} \big [ c_{i}^{+} \rho ^{+} \!+\!\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \\&+\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{L_{1}}{1-e^{-c_{i*}}}\Big \},\Big \{\left( 1+ \frac{c^{+}_{i}}{c_{i*}}\right) \big [ c_{i}^{+} \rho ^{+} \\&+\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \\&+\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{c_{i}^{+}L_{1}}{1-e^{-c_{i*}}}\Big \}\bigg \} \parallel \varphi \parallel _{E}\\= & {} p \parallel \varphi \parallel _{E}, \end{aligned}$$

where \(p < 1\), it implies that \(\varGamma _{\varphi }(.) \in B\). So, the mapping \(\varGamma \) is a self-mapping from B to B.

Next, we prove that the mapping \(\varGamma \) is a contraction mapping of the B. In fact, in view of (H1), for \( \forall \phi ,\psi \in B\), we have

$$\begin{aligned} |\big (\varGamma _{\phi }-\varGamma _{\psi }\big )_{i}(t)|= & {} |\int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u)du} \left[ c_{i}(s) \int _{s-\rho (s)}^{s}(\phi '_{i}(m)- \psi '(m))dm\right. \\&\left. +\sum _{j=1}^{n} a_{ij}(s) (g_{j} (\phi _{j}(s-\tau _{ij}(s)))- g_{j} (\psi _{j}(s-\tau _{ij}(s)))) \right. \\&\left. +\sum _{j=1}^{n} b_{ij}(s) \int _{0}^{\infty } d_{ij}(u) (g_{j} (\phi _{j}(s-u))- g_{j} (\psi _{j}(s-u))) du\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(s) ( g_{j}(\phi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s)))\right. \\&\left. -\, g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\psi _{l}(s-\nu _{ij}(s)))) \right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(s) \left( \int _{0}^{\infty } h_{ijl}(u) g_{j}(\phi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \right. \\&\left. \left. - \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\psi _{l}(s-u)) du\right) \right] ds\\&+ \sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u)du } (I_{k}(\varphi _{i}(t_{k})) - I_{k}(\psi _{i}(t_{k})))|\\\le & {} \int _{-\infty }^{t} e^{-(t-s)c_{i*}} \left[ c_{i}^{+} \rho ^{+} \parallel \phi ' - \psi ' \parallel _{\infty } +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } \right. \\&\left. +\sum _{j=1}^{n} \overline{b}_{ij} d^{+}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl}|g_{j}(\phi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s))) \right. \\&\left. -\,g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s)))\right. \\&\left. +\,g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s)))\right. \\&\left. -\, g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\psi _{l}(s-\nu _{ij}(s))) |\right. \\ \end{aligned}$$
$$\begin{aligned}&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl}|\int _{0}^{\infty } h_{ijl}(u) g_{j}(\phi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \\&\left. - \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \\&\left. + \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \\&\left. -\int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\psi _{l}(s-u)) du|\right] ds\\&+ \sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} |I_{k}(\varphi _{i}(t_{k})) - I_{k}(\psi _{i}(t_{k}))|\\ \end{aligned}$$
$$\begin{aligned}\le & {} \int _{-\infty }^{t} e^{-(t-s)c_{i*}} \left[ c_{i}^{+} \rho ^{+} \parallel \phi ' - \psi ' \parallel _{\infty }+\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } \right. \\&\left. +\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } +\sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \parallel \phi - \psi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \parallel \phi - \psi \parallel _{\infty }\right] ds \\&+ \sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} L_{1} \parallel \phi - \psi \parallel _{\infty } \\\le & {} \Big \{ c^{-1}_{i*} \left[ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}+ \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \right] + \frac{L_{1}}{1-e^{-c_{i*} }} \Big \} \parallel \phi - \psi \parallel _{E}, \end{aligned}$$

On the other hand

$$\begin{aligned} |\Big (\varGamma _{\phi }-\varGamma _{\psi }\Big )'_{i}(t)|= & {} |\left[ c_{i}(t) \int _{t-\rho (t)}^{t}(\phi '_{i}(m)- \psi '(m))dm\right. \\&\left. +\sum _{j=1}^{n} a_{ij}(t) (g_{j} (\phi _{j}(t-\tau _{ij}(t)))- g_{j} (\psi _{j}(t-\tau _{ij}(t)))) \right. \\&\left. +\sum _{j=1}^{n} b_{ij}(t) \int _{0}^{\infty } d_{ij}(u) (g_{j} (\phi _{j}(t-u))- g_{j} (\psi _{j}(t-u))) du\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(t) ( g_{j}(\phi _{j}(t-\sigma _{ij}(t))) g_{l}(\phi _{l}(t-\nu _{ij}(t)))\right. \\&\left. \quad - g_{j}(\psi _{j}(t-\sigma _{ij}(t))) g_{l}(\psi _{l}(t-\nu _{ij}(t)))) \right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(t) ( \int _{0}^{\infty } h_{ijl}(u) g_{j}(\phi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(t-u)) du \right. \\&\left. - \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\psi _{l}(t-u)) du)\right] \\&- c_{i}(t) \int _{-\infty }^{t} e^{-\int _{s}^{t}c_{i}(u)du} \left[ c_{i}(s) \int _{s-\rho (s)}^{s}(\phi '_{i}(m)- \psi '(m))dm\right. \\&\left. +\sum _{j=1}^{n} a_{ij}(s) (g_{j} (\phi _{j}(s-\tau _{ij}(s)))- g_{j} (\psi _{j}(s-\tau _{ij}(s)))) \right. \\ \end{aligned}$$
$$\begin{aligned}&\left. +\sum _{j=1}^{n} b_{ij}(s) \int _{0}^{\infty } d_{ij}(u) (g_{j} (\phi _{j}(s-u))- g_{j} (\psi _{j}(s-u))) du\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \alpha _{ijl}(s) ( g_{j}(\phi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s)))\right. \\&\left. -\, g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\psi _{l}(s-\nu _{ij}(s)))) \right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \beta _{ijl}(s) \left( \int _{0}^{\infty } h_{ijl}(u) g_{j}(\phi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \right. \\&\left. \left. - \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\psi _{l}(s-u)) du\right) \right] ds\\&\,\, -\, c_{i}(t)\sum \limits _{ t_{k}<t} e^{- \int _{t_{k}}^{t} c_{i}(u)du } (I_{k}(\varphi _{i}(t_{k})) - I_{k}(\psi _{i}(t_{k})))|\\ \end{aligned}$$
$$\begin{aligned}\le & {} \left[ c_{i}^{+} \rho ^{+} \parallel \phi ' - \psi ' \parallel _{\infty } +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } +\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty }\right. \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl}|g_{j}(\phi _{j}(t-\sigma _{ij}(t))) g_{l}(\phi _{l}(t-\nu _{ij}(t)))\\&-\,g_{j}(\psi _{j}(s-\sigma _{ij}(t))) g_{l}(\phi _{l}(t-\nu _{ij}(t))) \\&\left. +\,g_{j}(\psi _{j}(t-\sigma _{ij}(t))) g_{l}(\phi _{l}(t-\nu _{ij}(t))) - g_{j}(\psi _{j}(t-\sigma _{ij}(t))) g_{l}(\psi _{l}(t-\nu _{ij}(t))) |\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl}|\int _{0}^{\infty } h_{ijl}(u) g_{j}(\phi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(t-u)) du \right. \\&\left. - \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(t-u)) du \right. \\&\left. + \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(t-u)) du \right. \\&\left. -\int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\psi _{l}(t-u)) du|\right] \\&+\,c_{i}^{+}\int _{-\infty }^{t} e^{-(t-s)c_{i*}} \left[ c_{i}^{+} \rho ^{+} \parallel \phi ' - \psi ' \parallel _{\infty } +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } \right. \\ \end{aligned}$$
$$\begin{aligned}&\left. +\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty }\!+\! \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl}|g_{j}(\phi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s))) \right. \\&\left. -\, g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s))) \right. \\&\left. +\, g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\phi _{l}(s-\nu _{ij}(s))) - g_{j}(\psi _{j}(s-\sigma _{ij}(s))) g_{l}(\psi _{l}(s-\nu _{ij}(s))) |\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl}|\int _{0}^{\infty } h_{ijl}(u) g_{j}(\phi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \\&\left. - \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \\&\left. + \int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\phi _{l}(s-u)) du \right. \\&\left. -\int _{0}^{\infty } h_{ijl}(u) g_{j}(\psi _{j}(s-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(\psi _{l}(s-u)) du|\right] ds\\&\, +\, c_{i}^{+} \sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} |I_{k}(\varphi _{i}(t_{k})) - I_{k}(\psi _{i}(t_{k}))|\\ \end{aligned}$$
$$\begin{aligned}\le & {} \left[ c_{i}^{+} \rho ^{+} \parallel \phi ' - \psi ' \parallel _{\infty }+\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } +\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \parallel \phi - \psi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \parallel \phi - \psi \parallel _{\infty }\right] \\&+\, c_{i}^{+}\int _{-\infty }^{t} e^{-(t-s)c_{i*}} \left[ c_{i}^{+} \rho ^{+} \parallel \phi ' - \psi ' \parallel _{\infty }\right. \\&\left. +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty } +\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} \parallel \phi - \psi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \parallel \phi - \psi \parallel _{\infty }\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \parallel \phi - \psi \parallel _{\infty }\right] ds \\ \end{aligned}$$
$$\begin{aligned}&\, +\, c_{i}^{+}\sum \limits _{ t_{k}<t} e^{- (t-t_{k}) c_{i*}} L_{1} \parallel \phi - \psi \parallel _{\infty } \\\le & {} \Big \{\left( 1+\frac{c^{+}_{i}}{c_{i*} }\right) \left[ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}\right. \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\right] + \frac{ c_{i}^{+}L_{1}}{1-e^{-c_{i*} }} \Big \} \parallel \phi - \psi \parallel _{E}, \end{aligned}$$

where \(i = 1, 2,\dots ,n.\) It follows that

$$\begin{aligned} \parallel \varGamma _{\phi }-\varGamma _{\psi } \parallel _{E} \le q \parallel \phi - \psi \parallel _{E} \end{aligned}$$

where

$$\begin{aligned} q \!= & {} \! \max _{1 \le i \le n} max \bigg \{\Big \{ c^{-1}_{i*} \left[ c_{i}^{+} \rho ^{+} \!+\!\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}+ \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \right] + \frac{L_{1}}{1-e^{-c_{i*} }} \Big \} , \Big \{\left( 1+\frac{c^{+}_{i}}{c_{i*} }\right) \\&\left[ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{n} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{n} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}+ \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\right. \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \right] + \frac{ c_{i}^{+}L_{1}}{1-e^{-c_{i*} }} \Big \}\bigg \} < 1 \end{aligned}$$

It is clear that the mapping \(\varGamma \) is a contraction. Therefore the mapping \(\varGamma \) possesses a unique fixed point \(z^{*} \in B, T(z^{*}) = z^{*}\). By (7), \(z^{*}\) satisfies (1). So \(z^{*}\) is a piecewise differentiable pseudo almost periodic solution of system (1) in the region B. The proof is now complete. \(\square \)

Remark 4

To the best of our knowledge, there have been no results of piecewise pseudo-almost periodic solutions for impulsive high-order Hopfield neural networks with time-varying coefficients, mixed delays and leakage until now. Hence, the obtained results are essentially new and the investigation methods used in this paper can also be applied to study the piecewise pseudo-almost periodic solutions for general Hopfield neural networks and for some other types of neural networks.

3 Exponential stability of piecewise differentiable pseudo almost periodic solution

To study the exponential stability of (1), we need the following lemma and notations. So, for a continuous function \(\kappa (.)\), we denote \(\overline{\kappa }(t) = \sup \limits _{ t- \tau \le s\le t} | \kappa (s) |,\)

Lemma 9

Let \(\tau \ge 0\) be a given real constant. Assume that p(t) and \(q_{i}(t)(i=1,2)\) be continuous functions on \([0,+\infty ), k(s)\) be nonnegative function on \([0,+\infty )\) and satisfies that \(\int _{0}^{+\infty } k(s)ds \le k\) and \(\int _{0}^{+\infty } k(s) e^{\mu s} ds \le +\infty \) for positive constant \(\mu \).

Moreover, assume that there exist positive constants \(\eta \) and M such that

$$\begin{aligned} p(t)-q_{1}(t)-k q_{2}(t) \ge \eta > 0,\, 0 \le q_{1}(t) \le M, \, 0 \le q_{2}(t) \le M, \forall t \ge 0, \end{aligned}$$

then

$$\begin{aligned} \lambda ^{*} =\inf _{t \ge 0} \left\{ \lambda>0, \lambda - p(t)+ q_{1}(t) e^{\lambda \tau } + q_{2}(t)\int _{0}^{+\infty } k(s) e^{\lambda s} ds =0 \right\} >0. \end{aligned}$$

Proof

Consider the following equation:

$$\begin{aligned} G(\lambda ) = \lambda - p(t)+ q_{1}(t) e^{\lambda \tau } + q_{2}(t)\int _{0}^{+\infty } k(s) e^{\lambda s} ds. \end{aligned}$$
(6)

Because

$$\begin{aligned}&G(0) = - p(t)+ q_{1}(t) + k q_{2}(t) < 0,\\&\frac{dG}{d\lambda } = 1 + q_{1}(t) \tau e^{\lambda \tau } + q_{2}(t)\int _{0}^{+\infty } k(s) s e^{\lambda s} ds > 0 \end{aligned}$$

and \(G(+\infty ) > 0,\) we follow that \(G(\lambda )\) is a strictly monotone increasing function.

Therefore, for any \(t\ge 0\), there is a unique positive \(\lambda (t)\) such that

$$\begin{aligned} \lambda (t) - p(t)+ q_{1}(t) e^{\lambda (t) \tau } + q_{2}(t)\int _{0}^{+\infty } k(s) e^{\lambda (t) s} ds = 0. \end{aligned}$$

Moreover, \(\lambda ^{*}\) exists and \(\lambda ^{*} \ge 0\).

Now, we will prove \(\lambda ^{*} > 0\). Suppose this is not true. Pick \(\epsilon \in (0,\mu )\) such that \(\epsilon < \{ \frac{\eta }{3}, \frac{1}{\tau } \ln (1+ \frac{\eta }{3M})\}\) and \(\int _{0}^{+\infty } k(s) e^{\epsilon s} ds \le k+ \frac{\eta }{3M}. \) Then there exist \(t^{*} > 0\) such that \(\lambda ^{*}(t^{*}) < \epsilon \) and

$$\begin{aligned} \lambda ^{*}(t^{*}) - p(t^{*})+ q_{1}(t^{*}) e^{\lambda ^{*}(t^{*}) \tau } + q_{2}(t^{*})\int _{0}^{+\infty } k(s) e^{\lambda ^{*}(t^{*}) s} ds = 0. \end{aligned}$$

Now we have

$$\begin{aligned} 0= & {} \lambda ^{*}(t^{*}) - p(t^{*})+ q_{1}(t^{*}) e^{\lambda ^{*}(t^{*}) \tau } + q_{2}(t^{*})\int _{0}^{+\infty } k(s) e^{\lambda ^{*}(t^{*}) s} ds\\<\lambda ^{*}(t^{*}) - p(t^{*})+ q_{1}(t^{*}) e^{\lambda ^{*}(t^{*}) \tau } + q_{2}(t^{*})\int _{0}^{+\infty } k(s) e^{\epsilon s} ds\\<&\epsilon - p(t^{*})+ q_{1}(t^{*}) \left( 1+ \frac{\eta }{3M}\right) + q_{2}(t^{*})\left( k+ \frac{\eta }{3M}\right) \\<&\frac{\eta }{3} - \left( p(t^{*})- q_{1}(t^{*})- k q_{2}(t^{*})\right) + \left( q_{1}(t^{*})+ q_{2}(t^{*})\right) \frac{\eta }{3M}) + q_{2}(t^{*})\left( k+ \frac{\eta }{3M}\right) \\< & {} \frac{\eta }{3} - \eta + \frac{2\eta }{3}=0, \end{aligned}$$

which is a contradiction. Hence, \(\lambda ^{*} > 0\). The proof of this lemma is completed. \(\square \)

Then we have

Lemma 10

Assume that (H1)–(H6) hold and there exist nonnegative vector functions \((V_{1}(t),\dots ,V_{n}(t))^{T}\) and \((W_{1}(t),\dots ,W_{n}(t))^{T} \in PC([-\rho ^{+},0],\mathbb {R}^{n})\), where \(V_{i}(t)\) is continuous at \(t \ne t_{k} (k \in \mathbb {N}^{*})\), such that

$$\begin{aligned} D^{-}V_{i}(t^{-})\le & {} -c_{i}(t) V_{i}(t^{-}) + c_{i}(t) \int _{t^{-}-\rho (t^{-})}^{t^{-}} W_{i}(s) ds + \sum _{j=1}^{n} |a_{ij}(t) |L_{j}^{g} \overline{V}_{j}(t^{-})\nonumber \\&+ \sum _{j=1}^{n}|b_{ij}(t) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} V_{j}(t^{-}-u) du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |[L_{j}^{g} \overline{V}_{j}(t^{-}) M_{l}^{g}+ M_{j}^{g} L_{l}^{g} \overline{V}_{l}(t^{-})]\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\left[ \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} V_{j}(t^{-}-u) du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. + \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} V_{l}(t^{-}-u) du\right] , \end{aligned}$$
(7)
$$\begin{aligned} W_{i}(t^{+})\le & {} c_{i}(t) V_{i}(t^{+}) + c_{i}(t) \int _{t^{+}-\rho (t^{+})}^{t^{+}} W_{i}(s) ds + \sum _{j=1}^{n} |a_{ij}(t) |L_{j}^{g} \overline{V}_{j}(t^{+})\nonumber \\&+ \sum _{j=1}^{n}|b_{ij}(t) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} V_{j}(t^{+}-u) du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |[L_{j}^{g} \overline{V}_{j}(t^{+}) M_{l}^{g}+ M_{j}^{g} L_{l}^{g} \overline{V}_{l}(t^{+})]\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\left[ \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} V_{j}(t^{+}-u) du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. + \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} V_{l}(t^{+}-u) du \right] , \end{aligned}$$
(8)
$$\begin{aligned} V_{i}(t_{k}^{+}) \le L_{1} V_{i}(t^{+}) \end{aligned}$$
(9)

for \(t>0, i =1,2,\dots ,n \) and \( k \in \mathbb {N}^{*}\). Then for all \(t\ge 0\) and \(i =1,2,\dots ,n\), there exists a positive constant M such that

$$\begin{aligned} V_{i}(t) \le M \sum _{l=1}^{n} \max \{\overline{V}_{l}(0), \overline{W}_{l}(0) \} e^{-\lambda ^{*}t}, \end{aligned}$$
(10)

where \(\lambda ^{*}\) is defined, respectively, as

$$\begin{aligned} \lambda ^{*}= & {} \min \{\lambda _{i}^{*} , \widehat{\lambda }_{i}^{*} |i =1,2,\dots ,n \}, \end{aligned}$$
(11)
$$\begin{aligned} \lambda _{i}^{*}= & {} \inf _{t\ge 0} \left\{ \lambda (t)> 0,\, \, \lambda (t) -c_{i}(t) + \frac{q_{i}}{p_{i}} c_{i}^{+} \rho ^{+} e^{\lambda (t) \rho ^{+}} + \sum _{j=1}^{n} \frac{p_{j}}{p_{i}} |a_{ij}(t) |L_{j}^{g} e^{\lambda (t) \tau }\right. \nonumber \\&\left. + \sum _{j=1}^{n} \frac{p_{j}}{p_{i}} |b_{ij}(t) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} e^{\lambda (t) u} du\right. \nonumber \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |\left[ \frac{p_{j}}{p_{i}} L_{j}^{g} M_{l}^{g}+ \frac{p_{l}}{p_{i}} M_{j}^{g} L_{l}^{g}\right] e^{\lambda (t) \tau } \right. \nonumber \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\left[ \frac{p_{j}}{p_{i}} \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} e^{\lambda (t) u} du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \right. \nonumber \\&\left. \left. + \frac{p_{l}}{p_{i}} \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} e^{\lambda (t) u} du \right] = 0\right\} > 0, \end{aligned}$$
(12)
$$\begin{aligned} \widehat{\lambda }_{i}^{*}= & {} \inf _{t\ge 0} \left\{ \lambda (t)> 0,\, \, - q_{i} + c_{i}(t) p_{i} + q_{i} c_{i}^{+} \rho ^{+} e^{\lambda (t) \rho ^{+}} + \sum _{j=1}^{n} p_{j} |a_{ij}(t) |L_{j}^{g} e^{\lambda (t)\tan }\right. \nonumber \\&\left. + \sum _{j=1}^{n} p_{j} |b_{ij}(t) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} e^{\lambda (t) u} du\right. \nonumber \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |\left[ p_{j} L_{j}^{g} M_{l}^{g}+ p_{l} M_{j}^{g} L_{l}^{g} \right] e^{\lambda (t)\tan }\right. \nonumber \\&\left. + \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\left[ p_{j} \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} e^{\lambda (t) u} du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \right. \nonumber \\&\left. \left. +\, p_{l} \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} e^{\lambda (t) u} du \right] = 0 \right\} > 0, \end{aligned}$$
(13)

Proof

By the similar analysis in Lemma 9, we can deduce that \(\lambda _{i}^{*}\) and \(\widehat{\lambda }_{i}^{*}\) exist uniquely and \(\lambda _{i}^{*}> 0, \widehat{\lambda }_{i}^{*}> 0\). Consequently, \(\lambda ^{*} > 0\).

Choose a positive constant \(\theta \) such that

$$\begin{aligned} \min \{ p_{i},q_{i} | i =1,2,\dots ,n \} \theta > 1. \end{aligned}$$

Let

$$\begin{aligned} \varPhi _{i}(t)= & {} \max \left\{ \frac{1}{p_{i}} V_{i}(t),\frac{1}{q_{i}} W_{i}(t) \right\} , i =1,2,\dots ,n,\nonumber \\ \varPsi (t)= & {} \theta \sum _{l=1}^{n} \max \{ \overline{V}_{l}(0) , \overline{W}_{l}(0) \} e^{-\lambda ^{*}t}. \end{aligned}$$
(14)

Then for all \(t \in (-\infty ,0]\) and \(\gamma > 1\), we have

$$\begin{aligned} \gamma \varPsi (t)= \gamma \theta \sum _{l=1}^{n} \max \{ \overline{V}_{l}(0) , \overline{W}_{l}(0) \} e^{-\lambda ^{*}t} > \varPhi _{i}(t). \end{aligned}$$
(15)

Then

$$\begin{aligned} \varPhi _{i}(t) < \gamma \varPsi (t), \, \, t \in [0, \infty ), \, i =1,2,\dots ,n. \end{aligned}$$
(16)

For the sake of contradiction, assume that there exist \(i \in \{1,2,\dots ,n\}\) and \(\overline{t} > 0\) such that

$$\begin{aligned} \varPhi _{i}(\overline{t}^{+}) \ge \gamma \varPsi (\overline{t}), \varPhi _{j}(t) < \gamma \varPsi (t), \, for \, \, \, t \in [0, \overline{t}), j \in \{1,2,\dots ,n\}. \end{aligned}$$
(17)

The we have the following

(I) \((1/p_{i}) V_{i}(\overline{t}^{+}) \ge \gamma \varPsi (\overline{t})\) then we have the following subcases.

(i) \(\overline{t} \ne t_{k},t_{k} \in \in \mathbb {N}^{*}\). So \(V_{i}(t)\) is continuous at \(\overline{t}\). By 17, we have

$$\begin{aligned} \frac{1}{p_{i}} V_{i}(\overline{t}) = \gamma \varPsi (\overline{t}), \, \, \frac{1}{p_{i}} D^{-}V_{i}(\overline{t}) > \gamma \varPsi '(\overline{t}) \end{aligned}$$
(18)

From (H6), (17) and the definition of \(\lambda ^{*}\), we have

$$\begin{aligned} \frac{1}{p_{i}} D^{-}V_{i}(\overline{t}) - \gamma \varPsi '(\overline{t})\le & {} -c_{i}(t) \gamma \varPsi (\overline{t}) \nonumber \\&+ \frac{q_{i}}{p_{i}} c_{i}(\overline{t}) \int _{\overline{t}-\rho (\overline{t})}^{\overline{t}} \gamma \varPsi (s) ds + \sum _{j=1}^{n} \frac{p_{j}}{p_{i}} |a_{ij}(t) |L_{j}^{g} \gamma \varPsi (\overline{t}-\tau )\nonumber \\&+ \sum _{j=1}^{n} \frac{p_{j}}{p_{i}} |b_{ij}(\overline{t}) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} \gamma \varPsi (\overline{t}-u) du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(\overline{t}) |\left[ \frac{p_{j}}{p_{i}} L_{j}^{g} M_{l}^{g}+ \frac{p_{l}}{p_{i}} M_{j}^{g} L_{l}^{g}\right] \gamma \varPsi (\overline{t}-\tau ) \nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(\overline{t}) |\left[ \frac{p_{j}}{p_{i}} \int _{0}^{\infty } h_{ijl}(u) |L_{j}^{g} \gamma \varPsi (\overline{t}-u) du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. +\, \frac{p_{l}}{p_{i}} \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } k_{ijl}(u) |L_{l}^{g} \gamma \varPsi (\overline{t}-u) du \right] + \lambda ^{*}\gamma \varPsi (\overline{t}) \nonumber \\\le & {} \gamma \varPsi (\overline{t}) ( \lambda ^{*} -c_{i}(t) + \frac{q_{i}}{p_{i}} c_{i}^{+} \rho ^{+} e^{\lambda ^{*} \rho ^{+}} + \sum _{j=1}^{n} \frac{p_{j}}{p_{i}} |a_{ij}(t) |L_{j}^{g} e^{\lambda ^{*} \tau }\nonumber \\&+ \sum _{j=1}^{n} \frac{p_{j}}{p_{i}} |b_{ij}(\overline{t}) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} e^{\lambda ^{*} u} du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(\overline{t}) |\left[ \frac{p_{j}}{p_{i}} L_{j}^{g} M_{l}^{g}+ \frac{p_{l}}{p_{i}} M_{j}^{g} L_{l}^{g}\right] e^{\lambda ^{*} \tau } \nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(\overline{t}) |\left[ \frac{p_{j}}{p_{i}} \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} e^{\lambda ^{*} u} du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. +\, \frac{p_{l}}{p_{i}} \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} e^{\lambda ^{*} u} du \right] ) < 0, \end{aligned}$$
(19)

which is a contradiction with (18).

(ii) There exists \(k_{0} \in \mathbb {N}^{*}\) such that \(\overline{t} = t_{k}\). By (17), we have

$$\begin{aligned} \frac{1}{p_{i}} V_{i}(\overline{t})\le \gamma \varPsi (\overline{t}) \le \frac{1}{p_{i}} V_{i}(\overline{t}^{+}). \end{aligned}$$
(20)

Noting \(\frac{1}{p_{i}} V_{i}(\overline{t}^{-}) \ne \frac{1}{p_{i}} V_{i}(\overline{t}^{+})\), we have \(\frac{1}{p_{i}} V_{i}(\overline{t}^{-}) < \gamma \varPsi (\overline{t})\) or \(\gamma \varPsi (\overline{t}) < \frac{1}{p_{i}} V_{i}(\overline{t}^{+})\). Without loss of generality, we assume that \(\gamma \varPsi (\overline{t}) < \frac{1}{p_{i}} V_{i}(\overline{t}^{+})\). from (9) and (20) we get that

$$\begin{aligned} \gamma \varPsi (\overline{t}) < \frac{1}{p_{i}} V_{i}(\overline{t}^{+}) \le \gamma L_{1} \varPsi (\overline{t}). \end{aligned}$$
(21)

Simplifying (21), we obtain \(L_{1}> 1,\) which contradict that \(L_{1}<1\).

If (I) does not hold, then

(II)

$$\begin{aligned} \frac{1}{q_{i}} W_{i}(\overline{t}^{+}) \ge \gamma \varPsi (\overline{t}), \, \, \frac{1}{q_{j}} W_{j}(t) < \gamma \varPsi (t), \, \, \frac{1}{p_{j}} W_{j}(t) \ge \gamma \varPsi (t),\nonumber \\ \hbox { for } t \in [0,\overline{t}), \, j \in \{1,2,\dots ,n\}. \end{aligned}$$
(22)

Then from (8) and (H6) we have

$$\begin{aligned} 0\le & {} - W_{i}(\overline{t}^{+}) + c_{i}(t) V_{i}(\overline{t}^{+}) + c_{i}(t^{+}) \int _{\overline{t}^{+}-\rho (t^{+})}^{t^{+}} W_{i}(s) ds + \sum _{j=1}^{n} |a_{ij}(t^{+}) |L_{j}^{g} \overline{V}_{j}(\overline{t}^{+})\nonumber \\&+ \sum _{j=1}^{n}|b_{ij}(t^{+}) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} V_{j}(\overline{t}^{+}-u) du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t^{+}) |\left[ L_{j}^{g} \overline{V}_{j}(\overline{t}^{+}) M_{l}^{g}+ M_{j}^{g} L_{l}^{g} \overline{V}_{l}(\overline{t}^{-})\right] \nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t^{+}) |\left[ \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} V_{j}(\overline{t}^{+}-u) du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g}\right. \nonumber \\&\left. + \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} V_{l}(\overline{t}^{+}-u) du \right] \nonumber \\\le & {} \gamma \varPsi (\overline{t}) (- q_{i} + c_{i}(t) p_{i} + q_{i} c_{i}^{+} \rho ^{+} e^{\lambda ^{*} \rho ^{+}} + \sum _{j=1}^{n} p_{j} |a_{ij}(t^{+}) |L_{j}^{g} e^{\lambda ^{*}\tau }\nonumber \\&+ \sum _{j=1}^{n} p_{j} |b_{ij}(t^{+}) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} e^{\lambda ^{*} u} du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t^{+}) |\left[ p_{j} L_{j}^{g} M_{l}^{g}+ p_{l} M_{j}^{g} L_{l}^{g} \right] e^{\lambda ^{*}\tan }\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t^{+}) |\left[ p_{j} \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} e^{\lambda ^{*} u} du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. +\, p_{l} \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} e^{\lambda ^{*} u} du \right] ) < 0 \end{aligned}$$
(23)

which is a contradiction. From (I) and (II), (16) holds. Letting \(\gamma \rightarrow 1^{+}\) in (16), we have

$$\begin{aligned} \varPhi _{i}(t) \le \gamma \varPsi (t), \, \, t \in [0, \infty ), \, i =1,2,\dots ,n. \end{aligned}$$
(24)

So \(\frac{1}{p_{i}} V_{i}(t) \le \varPsi (t)\) for all \(t \in [0, \infty ), \, i =1,2,\dots ,n.\) Let \(\widetilde{L}=\max \limits _{1\le i\le n}\{ p_{i} \theta \}\) then for \(t \ge 0\) and \(i =1, 2, \dots , n\), we have

$$\begin{aligned} V_{i}(t) \le \widetilde{L} \sum _{l=1}^{n} \max \{\overline{V}_{l}(0), \overline{W}_{l}(0) \} e^{-\lambda ^{*}t}, \end{aligned}$$
(25)

The proof is complete. \(\square \)

Theorem 4

Assume that (H1)-(H6) hold, then the unique piecewise differentiable pseudo almost periodic solution of system (1) is globally exponentially stable.

Proof

It follows from Theorem 3 that system (1) has at least one piecewise differentiable pseudo almost periodic solution \(x^{*}(t)=(x^{*}_{1}(t), \ldots , x^{*}_{n}(t))^{T} \in \mathbb {B}\) with initial value \(\phi ^{*}(t)\). Let \(x(t)=(x_{1}(t), \ldots , x_{n}(t))^{T}\) be an arbitrary solution of system (1) with initial value \(\phi (t)\).

Let \(V_{i}(t)= |x_{i}(t)-x^{*}_{i}(t) |, W_{i}(t)= |x'_{i}(t)-x^{*'}_{i}(t)|\) for \(t\in \mathbb {R}^+, \hbox { and } i=1 \ldots n\), Then,

$$\begin{aligned} D^{-}V_{i}(t^{-})\le & {} -c_{i}(t) V_{i}(t^{-}) + c_{i}(t) \int _{t^{-}-\rho (t^{-})}^{t^{-}} W_{i}(s) ds + \sum _{j=1}^{n} |a_{ij}(t) |L_{j}^{g} \overline{V}_{j}(t^{-})\nonumber \\&+ \sum _{j=1}^{n}|b_{ij}(t) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} V_{j}(t^{-}-u) du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |[L_{j}^{g} \overline{V}_{j}(t^{-}) M_{l}^{g}+ M_{j}^{g} L_{l}^{g} \overline{V}_{l}(t^{-})]\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\left[ \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} V_{j}(t^{-}-u) du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. + \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} V_{l}(t^{-}-u) du \right] , \end{aligned}$$
(26)
$$\begin{aligned} W_{i}(t^{+})\le & {} c_{i}(t) V_{i}(t^{+}) + c_{i}(t) \int _{t^{+}-\rho (t^{+})}^{t^{+}} W_{i}(s) ds + \sum _{j=1}^{n} |a_{ij}(t^{+}) |L_{j}^{g} \overline{V}_{j}(t^{+})\nonumber \\&+ \sum _{j=1}^{n}|b_{ij}(t) |\int _{0}^{\infty } |d_{ij}(u) |L_{j}^{g} V_{j}(t^{+}-u) du\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\alpha _{ijl}(t) |[L_{j}^{g} \overline{V}_{j}(t^{+}) M_{l}^{g}+ M_{j}^{g} L_{l}^{g} \overline{V}_{l}(t^{-})]\nonumber \\&+ \sum _{j=1}^{n} \sum _{l=1}^{n} |\beta _{ijl}(t) |\left[ \int _{0}^{\infty } |h_{ijl}(u) |L_{j}^{g} V_{j}(t^{+}-u) du \frac{k_{ijl}^{+}}{\eta _{k}} M_{l}^{g} \right. \nonumber \\&\left. + \frac{h_{ijl}^{+}}{\eta _{h}} M_{j}^{g} \int _{0}^{\infty } |k_{ijl}(u) |L_{l}^{g} V_{l}(t^{+}-u) du \right] , \end{aligned}$$
(27)

By (9) and (H5) we have

$$\begin{aligned} V_{i}(t_{k}^{+}) \le L_{1} V_{i}(t^{+}), \, \, with \, \, L_{1} <1. \end{aligned}$$
(28)

By (26)–(28), (H1)–(H6) and Lemma 10, there exists a positive constant M such that

$$\begin{aligned} V_{i}(t) \le M \sum _{l=1}^{n} \max \{\overline{V}_{l}(0), \overline{W}_{l}(0) \} e^{-\lambda ^{*}t}, \end{aligned}$$
(29)

where \(\lambda ^{*}\) is defined in (11). \(\square \)

4 Application

Example 1

Consider the following impulsive High-order Hopfield Neural Networks with time-varying coefficients, continuously distributed delays and leakage:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}x'_{i}(t)= - c_{i}(t) x_{i}(t-\rho (t)) +\sum \limits _{j=1}^{2} a_{ij}(t) g_{j} (x_{j}(t-\tau _{ij}(t))) \\ &{}\quad \quad \qquad +\sum \limits _{j=1}^{2} b_{ij}(t)\int _{0}^{\infty } d_{ij}(u) g_{j} (x_{j}(t-u)) du\\ &{}\quad \quad \qquad +\sum \limits _{j=1}^{2} \sum \limits _{l=1}^{2} \alpha _{ijl}(t) g_{j}(x_{j}(t-\sigma _{ij}(t))) g_{l}(x_{l}(t-\nu _{ij}(t))) \\ &{}\quad \quad \qquad +\sum \limits _{j=1}^{2} \sum \limits _{l=1}^{2} \beta _{ijl}(t)\int _{0}^{\infty } h_{ijl}(u) g_{j}(x_{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(x_{l}(t-u)) du \\ &{}\quad \quad \qquad +\, I_{i}(t), \, \, \, t \in \mathbb {R},\, t \ne 2k,\, k \in \mathbb {Z} \\ &{}\varDelta x_{i}(t_{k})= x_{i}(t^{+}_{k}) - x_{i}(t^{-}_{k}) = I_{k}(x_{i}(t_{k})) \end{array} \right. \end{aligned}$$
(30)

where

$$\begin{aligned}c(t) = \left( \begin{array}{c} 4+ \sin ^{2}(t) \\ 4+ \cos ^{2}(t) \\ \end{array} \right) \Rightarrow c_{1*}= c_{2*} = 4, \end{aligned}$$

for all \(t \in \mathbb {R}\)

$$\begin{aligned} g_{1}(t)= & {} g_{2}(t) = \sin t \Rightarrow L^{g}_{1} = L^{g}_{2} = M^{g}_{1} = M^{g}_{2} = 1,\\ \tau _{ij}(t)= & {} \sigma _{ij}(t) = \nu _{ij}(t) = \rho (t) = \frac{1}{80} |\cos t |, \hbox { for } i,j \in \{1,2\}\\ d_{ij}(t)= & {} h_{ijl}(t) = k_{ijl}(t) = e^{-t} \Rightarrow \frac{d^+_{ij}}{\eta _{d}}= \frac{h^+_{ijl}}{\eta _{h}} \\= & {} \frac{k^+_{ijl}}{\eta _{k}} = 1,\ \hbox { for } i,j,l\in \{1,2\} \end{aligned}$$
$$\begin{aligned} \left( \begin{array}{c} \varDelta x_{1}(2k)\\ \varDelta x_{2}(2k) \end{array} \right)= & {} \left( \begin{array}{cc} -\frac{1}{80} x_{1}(2k) + \frac{1}{80} \sin (x_{1}(2k)) +\frac{1}{20}\\ -\frac{1}{80} x_{2}(2k) + \frac{1}{80} \cos (x_{2}(2k)) +\frac{1}{30}\\ \end{array}\right) \Rightarrow L = \frac{1}{80}.\\ a(t)= & {} \left( \begin{array}{cc} 0.02 \sin t &{} 0.03 \cos t \\ 0.03 \cos t + \frac{0.01}{1+t^{2}} &{} 0.01 \cos \sqrt{2}t \\ \end{array} \right) \Rightarrow \overline{a} = \left( \begin{array}{cc} 0.02 &{} 0.03 \\ 0.04&{} 0.01 \\ \end{array} \right) ,\\ b(t)= & {} \left( \begin{array}{cc} 0.02 \cos t + \frac{0.01}{1+t^{2}} &{} 0.02 \sin t \\ 0.01 \cos \sqrt{2}t + \frac{0.01}{1+t^{2}} &{} 0.02 \sin t + \frac{0.01}{1+t^{2}} \\ \end{array} \right) \Rightarrow \overline{b} = \left( \begin{array}{cc} 0.03 &{} 0.02 \\ 0.02&{} 0.03 \\ \end{array} \right) ,\\ (\alpha _{1jl}(t))_{1 \le j,l \le 2}= & {} \left( \begin{array}{cc} 0 &{} 0.04 \cos t +\frac{0.01}{1+t^{2}}\\ 0 &{} 0 \\ \end{array} \right) \Rightarrow (\overline{\alpha }_{1jl})_{1 \le j,l \le 2} = \left( \begin{array}{cc} 0 &{} 0.05 \\ 0&{} 0 \\ \end{array} \right) ,\\ (\alpha _{2jl}(t))_{1 \le j,l \le 2}= & {} \left( \begin{array}{cc} 0 &{} 0.06 \sin t + \frac{0.01}{1+t^{2}} \\ 0 &{} 0 \\ \end{array} \right) \Rightarrow (\overline{\alpha }_{2jl})_{1 \le j,l \le 2} = \left( \begin{array}{cc} 0 &{} 0.07 \\ 0&{} 0 \\ \end{array} \right) ,\\ (\beta _{1jl}(t))_{1 \le j,l \le 2}= & {} \left( \begin{array}{cc} 0 &{} 0.05 \sin t + \frac{0.01}{1+t^{2}} \\ 0 &{} 0 \\ \end{array} \right) \Rightarrow (\overline{\beta }_{1jl})_{1 \le j,l \le 2} = \left( \begin{array}{cc} 0 &{} 0.06 \\ 0&{} 0 \\ \end{array} \right) ,\\ (\beta _{2jl}(t))_{1 \le j,l \le 2}= & {} \left( \begin{array}{cc} 0 &{} 0.4 \cos t + \frac{0.01}{1+t^{2}} \\ 0 &{} 0 \\ \end{array} \right) \Rightarrow (\overline{\beta }_{2jl})_{1 \le j,l \le 2} = \left( \begin{array}{cc} 0 &{} 0.05 \\ 0&{} 0 \\ \end{array} \right) ,\\ I(t)= & {} \left( \begin{array}{c} 0.9 \sin \sqrt{3}t + \frac{0.1}{1+t^{2}} \\ 0.8 \cos t\\ \end{array} \right) \Rightarrow \overline{I} = \left( \begin{array}{c} 0.9 \\ 0.8 \\ \end{array} \right) .\end{aligned}$$

Then

$$\begin{aligned}&\max _{1 \le i \le n} \max \left\{ \frac{\overline{J}_{i}}{c_{i*}}, \left( 1+\frac{c_{i}^{+}}{c_{i*}}\right) \overline{J}_{i}\right\} = 2.0250= L\\&p= \max _{ 1 \le i \le 2} \max \left\{ \Big \{c^{-1}_{i*} \big [ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{2} \overline{a}_{ij} L^{g}_{j}+ \sum _{j=1}^{2} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \right. \\&\left. \qquad +\sum _{j=1}^{2} \sum _{l=1}^{n} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{L_{1}}{1-e^{-c_{i*}}}\Big \},\Big \{\left( 1+ \frac{c^{+}_{i}}{c_{i*}}\right) \big [c_{i}^{+} \rho ^{+} +\sum _{j=1}^{2} \overline{a}_{ij} L^{g}_{j}\right. \\&\qquad \left. + \sum _{j=1}^{2} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j} +\sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\alpha }_{ijl} L^{g}_{j} M^{g}_{l} \right. \\&\qquad \left. +\sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} L^{g}_{j} M^{g}_{l} \big ]+ \frac{c_{i}^{+}L_{1}}{1-e^{-c_{i*}}}\Big \}\right\} \\&\quad = 0.6712 < 1.\\&q = \max _{1 \le i \le 2} max \left\{ \left\{ c^{-1}_{i*} \left[ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{2} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{2} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}\right. \right. \right. \\ \end{aligned}$$
$$\begin{aligned}&\qquad + \sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\\&\qquad \left. \left. + \sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \right] + \frac{L_{1}}{1-e^{-c_{i*} }} \right\} ,\\&\qquad \left\{ \left( 1+\frac{c^{+}_{i}}{c_{i*} }\right) \left[ c_{i}^{+} \rho ^{+} +\sum _{j=1}^{2} \overline{a}_{ij} L^{g}_{j}+\sum _{j=1}^{2} \overline{b}_{ij} \frac{d^{+}_{ij}}{\eta _{d}} L^{g}_{j}+ \sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\alpha }_{ijl} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l})\right. \right. \\&\qquad \left. \left. \left. + \sum _{j=1}^{2} \sum _{l=1}^{2} \overline{\beta }_{ijl} \frac{h^{+}_{ijl}}{\eta _{h}} \frac{k^{+}_{ijl}}{\eta _{k}} (L^{g}_{j} M^{g}_{l}+ M^{g}_{j} L^{g}_{l}) \right] + \frac{ c_{i}^{+}L_{1}}{1-e^{-c_{i*} }} \right\} \right\} \\&= 0.9412< 1. \end{aligned}$$
Fig. 1
figure 1

The orbit of X1 − X2 for the system

Fig. 2
figure 2

The phase system for the system

Let \(p_{1} = p_{2}= 1\) and \(q_{1}= q_{2}= 10\), from the above assumption, the (H6) is satisfied. Therefore, all conditions from Theorems 3 and 4 are satisfied, then the delayed impulsive high order Hopfield neural network with leakage of Example1 has a unique piecewise differentiable pseudo almost-periodic solution (Figs. 1, 2, 3).

Example1 without leakage:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}x'_{i}(t)= - c_{i}(t) x_{i}(t) +\sum \limits _{j=1}^{2} a_{ij}(t) g_{j} (x_{j}(t-\tau _{ij}(t))) \\ &{}\qquad \quad \quad + \sum \limits _{j=1}^{2} b_{ij}(t)\int _{0}^{\infty } d_{ij}(u) g_{j} (x_{j}(t-u)) du\\ &{}\qquad \quad \quad + \sum \limits _{j=1}^{2} \sum \limits _{l=1}^{2} \alpha _{ijl}(t) g_{j}(x_{j}(t-\sigma _{ij}(t))) g_{l}(x_{l}(t-\nu _{ij}(t))) \\ &{}\qquad \quad \quad + \sum \limits _{j=1}^{2} \sum \limits _{l=1}^{2} \beta _{ijl}(t)\int _{0}^{\infty } h_{ijl}(u) g_{j}(x_{j}(t-u)) du \int _{0}^{\infty } k_{ijl}(u) g_{l}(x_{l}(t-u)) du \\ &{}\qquad \quad \quad +\, I_{i}(t), \, \, \, t \in \mathbb {R},\, t \ne 2k,\, k \in \mathbb {Z} \\ &{}\varDelta x_{i}(t_{k})= x_{i}(t^{+}_{k}) - x_{i}(t^{-}_{k}) = I_{k}(x_{i}(t_{k})) \end{array} \right. \end{aligned}$$
(31)
Fig. 3
figure 3

Transient response of state variables X1 and X2 for the system

Fig. 4
figure 4

The orbit of X1–X2 for the system without leakage

Fig. 5
figure 5

The phase system for the system without leakage

The example considered here is a special case of Example 1. Simulation results are depicted in Figure 4, Figure 5 and Figure 6. If the leakage delays are not small enough they can have a destabilizing influence on the system leading to delay induced instability and oscillations and even periodicity.

Fig. 6
figure 6

Transient response of state variables X1 and X2 for the system without leakage

5 Conclusion

A class of impulsive high order neural networks described with mixed delays is considered. By means of fixed point theorem, Lyapunov functional method and differential inequality techniques, criteria on existence and global exponential stability of piecewise differentiable pseudo almost periodic solution for model (1) are derived. Many adjustable parameters are introduced in criteria to provide flexibility for the design and analysis of the system.The results of this paper are new and they supplement previously known results. An example is given to illustrate the results.