1 Introduction

Let \(\Omega \) is a bounded open subset of \(\mathbb{R}^{N}\) (\(N\geq 2\)), \(Q_{T}\) is the cylinder \(\Omega \times (0,T)\) (\(T>0\)), \(\partial Q_{T}\) is the lateral surface \(\partial \Omega \times (0,T)\). We consider the following double nonlinear anisotropic singular parabolic problem

$$ \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\partial u}{\partial t}+Bu =g(u)f & \text{in}\;\;Q_{T}, \\ u(x,0)=0 & \text{on}\;\; \Omega , \\ u =0 & \text{on}\;\; \partial Q_{T}, \end{array}\displaystyle \right . $$
(1.1)

where \(Bu=-\text{div}(b(x,t,u,\nabla u))\), \(f\) is a non-negative function belonging to a suitable Lebsgue space \(L^{m}(Q_{T})\) (\(m\geq 1\)). Here, we suppose that \(b : \Omega \times \mathbb{R}\times \mathbb{R}^{N}\rightarrow \mathbb{R}\) is a Carathéodory function, and satisfying for almost every \((x,t)\) in \(Q_{T}\), for every \(z\in \mathbb{R}\), for all \(\xi ,\eta \in \mathbb{R}^{N}\) the following

$$\begin{aligned} & b(x,t,z,\xi )\cdot \xi \geq \frac{\alpha \vert \xi \vert ^{p}}{(1+\vert z\vert )^{\theta}}, \end{aligned}$$
(1.2)
$$\begin{aligned} &0\leq \theta < p-1+\frac{p}{N}+\gamma (1+\frac{p}{N}), \end{aligned}$$
(1.3)
$$\begin{aligned} & \vert b(x,t,z,\xi )\vert \leq a(x,t)+\vert z\vert ^{p-1}+\vert \xi \vert ^{p-1}, \end{aligned}$$
(1.4)
$$\begin{aligned} & (b(x,t,z,\xi )-b(x,t,z,\eta ))\cdot (\xi -\eta )>0,\quad \xi \neq \eta , \end{aligned}$$
(1.5)

where \(\alpha \), \(\beta \) are strictly positive real numbers and \(a\) is a given positive function in \(L^{p'}(Q_{T})\) with \(\frac{1}{p}+\frac{1}{p'}=1\). Moreover, \(g : [0,+\infty ) \rightarrow [0,+\infty )\) is a continuous and possibly singular function with \(g(0)\neq 0\) which it is finite outside the origin and such that

$$ \exists \; c>0:\quad g(z)\leq \frac{c}{z^{\gamma}}\quad \text{for all}\; z>0, $$
(1.6)

where \(0\leq \gamma < p-1\).

In the uniform ellipticity and non singular case (i.e. \(\theta =0\) and \(\gamma =0\), it is proved the existence results for the problems (1.1) in [15, 7, 8, 2830] when \(f\in L^{m}(Q_{T})\) or \(f\) is a bounded Radon measure on \(Q_{T}\). We cite the paper [16], and the references therein, when \(p=2\), \(\gamma =0\), \(0\leq \theta <1+\frac{2}{N}\) and \(f\in L^{m}(Q_{T})\), where \(m\geq 1\). In the case \(\theta =0\) and \(p\geq 2\), the existence and regularity solution have been treated in [11]. Problem (1.1), in the coercive case, has been treated in [9], they have proved the existence and regularity of solutions to problem

$$ \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\partial u}{\partial t}-\text{div}(\vert \nabla u\vert ^{p-2} \nabla u)=\frac{f}{u^{\gamma}} & \text{in}\;\;Q_{T}, \\ u(x,0)=u_{0}(x) & \text{on}\;\; \Omega , \\ u =0 & \text{on}\;\; \partial Q_{T}, \end{array}\displaystyle \right . $$

with \(\gamma >0\), \(p\geq 2\), \(f>0\), \(f\in L^{m}(Q_{T})\), \(m\geq 1\) and \(u_{0}\in L^{\infty}(\Omega )\). If \(\gamma =0\), the problem (1.1) is studied in [12, 19, 25].

Finally, concerning the singular model case the authors in [14] studied existence and regularity of problem

$$ \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\partial u}{\partial t}-\text{div}(b(x,t,u,\nabla u))+\vert u \vert ^{s-1}u=g(u) f& \text{in}\;\;Q_{T}, \\ u =0 & \text{on}\;\; \partial Q_{T}, \\ u(x,0) =0 & \text{in}\;\; \Omega , \end{array}\displaystyle \right . $$

where \(f\in L^{m}(Q_{T})\) (\(m\geq 1\)), \(a: Q_{T}\times \mathbb{R}\times \mathbb{R}^{N}\rightarrow \mathbb{R}\) is a carathéodory function satisfying for a.e \((x,t)\in Q_{T}\), \(\forall z\in \mathbb{R}\), \(\forall \xi \in \mathbb{R}^{N}\)

$$ b(x,t,z,\xi ).\xi \geq \frac{\alpha \vert \xi \vert ^{p}}{(1+\vert z\vert )^{\theta (p-1)}} \quad \text{with} \quad 0\leq \theta < 1, $$

and the singular term \(g\) satisfying (1.6) with \(0<\gamma <1\). The corresponding results for parabolic equations with singularities have been developed in [13, 15, 17]. The existence and regularity results for weak solution of degenerate elliptic equation with singularities data have been proved in [18, 20, 21, 3133].

Our main motive in this article is to investigate the results of [25] in the framework of the operator non-coercive \(B(u)\). To reach this goal, we will face the following difficulties. First, let us note that (1.1) can be singular on the right-hand side in the following sense: the solution is required to be zero on the boundary of the domain but, simultaneously, the right- hand side of (1.1) could blow up. Another important feature is the lack of coercivity for positive \(\theta \), the operator \(B(u)\) is not coercive as \(u\) becomes large. Due to the lack of coercivity, the classical methods can not be applied even if the data \(g(u)f\) are sufficiently regular (see [27]). We will overcome these two difficulties by approximation, truncating the degenerate coercivity of the operator term and the singularity of the right-hand side (see problems (3.1)). We will prove by Schauder’s theorem that these problems admit a bounded finite energy solution \(u_{n}\).

The following lemma is useful when proving the boundedness of the solution \(u_{n}\) of problem (3.1).

Lemma 1.1

See [6]

Let \(M_{1}\), \(\nu \), \(\rho \), \(\vartheta \), \(k_{0}\) be real positive numbers, where \(\vartheta >1\) and \(\rho \in [0,1)\). Let \(\Lambda : \mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\) be a decreasing function such that

$$ \Lambda (h)\leq \frac{M_{1}k^{\nu \rho}}{(h-k)^{\nu}}[\Lambda (k)]^{ \vartheta},\quad \forall h>k\geq k_{0}. $$

Then there exists \(l>0\) such that \(\Lambda (l)=0\).

Next, we will review the results of the renowned Gagliardo-Nirenberg embedding theorem.

Lemma 1.2

See [10]

Let \(v\in L^{\kappa}(0,T;W_{0}^{1,\kappa}(\Omega ))\cap L^{\infty}(0,T;L^{ \varrho}(\Omega ))\), \(\kappa ,\varrho \geq 1\). Then \(v\) belongs to \(L^{q}(Q_{T})\), where \(q= \kappa \frac{N+\varrho}{N}\), and there exists a positive constant \(M_{2}\) depending only on \(N\), \(\kappa \), \(\varrho \) such that

$$\begin{aligned} &\int _{Q_{T}}\vert v(x,t)\vert ^{q}dxdt\leq M_{2} \Vert v\Vert _{L^{\infty}(0,T;L^{\varrho}(\Omega ))}^{ \frac{ \kappa}{N}}\int _{Q_{T}}\vert \nabla v(x,t) \vert ^{\kappa}dxdt. \end{aligned}$$
(1.7)

For any \(q>1\), \(q'=\frac{q}{q-1}\) is the Hölder conjugate of \(q\). For fixed \(k>0\) we will use of the truncation \(T_{k}\) defined as \(T_{k}(s)=\max (-k,\min (k,s))\) and \(G_{k}(s)=s-T_{k}(s)\). We will also use the following function

$$ \Xi _{\lambda}(s)= \textstyle\begin{cases} 1 ,& \text{if}\;\; s\leq \lambda , \\ \frac{\lambda -s}{\lambda}, & \text{if}\;\; \lambda < s< 2\lambda , \\ 0, & \text{if}\;\; s\geq 2\lambda . \end{cases} $$
(1.8)

For the sake of completeness, we recall a well-known inequality that will be useful in what follows

$$\begin{aligned} &\forall a>0,\forall \mu >0, \, \exists C(\mu ,a)>0 \;:\quad (1+t)^{ \mu}\leq Ct^{\mu}, \quad \forall t\in [a,+\infty ). \end{aligned}$$
(1.9)

2 Statements of Results

We first define the notion of a weak solution to (1.1) as follows:

Definition 2.1

We say that \(u\in L^{1}(0,T;W_{0}^{1,1}(\Omega ))\) is a weak solution of problem (1.1), if \(b(x,t,u,\nabla u)\in (L^{1}(Q_{T}))^{N}\), \(g(u)f\in L^{1}(Q_{T})\) and the equality

$$ \int _{Q_{T}} \frac{\partial u}{\partial t}\varphi dxdt+\int _{Q_{T}}b(x,t,u, \nabla u).\nabla \varphi dxdt=\int _{Q_{T}} g(u)f\varphi dxdt, $$
(2.1)

for every \(\varphi \in C^{\infty}([0,T]\times \overline{\Omega})\) which is zero in a neighborhood of \(\partial Q_{T}\) and \(\Omega \times \{T\}\).

The first theorem we state concerns with the existence of \(L^{\infty}\)-solutions to problem (1.1), where \(f\in L^{m}(Q_{T})\) with \(m>\frac{N}{p}+1\).

Theorem 2.2

Assume that (1.2)-(1.6) hold true. Let \(f\in L^{m}(Q_{T})\) with \(m>\frac{N}{p}+1\). Then there exists \(u\in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\) a weak solution to problem (1.1).

Remark 1

We apply Lemma 1.1, which requires the assumption \(p\geq 2\), to obtain the \(L^{\infty}\)-estimates for \(u_{n}\) the solutions of (3.1). In the case \(p=2\), \(\gamma =0\) the result of Theorem 2.2 coincides with the classical boundedness results for degenerate parabolic equations ([16], Theorem 1.1), furthermore if \(p> 2\) the results of Theorem 2.2 are similar than the regularity results of [14, 25]. To obtain the \(L^{\infty}\)-estimate, the conditions (1.4) and (1.5) are unnecessary. However, such conditions are needed to prove the existence of \(u_{n}\) solution of problem (3.1).

In the following theorem we give the result of existence and regularity in the case of exact values of the summability exponent \(m=\frac{N}{p}+1\).

Theorem 2.3

Suppose that assumptions (1.2)-(1.6) hold, \(f\in L^{m}(Q_{T})\) with \(m=\frac{N}{p}+1\). Then, for every \(r\in [p,+\infty )\) there exists \(u\in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{r}(Q_{T})\) a weak solution to problem (1.1).

Remark 2

Theorem 2.3 gives the result in the limit case \(m=\frac{N}{p}+1\) for parabolic equations. As far as I know, the first time this case was addressed in the article [16] with \(p=2\) and \(\gamma =0\). The result of Theorem 2.3 has been obtained in [14, 25].

The next result deals with a given \(m < \frac{N}{p} + 1\), which ensures the existence of solutions in \(L^{p}(0,T;W_{0}^{1,p}(\Omega )) \cap L^{\delta}(Q_{T})\).

Theorem 2.4

Let us assume that (1.2)-(1.6) hold true, and that \(f\in L^{m}(Q_{T})\), with

$$ m_{1}=\frac{p(N+\theta +2)}{(p-1)N+2p-(N-p)\theta +N\gamma}\leq m< \frac{N}{p}+1. $$
(2.2)

Then, there exists \(u\in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\delta}(Q_{T})\) a weak solution to problem (1.1), such that

$$ \delta =\frac{m[p+N(p-1-\theta )+\gamma (N+p)]}{N+p-pm}. $$
(2.3)

Remark 3

The condition (1.3) implies that the assumption (2.2) is well defined. By (1.3) and (2.2), we have \(\delta >p\), since

$$\begin{aligned} \text{(1.3)}&\Leftrightarrow \frac{p(N+\theta +2)}{(p-1)N+2p-(N-p)\theta +N\gamma}> \frac{p(N+p)}{p+N(p-1-\theta )+\gamma (N+p)+p^{2}} \\ &\Rightarrow m>\frac{p(N+p)}{p+N(p-1-\theta )+\gamma (N+p)+p^{2}} \\ &\Rightarrow \delta >p. \end{aligned}$$

If \(0\leq \theta <\frac{2}{N-1}+\gamma \frac{N}{(N-1)}\), then \(m_{1}< p'\), so \(f\notin L^{p'}(0,T;W^{-1,p'}(\Omega ))\). If \(\frac{2}{N-1}+\gamma \frac{N}{(N-1)}\leq \theta < p-1+\frac{p}{N}+ \gamma (1+\frac{p}{N})\), then \(m_{1}\geq p'\), so \(f\in L^{p'}(0,T;W^{-1,p'}(\Omega ))\).

The first result deals with the case when the summability of \(f\) gives the existence of solution \(u\) belong to \(L^{q}(0,T;W_{0}^{1,q}(\Omega ))\), with \(p-1< q< p\).

Theorem 2.5

If hypotheses (1.2)-(1.6) hold and \(f\in L^{m}(Q_{T})\) with \(m>1\), such that

$$ m_{2}=\frac{N+\theta +2}{(p-1)N+p+1-\theta (N-1)+\gamma (N+p-1)}< m< m_{1}, $$
(2.4)

then there exists \(u\in L^{q}(0,T;W_{0}^{1,q}(\Omega ))\cap L^{\delta}(Q_{T})\) a weak solution to problem (1.1), such that

$$ q= \frac{m[N(p-\theta -1)+p+\gamma (N+p)]}{N+1-(\theta +1)(m-1)+m\gamma}, $$
(2.5)

where \(\delta \) as defined in (2.3).

Remark 4

The hypothesis (2.5) is meaningful, because

$$ m_{2}< m_{1}\Leftrightarrow \theta < p-1+\frac{p}{N}+\gamma \left (1+ \frac{p}{N}\right ). $$

Notice that the inequality (2.4) guarantees that \(p-1< q< p\). In Theorem 2.5, we also suppose \(m>1\),

$$ m_{2}< 1 \Leftrightarrow 0\leq \theta < p-1+\frac{p}{N}+\gamma \left (1+ \frac{p}{N}\right )-\frac{N+\gamma +1}{N}. $$

If \(\gamma =0\); the result of Theorem 2.5 is similar that of ([25], Theorem 2.5).

Remark 5

It will be noted to the reader that the choice of the test functions in the proof of the a priori estimates allowed us to widen the interval of variation of \(\gamma \) and \(\theta \) compared to that in [14], with the same regularity of the solution. If we compare the results of theorems 2.2-2.5 with those of theorems in [25], we can easily see that the singular term allowed us to widen the interval of variation of \(\theta \) compared to that the assumption (3) in [25].

3 Approximating Problems

Let us first consider the following approximation problems

$$ \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\partial u_{n}}{\partial t}-\text{div}(b(x,t,T_{n}(u_{n}), \nabla u_{n}))=g_{n}(u_{n})f_{n} & \text{in}\;\;Q_{T}, \\ u_{n}(x,0)=0 & \text{on}\;\; \Omega . \\ u_{n} =0 & \text{on}\;\; \partial Q_{T}, \end{array}\displaystyle \right . $$
(3.1)

where \(f_{n}\in L^{\infty}(Q_{T})\) (for example, \(f_{n}=T_{n}(f)\)), such that

$$ \left \{ \textstyle\begin{array}{l@{\quad}l} \Vert f_{n}\Vert _{L^{m}(Q_{T})}\leq \Vert f\Vert _{L^{m}(Q_{T})} \leq C,& \\ f_{n}\rightarrow f\;\; \text{strongly in }\; L^{m}(Q_{T}), \quad m \geq 1 , \end{array}\displaystyle \right . $$
(3.2)

and, we define \(g(0)=\lim _{z\rightarrow 0}g(z)\), we set

$$ g_{n}(z)= \textstyle\begin{cases} T_{n}(g(z))& \text{for}\;\; z> 0 , \\ \min \{n,g(0)\} & \text{otherwise}. \end{cases} $$

Using (1.6), we have for all \(z>0\)

$$\begin{aligned} \quad g_{n}(z)=T_{n}(g(z))\leq g(z)\leq \frac{c}{z^{\gamma}}. \end{aligned}$$
(3.3)

Lemma 3.1

Assume that (1.2), (1.5) and (1.6) hold true. Then, the approximating problem (3.1) has a non-negative solution \(u_{n}\), such that

$$ u_{n}\in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap C([0,T];L^{2}(\Omega )), \quad \frac{\partial u_{n}}{\partial t}\in L^{p'}(0,T;W_{0}^{-1,p'}( \Omega )), $$

and satisfying the weak formulation

$$\begin{aligned} &\int _{0}^{T}\Big\langle \frac{\partial u_{n}}{\partial t},\varphi \Big\rangle dt+\int _{Q_{T}}b(x,t,T_{n}(u_{n}),\nabla u_{n}).\nabla \varphi dxdt \\ &\quad =\int _{Q_{T}}g_{n}(u_{n})f_{n}\varphi dxdt, \end{aligned}$$
(3.4)

for all \(n\in \mathbb{N}\) fixed and for every \(\varphi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\), where

$$ \Big\langle \frac{\partial u_{n}}{\partial t},\varphi \Big\rangle = \int _{\Omega}\frac{\partial u_{n}}{\partial t}\varphi dx. $$

Proof

Let \(n\in \mathbb{N}\) and \(v\in L^{p}(Q_{T})\) be fixed. Consider the nonlinear parabolic problem

$$ \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\partial w}{\partial t}-\text{div} (b(x,t,T_{n}(w),\nabla w))=g_{n}(v)f_{n} & \text{in}\;\;Q_{T}, \\ w(x,0)=0 & \text{on}\;\; \Omega , \\ w =0 & \text{on}\;\; \partial Q_{T}, \end{array}\displaystyle \right . $$
(3.5)

it is clear that the problem (3.5) has a unique solution \(w\) with

$$ w\in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\;\; \text{and}\;\; \frac{\partial w}{\partial t}\in L^{p'}(0,T;W_{0}^{-1,p'}( \Omega ))+L^{1}(Q_{T}). $$

Since the right-hand side on (3.5) belongs to \(L^{\infty}(Q_{T})\) see for instance [23, 24]. In particular, it is well defined a map \(P: L^{p}(Q_{T})\rightarrow L^{p}(Q_{T})\) where \(P(v)=w\). By the boundedness of the sequence \(\{g_{n}(v)f_{n}\}_{n}\) in \(L^{\infty}(Q_{T})\), we have that \(w\in L^{\infty}(Q_{T})\) (see for example [14]), then, there exists \(C_{\infty}>0\), independents of \(v\), \(w\) (but possibly depending in \(n\)), such that

$$ \Vert w\Vert _{L^{\infty}(Q_{T})}\leq C_{\infty}. $$
(3.6)

Our aim is to prove the existence of fixed point of the map \(P\). Using \(w\) as test function in (3.5), one gets

$$\begin{aligned} &\frac{1}{2}\int _{\Omega}\vert w(T)\vert ^{2}dx+\int _{Q_{T}}b(x,t,T_{n}(w), \nabla w).\nabla w dxdt \\ &\quad =\int _{Q_{T}}g_{n}(v)f_{n}wdxdt. \end{aligned}$$
(3.7)

By (1.2), (1.6) and dropping a positive term on the left-hand side in (3.7)

$$\begin{aligned} &\alpha \int _{Q_{T}} \frac{\vert \nabla w\vert ^{p}}{(1+\vert T_{n}(w)\vert )^{\theta}}dxdt \leq n^{\gamma +1}\int _{Q_{T}}\vert w\vert dxdt. \end{aligned}$$
(3.8)

Using the Hölder’s inequality on the right-hand side in (3.8), we have

$$\begin{aligned} \int _{Q_{T}}\vert \nabla w\vert ^{p}dxdt&\leq \frac{C_{1}}{\alpha}n^{ \gamma +1}(1+n)^{\theta}\vert Q_{T}\vert ^{\frac{1}{p'}}\left (\int _{Q_{T}} \vert w\vert ^{p}dxdt\right )^{\frac{1}{p}} \end{aligned}$$

Poincaré inequality imply

$$\begin{aligned} &\Vert w\Vert _{L^{p}(Q_{T})}\leq C(n,\vert Q_{T}\vert ), \end{aligned}$$
(3.9)

for some constant \(C(n,\vert Q_{T}\vert )\) independent of \(v\) and \(w\) (possible depending on \(n\)). Let \(B\) is a ball of \(L^{p}(Q_{T})\) of radius \(C(n,\vert Q_{T}\vert )\) is invariant for the map \(P\). Now, we prove that the map \(P\) is continuous in \(B\). Let \(\{v_{h}\}_{n}\) be a bounded sequence in \(B\). By (3.9) there exist a subsequence of \(\{v_{h}\}_{n}\) still denoted by \(\{v_{h}\}_{n}\), and a measurable function \(v\) belonging to \(L^{p}(Q_{T})\), such that

$$\begin{aligned} v_{h}\rightarrow v\quad \text{strongly in }\; L^{p}(Q_{T}). \end{aligned}$$
(3.10)

Let us choose \(w_{h}\) as a test function in the weak formulation of the problem solved by \(w_{h}\), (3.8) implies that

$$\begin{aligned} \int _{0}^{T}\Vert \nabla w_{h}\Vert _{L^{p}(\Omega )}^{p}dt\leq C_{4} \int _{0}^{T}\left (\int _{\Omega}\vert w_{h}\vert ^{p}dx\right )^{ \frac{1}{p}}dt. \end{aligned}$$
(3.11)

Since the ball of \(L^{p}(Q_{T})\) is invariant for \(P\), we have \(w_{h}\) belong to \(B\) and so, from the inequality (3.11), we obtain that \(w_{h}\) is bounded in \(L^{p}(0,T;W_{0}^{1,p}(\Omega ))\). The growth assumption (1.4), implies

$$\begin{aligned} \int _{Q_{T}}\vert b(x,t,w_{h},\nabla w_{h})\vert ^{p'}dxdt&\leq \int _{Q_{T}}\big[\vert a(x,t)\vert +\vert w_{h}\vert ^{p-1}+\vert \nabla w_{h}\vert ^{p-1}\big]^{\frac{p}{p-1}}dxdt \\ & \leq \Vert k\Vert _{L^{p'}(Q_{T})}^{p'}+\Vert w_{h}\Vert _{L^{p}(Q_{T})}^{p}+ \Vert w_{h}\Vert _{L^{p}(0,T;W_{0}^{1,p}(\Omega ))}^{p} \\ &< +\infty . \end{aligned}$$

Using the previous inequality with (3.5), and the fact that \(g_{n}(v)f_{n}\in L^{1}(Q_{T})\) we have \(\frac{\partial w_{h}}{\partial t}\) is bounded in \(L^{p'}(0,T;W_{0}^{-1,p'}(\Omega ))+L^{1}(Q_{T})\). As a result of the Corollary 4 in [34], we can conclude that \(w_{h}\) is relatively strongly compact in \(L^{1}(Q_{T})\). Thus, there exists a subsequence of \(w_{h}\) still denoted by \(w_{h}\), and a measurable function \(w\) belonging to \(L^{1}(Q_{T})\) such that

$$\begin{aligned} & w_{h}\rightarrow w\quad \text{a.e in }\; L^{1}(Q_{T}). \end{aligned}$$
(3.12)

By (3.9), (3.12) and Lebesgue Theorem we have that \(w_{h}\) converges strongly to \(w\) in \(L^{p}(Q_{T})\), and so \(P\) is compact.

Now we prove that \(P\) is continuous. Let \(w_{h}=P(v_{h})\), (3.10) implies that \(v_{h}\rightarrow v\) a.e in \(Q_{T}\), hence \(g_{n}(v_{h})f_{n}\) converges to \(g_{n}(v)f_{n}\) a.e in \(Q_{T}\) and by the dominated convergence theorem one has that \(g_{n}(v_{h})f_{n}\) converge strongly to \(g_{n}(v)f_{n}\) in \(L^{p}(Q_{T})\). Hence, by uniqueness, one deduce that \(w_{h}=P(v_{h})\) converges to \(w=P(v)\) in \(L^{p}(Q_{T})\). This gives the continuity of \(S\). Using Schauder’s fixed point theorem for every fixed \(n\), we have there exist \(u_{n}\) in \(L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap C([0,T];L^{2}(\Omega ))\) and \(\frac{\partial u_{n}}{\partial t}\in L^{p'}(0,T;W_{0}^{-1,p'}( \Omega ))+L^{1}(Q_{T})\), such that \(u_{n}=P(u_{n})\).

Choosing \(\varphi =-u_{n}^{-}=-u_{n}\chi _{\{u_{n}\leq 0\}}\), where \(\chi _{\{u_{n}\leq 0\}}\) denotes the characteristic function of \(\{(x,t)\in Q_{T}: u_{n}(x,t)\leq 0\}\) as a test function in (3.1). Using (1.2), and recalling that \(g_{n}(u_{n})f_{n}\) is nonnegative, we obtain

$$\begin{aligned} &-\frac{1}{2}\int _{\Omega}\vert u_{n}^{-}\vert ^{2}dx- \frac{\alpha}{(1+n)^{\theta}}\int _{Q_{T}}\vert \nabla u_{n}^{-} \vert ^{p}dxdt\geq - \int _{Q_{T}}g_{n}(u_{n})f_{n}u_{n}^{-}dxdt\geq 0, \end{aligned}$$

dropping the term \(-\frac{1}{2}\int _{\Omega}\vert u_{n}^{-}\vert ^{2}dx\), we have

$$\begin{aligned} -\int _{Q_{T}}\vert \nabla u_{n}^{-}\vert ^{p}dxdt\geq 0, \end{aligned}$$

so that \(\Vert u_{n}^{-}\Vert _{L^{p}(0,T;W_{0}^{1,p}(\Omega ))}=0\), thus \(u_{n}\geq 0\) almost everywhere in \(Q_{T}\). □

4 A Priori Estimates

We shall denote by \(C_{i}, i=1,...,N\) various constants depending only on the structure of \(p\), \(\theta \), \(\gamma \), \(T\), \(|\Omega |\). Let \(u_{n}\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap C([0,T];L^{2}(\Omega ))\) be a solution to problem (3.1). In this section, we prove some uniform estimates for the sequence \(\{u_{n}\}_{n}\) and \(\big\{\frac{\partial u_{n}}{\partial t}\big\}_{n}\).

Lemma 4.1

Assume that (1.2)-(1.6), \(p-2\leq \gamma <1\) hold true. Let \(f\in L^{m}(Q_{T})\) with \(m>\frac{N}{p}+1\). Then, the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\infty}(Q_{T})\cap L^{p}(0,T;W_{0}^{1,p}(\Omega ))\) and \(\big\{\frac{\partial u_{n}}{\partial t}\big\}_{n}\) is bounded in \(L^{p'}(0,T;W^{-1,p'}(\Omega ))+L^{m}(Q_{T})\).

Proof

For every \(\tau \in (0,T]\), we take \(\varphi (u_{n})=[(1+u_{n})^{p-1}-1]G'_{k}(u_{n})\chi _{(0,\tau )}\) as a test function in (3.4), we use the assumption (1.2), and the fact that

$$\begin{aligned} &\Phi (u_{n})=\int _{0}^{u_{n}}\left ( (1+y)^{p-1}-1\right ) G'_{k}(y)dy \geq \frac{1}{p} G_{k}(u_{n})^{p}G'_{k}(u_{n}), \end{aligned}$$

we obtain

$$\begin{aligned} &\int _{\Omega} \Phi (u_{n}) dx+\alpha (p-1)\int _{0}^{\tau}\int _{ \Omega} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}}(1+ u_{n})^{p-2}G'_{k}(u_{n}) dxdt \\ &\quad \leq \int _{0}^{\tau}\int _{\Omega} f_{n}g_{n}(u_{n})[(1+ u_{n}) ^{p-1}-1]G'_{k}(u_{n}) dxdt. \end{aligned}$$

By (3.3), (1.9), \((1+u_{n})^{p-1}-1\leq (1+u_{n})^{p-1}\) and the fact that

$$\begin{aligned} &\int _{Q_{T}\cap \{u_{n}=0\}}f_{n}g_{n}(u_{n})[(1+ u_{n}) ^{p-1}-1]G'_{k}(u_{n}) dxdt \\ &\quad \leq \int _{Q_{T}}f_{n}\lim _{z\rightarrow 0}g(z)[(1+ 0) ^{p-1}-1]G'_{k}(0)dxdt=0, \end{aligned}$$

we have

$$\begin{aligned} &\int _{\Omega} \Phi (u_{n}) dx+\alpha (p-1)\int _{0}^{\tau}\int _{ \Omega} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}}(1+ u_{n})^{p-2}G'_{k}(u_{n}) dxdt \\ &\quad \leq \int _{Q_{T}\cap \{u_{n}>0\}} f_{n} \frac{(1+ u_{n}) ^{p-1}}{u_{n}^{\gamma}}G'_{k}(u_{n}) dxdt \\ &\qquad +\int _{Q_{T}\cap \{u_{n}=0\}}f_{n} g_{n}(u_{n})[(1+ u_{n}) ^{p-1}-1]G'_{k}(u_{n}) dxdt \\ &\quad \leq \int _{0}^{T}\int _{\Omega} f_{n}(1+ u_{n}) ^{p-1-\gamma}G'_{k}(u_{n}) dxdt. \end{aligned}$$

Using Hölder’s inequality on the right-hand side of the previous inequality, (3.2) and the fact that \(1+ u_{n}\leq 2 (k+ G_{k}(u_{n}))\) as \(k\geq 1\), one has

$$\begin{aligned} &\int _{E_{k,n}(\tau )} G_{k}(u_{n}(\tau ))^{p} dx+\int _{0}^{\tau} \int _{E_{k,n}(t)} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta -p+2}} dxdt \\ &\quad \leq C_{1}\Vert f\Vert _{L^{m}(Q_{T})} \left (\int _{0}^{T} \int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{(p-1-\gamma )m'} dxdt\right )^{ \frac{1}{m'}}, \end{aligned}$$

where \(E_{k,n}(t)=\{x\in \Omega : u_{n}(x,t)> k\}\), \(t\in (0,T)\). Hence

$$\begin{aligned} &\Vert G_{k}(u_{n})\Vert _{L^{\infty}(0,T;L^{p}(E_{k,n}))}^{p}+\int _{0}^{T} \int _{E_{k,n}(t)} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta -p+2}} dxdt \\ &\quad \leq C_{1}\Vert f\Vert _{L^{m}(Q_{T})} \left (\int _{0}^{T} \int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{(p-1-\gamma )m'} dxdt\right )^{ \frac{1}{m'}}. \end{aligned}$$
(4.1)

The proof is divided into two cases.

Case 1: Suppose that

$$ p-2< \theta < p-1+\frac{p}{N}+\gamma (1+\frac{p}{N}). $$

For all \(1\leq p-1<\sigma <p\), Writing

$$ \int _{Q_{T}}\vert \nabla G_{k}(u_{n})\vert ^{\sigma}dxdt=\int _{Q_{T}} \frac{\vert \nabla u_{n}\vert ^{\sigma}}{(1+ u_{n})^{\frac{(\theta -p+2)\sigma}{p}}} (1+ u_{n})^{\frac{(\theta -p+2)\sigma}{p}}dxdt. $$

Using (3.2), (4.1) and Hölder’s inequality, we have

$$\begin{aligned} &\int _{Q_{T}}\vert \nabla G_{k}(u_{n})\vert ^{\sigma}dxdt \\ &\quad \leq \left (\int _{0}^{T}\int _{E_{k,n}(t)} \frac{\vert \nabla G_{k}(u_{n})\vert ^{p}}{(1+ u_{n})^{\theta -p+2}}dxdt \right )^{\frac{\sigma}{p}} \\ &\qquad \times \left (\int _{0}^{T}\int _{E_{k,n}(t)}(1+ u_{n})^{ \frac{(\theta -p+2)\sigma}{p-\sigma}}dxdt\right )^{\frac{p-\sigma}{p}} \\ &\quad \leq C_{2}\left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{m'(p-1- \gamma )}dxdt\right )^{\frac{\sigma}{pm'}} \\ &\qquad \times \left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{ \frac{(\theta -p+2)\sigma}{p-\sigma}}dxdt\right )^{\frac{p-\sigma}{p}}. \end{aligned}$$
(4.2)

Choosing \(\sigma =\frac{2pN-2N+p^{2}-N\theta}{N+p}\), this choice of \(\sigma \), implies that \(p-1<\sigma <p\) and \(0<\frac{(\theta -p+2)\sigma}{p-\sigma}=\frac{(N+p)\sigma}{N}\). By (4.2), we deduce that

$$\begin{aligned} &\int _{Q_{T}}\vert \nabla G_{k}(u_{n})\vert ^{\sigma} dxdt \\ &\quad \leq C_{2}\left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{m'(p-1- \gamma )}dxdt\right ) ^{\frac{\sigma}{pm'}} \\ &\qquad \times \left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{ \frac{(N+p)\sigma}{N}}dxdt\right )^{\frac{p-\sigma}{p}}. \end{aligned}$$
(4.3)

From Lemma 1.2 (here \(v=G_{k}(u_{n})\), \(\kappa =\sigma \), \(\varrho =p\)), (4.1) and (4.3), we obtain

$$\begin{aligned} &\int _{0}^{T}\int _{E_{k,n}(t)} G_{k}(u_{n})^{\frac{(N+p)\sigma}{N}}dxdt \\ &\quad \leq \left (\Vert G_{k}(u_{n})\Vert _{L^{\infty}(0,T;L^{p}(E_{k,n}))}^{p} \right )^{\frac{\sigma}{N}}\int _{0}^{T}\int _{E_{k,n}(t)}\vert \nabla G_{k}(u_{n})\vert ^{\sigma}dxdt \\ &\quad \leq C_{2}\left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{m'(p-1- \gamma )}dxdt\right ) ^{\frac{(N+p)\sigma}{pNm'}} \\ &\qquad \times \left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{ \frac{(N+p)\sigma}{N}}dxdt\right )^{\frac{p-\sigma}{p}}. \end{aligned}$$
(4.4)

Since

$$\begin{aligned} m>\frac{N}{p}+1,\quad \text{and}\quad \sigma >p-1>p-1-\gamma , \end{aligned}$$
(4.5)

then we have \(\frac{\sigma (N+p)}{m'N(p-1-\gamma )}>1\). Thus, using Hölder’s inequality, we have

$$\begin{aligned} &\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{(p-1-\gamma )m'}dxdt \\ &\quad \leq \left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{ \frac{\sigma (N+p)}{N}} dxdt\right )^{ \frac{(p-1-\gamma )m'N}{(N+p)\sigma}} \\ &\qquad \times \left (\int _{0}^{T} \vert E_{k,n}(t)\vert \; dt \right )^{1-\frac{(p-1-\gamma )m'N}{(N+p)\sigma}}. \end{aligned}$$
(4.6)

We denote by

$$ \Lambda _{n}(k)=\int _{0}^{T} \vert E_{k,n}(t)\vert dt,\quad \mathbf{G}_{nk}=\int _{0}^{T}\int _{E_{k,n}(t)} G_{k}(u_{n})^{ \frac{(N+p)\sigma}{N}}dxdt. $$

From (4.6) and (4.4), we can write for all \(k\geq 1\)

$$\begin{aligned} \mathbf{G}_{nk}& \leq C_{3}\mathbf{G}_{nk}^{{ \frac{2p-1-\sigma -\gamma}{p}}}\Lambda _{n}(k) ^{{ \frac{(N+p)\sigma}{pNm'}-\frac{p-1-\gamma}{p}}} \\ &\quad + C_{3} k^{{\frac{(N+p)\sigma}{N}\left ( \frac{2p-1-\sigma -\gamma}{p}\right )}}\Lambda _{n}(k)^{{ \frac{(N+p)\sigma}{pNm'}+\frac{p-\sigma}{p}}}, \end{aligned}$$
(4.7)

(4.5) implies that \(\frac{2p-1-\sigma -\gamma}{p}<1\), then, by Young’s inequality for all \(\varepsilon >0\),

$$\begin{aligned} \mathbf{G}_{nk}^{{\frac{2p-1-\sigma -\gamma}{p}}}\Lambda _{n}(k) ^{{ \frac{(N+p)\sigma}{pNm'}-\frac{p-1-\gamma}{p}}}&\leq C(\varepsilon ) \Lambda _{n}(k) ^{{\left (\frac{(N+p)\sigma}{Nm'}-(p-1-\gamma ) \right )\frac{1}{\sigma +1-p+\gamma}}} \\ &\quad +\varepsilon \mathbf{G}_{nk}. \end{aligned}$$
(4.8)

Taking \(\varepsilon =\frac{1}{2C_{3}}\) in (4.8) and applying (4.7) to (4.8), we get

$$\begin{aligned} \mathbf{G}_{nk}&\leq C_{4} \Lambda _{n}(k) ^{{ \frac{(N+p)\sigma -Nm'(p-1-\gamma )}{Nm'(\sigma +1-p+\gamma )}}} \\ &\quad + C_{4}k^{{\frac{(N+p)\sigma}{N}\left ( \frac{2p-1-\sigma -\gamma}{p}\right )}}\Lambda _{n}(k)^{{ \frac{(N+p)\sigma +Nm'(p-\sigma )}{pNm'}}}. \end{aligned}$$
(4.9)

The assumption \(m>\frac{N}{p}+1\) implies

$$ \frac{(N+p)\sigma -Nm'(p-1-\gamma )}{Nm'(\sigma +1-p+\gamma )}> \frac{(N+p)\sigma +Nm'(p-\sigma )}{pNm'}>1. $$

We note that \(|\Lambda _{n}(k)|\leq T|\Omega |\), \(k\geq 1\), and so

$$\begin{aligned} \mathbf{G}_{nk}&\leq C_{5}k^{{\frac{\sigma (N+p)}{N}\left ( \frac{2p-1-\sigma -\gamma}{p}\right )}}\Lambda _{n}(k)^{{ \frac{(N+p)\sigma +Nm'(p-\sigma )}{pNm'}}}. \end{aligned}$$
(4.10)

Since \(G_{k}(u_{n})>h-k\) on \(E_{h,n}(t)\) if \(h>k\) and \(E_{h,n}(t)\subset E_{k,n}(t)\). By virtue of \(\frac{2p-1-\sigma -\gamma}{p}<1\), (4.10) can be written as

$$ \Lambda _{n}(h)\leq \dfrac{C_{5}k^{{\frac{\sigma (N+p)}{N}\left (\frac{2p-1-\sigma -\gamma}{p}\right )}}\Lambda _{n}(k)^{{\frac{(N+p)\sigma}{pNm'}+\frac{p-\sigma}{p}}}}{(h-k)^{{\frac{\sigma (N+p)}{N}}}}, \quad \forall h>k\geq 1. $$
(4.11)

Lemma 1.1 applied to

$$ \rho =\frac{2p-1-\sigma -\gamma}{p},\quad \nu =\frac{(N+p)\sigma}{N}, \quad \text{and}\quad \vartheta =\frac{(N+p)\sigma}{pNm'}+ \frac{p-\sigma}{p}, $$

we have, there exists a positive constant \(l\) such that \(\Lambda _{n}(l)=0\). By the fact that \(|\Lambda _{n}(k)|\leq T|\Omega |\) (see the proof of Lemma A.1 of [6]), there exists a positive constant \(d_{0}\) independent of \(n\) such that \(l\leq d_{0}\), so that

$$ \Lambda _{n}(d_{0})=0. $$
(4.12)

Therefore, from (4.12), it follows that the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\infty}(Q_{T})\).

Case 2: Suppose that \(0\leq \theta \leq p-2\). By (4.1), we can write

$$\begin{aligned} \int _{Q_{T}}\vert \nabla G_{k}(u_{n}) \vert ^{p} dxdt &\leq \int _{0}^{T}\int _{E_{n,k}(t)}|\nabla u_{n}|^{p}(1+u_{n})^{p-2- \theta}dxdt \\ &\leq C_{6}\left ( \int _{0}^{T}\int _{E_{n,k}(t)}(k+G_{k}(u_{n}))^{(p-1- \gamma )m'}dxdt\right )^{\frac{1}{m'}}. \end{aligned}$$

From Lemma 1.2 (here \(v=G_{k}(u_{n})\), \(\kappa =\varrho =p\)), the previous inequality and (4.1) gives

$$\begin{aligned} &\int _{0}^{T}\int _{E_{k,n}(t)} G_{k}(u_{n})^{\frac{(N+p)p}{N}}dxdt \\ &\quad \leq \left (\Vert G_{k}(u_{n})\Vert _{L^{\infty}(0,T;L^{p}(E_{k,n}))}^{p} \right )^{\frac{p}{N}}\int _{0}^{T}\int _{E_{k,n}(t)}\vert \nabla G_{k}(u_{n}) \vert ^{p}dxdt \\ &\quad \leq C_{7}\left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{m'(p-1- \gamma )}dxdt\right ) ^{\frac{(N+p)}{Nm'}}. \end{aligned}$$

By Hölder’s inequality with exponent \(\frac{(N+p)p}{Nm'(p-1-\gamma )}>1\) (since \(m>\frac{N}{p}+1\)), we have

$$\begin{aligned} &\int _{0}^{T}\int _{E_{k,n}(t)} G_{k}(u_{n})^{\frac{(N+p)p}{N}}dxdt \\ &\quad \leq C_{8}\left (\int _{0}^{T}\int _{E_{k,n}(t)}(k+ G_{k}(u_{n}))^{ \frac{(N+p)p}{N}}dxdt\right )^{\frac{p-1-\gamma}{p}} \Lambda _{n}(k)^{ \frac{p+N}{Nm'}-\frac{p-1-\gamma}{p}}. \end{aligned}$$

Therefore, (4.11) holds true for \(\sigma =p\)

$$ \Lambda _{n}(h)\leq \dfrac{C_{9}k^{{\frac{(N+p)p}{N}\cdot \frac{p-1-\gamma}{p}}}\Lambda _{n}(k)^{{\frac{(N+p)}{Nm'}}}}{(h-k)^{{\frac{(N+p)p}{N}}}}, \quad \forall h>k\geq 1. $$

Using that \(\frac{p-1-\gamma}{p}\in (0,1)\) (since \(p-2\leq \gamma <1\)) and that \(\frac{(N+p)}{Nm'}>1\), thus \(u_{n}\) is bounded in \(L^{\infty}(Q_{T})\).

Now, choosing \(u_{n}\) as a test function for problem (3.4). Using (1.2) and (1.6), we obtain

$$ \frac{1}{2}\int _{\Omega} u_{n}(T)^{2}dx+\alpha \int _{Q_{T}} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}}dxdt\leq \int _{Q_{T}}f_{n}u_{n}^{1-\gamma}dxdt. $$
(4.13)

Dropping the non-negative term, by Hölder’s inequality on the right-hand side of the inequality (4.13), and the boundedness of the sequence \(\{u_{n}\}_{n}\) in \(L^{\infty}(Q_{T})\), we obtain

$$\begin{aligned} \int _{Q_{T}} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}}dxdt &\leq \Vert f\Vert _{L^{m}(Q_{T})}\vert Q_{T}\vert ^{\frac{1}{m'}}\Vert u_{n}^{1- \gamma}\Vert _{L^{\infty}(Q_{T})} \\ &\leq C_{10}\Vert f\Vert _{L^{m}(Q_{T})}. \end{aligned}$$
(4.14)

Therefore, from (4.14) and since the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\infty}(Q_{T})\), we get

$$\begin{aligned} \int _{Q_{T}}\vert \nabla u_{n}\vert ^{p}dxdt&= \int _{Q_{T}} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}} (1+ u_{n})^{ \theta}dxdt \\ & \leq \left (1+\Vert u_{n}\Vert _{L^{\infty}(Q_{T})}\right )^{\theta} \int _{Q_{T}}\frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}}dxdt \\ &\leq C_{11}. \end{aligned}$$

Consequently the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{p}(0,T;W_{0}^{1,p}(\Omega ))\). By (3.1), (3.2) and the boundedness of the sequence \(\{u_{n}\}_{n}\) in \(L^{p}(0,T;W_{0}^{1,p}(\Omega ))\), we obtain the sequence \(\big\{\frac{\partial u_{n}}{\partial t}\big\}_{n}\) is bounded in \(L^{p'}(0,T;W^{-1,p'}(\Omega ))+L^{m}(Q_{T})\). □

Lemma 4.2

Let \(m=\frac{N}{p}+1\) and let (1.2)-(1.6) hold. Then, the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{r}(Q_{T})\) for every \(r\in [p,+\infty )\).

Proof

For \(\tau \in (0,T]\), if we take \(\varphi (u_{n})=(1+ u_{n})^{(p-1)\mu}-1\) as a test function in (3.4), with

$$\begin{aligned} \mu \geq \frac{1+\theta}{p-1}. \end{aligned}$$
(4.15)

By assumptions (1.2), (1.6), we obtain

$$\begin{aligned} &\int _{\Omega}\Psi (u_{n}(x,\tau ))dx +(p-1)\mu \alpha \int _{0}^{ \tau}\int _{\Omega} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta}}(1+ u_{n})^{(p-1) \mu -1} dxdt \\ &\quad \leq \int _{0}^{\tau}\int _{\Omega} f_{n}u_{n}^{(p-1)\mu - \gamma}dx dt, \end{aligned}$$
(4.16)

where

$$ \Psi (s)=\int _{0}^{\zeta}\varphi (y)dy\geq \frac{\zeta ^{(p-1)\mu +1}}{(p-1)\mu +1}\quad \forall \zeta >0,\;\mu >1. $$
(4.17)

Thus, (4.16), (4.17), (3.2), and Hölder’s inequality on the last integral, we get

$$\begin{aligned} &\frac{1}{(p-1)\mu +1}\int _{\Omega} u_{n}(x,\tau )^{(p-1)\mu +1}dx \\ &\quad +(p-1)\mu \alpha \int _{0}^{\tau}\int _{\Omega} \vert \nabla u_{n} \vert ^{p}(1+ u_{n})^{(p-1)\mu -1-\theta} dxdt \\ &\quad \leq \Vert f\Vert _{L^{m}(Q_{T})}\left (\int _{Q_{T}} u_{n}^{((p-1) \mu -\gamma )m'} dx dt\right )^{\frac{1}{m'}}. \end{aligned}$$
(4.18)

The condition (4.15) implies that \((p-1)\mu +p-1-\theta \geq p\), so (4.18) and (3.2) yield

$$\begin{aligned} &ess\sup _{t\in [0,T]}\int _{\Omega} \left [ u_{n}(x,\tau )^{ \frac{(p-1)\mu +p-1-\theta}{p}}\right ] ^{ \frac{p((p-1)\mu +1)}{(p-1)\mu +p-1-\theta}} dx \\ &\quad +\int _{Q_{T}} \bigg\vert \nabla u_{n}^{ \frac{(p-1)\mu +p-1-\theta}{p}}\bigg\vert ^{p} dxdt \\ &\quad \leq C_{12}\left (\int _{Q_{T}} u_{n}^{((p-1)\mu -\gamma ) m'} dx dt\right )^{\frac{1}{m'}}+C_{12}. \end{aligned}$$
(4.19)

Thus, by the Gagliardo-Nirenberg inequality (1.7), where

$$ v(x,t)= u_{n}(x,t) ^{\frac{(p-1)\mu +p-1-\theta}{p}},\quad \varrho = \frac{p((p-1)\mu +1)}{(p-1)\mu +p-1-\theta}, \quad \kappa =p, $$

we have

$$\begin{aligned} &\int _{Q_{T}}\left [ u_{n}^{\frac{(p-1)\mu +p-1-\theta}{p}}\right ] ^{p \frac{N+\frac{p((p-1)\mu +1)}{(p-1)\mu +p-1-\theta}}{N}}dxdt \\ &\quad \leq M_{2}\left (ess\sup _{0\leq t\leq T}\int _{\Omega} \left [ u_{n}(x,t) ^{\frac{(p-1)\mu +p-1-\theta}{p}}\right ] ^{ \frac{p((p-1)\mu +1)}{(p-1)\mu +p-1-\theta}}dx\right )^{\frac{p}{N}} \\ &\qquad \times \int _{Q_{T}}\bigg\vert \nabla u_{n}^{ \frac{(p-1)\mu +p-1-\theta}{p}}\bigg\vert ^{p}dxdt. \end{aligned}$$
(4.20)

By (4.19)-(4.20) and taking

$$ s=\frac{p((p-1)\mu +1)+N((p-1)\mu +p-1-\theta )}{N}, $$

we obtain

$$ \int _{Q_{T}} u_{n}^{s}dxdt\leq C_{13}\left (\int _{Q_{T}} u_{n}^{((p-1) \mu -\gamma ) m'} dx dt\right )^{\frac{N+p}{Nm'}}+C_{13}. $$
(4.21)

Since \(\frac{N+p}{Nm'}=1\) and by (1.3), we obtain

$$ ((p-1)\mu -\gamma ) m'=((p-1)\mu -\gamma )\frac{N+p}{N}< s. $$
(4.22)

From (4.22), Hölder’s inequality and Young’s inequality with \(\varepsilon >0\), we deduce that

$$\begin{aligned} \int _{Q_{T}} u_{n}^{\frac{((p-1)\mu -\gamma )(N+p)}{N} } dx dt & \quad \leq C_{14}\left (\int _{Q_{T}} u_{n}^{s} dx dt\right )^{ \frac{((p-1)\mu -\gamma ) (N+p)}{sN}} \\ &\quad \leq \varepsilon \int _{Q_{T}} \vert u_{n}\vert ^{s} dx dt+ c( \varepsilon ). \end{aligned}$$
(4.23)

By (4.21), (4.23) and letting \(\varepsilon =\frac{1}{2C_{13}}\), we get

$$ \int _{Q_{T}} \vert u_{n}\vert ^{s} dx dt\leq C_{15}. $$
(4.24)

On the other hand, since

$$ \mu \geq \frac{1+\theta}{p-1}\geq \frac{N(\theta +1)-p}{(p-1)(p+N)}, $$

and

$$ s\geq p\Leftrightarrow \mu \geq \frac{N(\theta +1)-p}{(p-1)(p+N)}, $$

therefore, from (4.24) with \(r=s\), it follows that the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{r}(Q_{T})\). Inequalities (4.18), (4.23), and the boundedness of the sequence \(\{u_{n}\}_{n}\) in \(L^{r}(Q_{T})\), imply then

$$ \int _{Q_{T}}\vert \nabla u_{n}\vert ^{p}dxdt\leq \int _{Q_{T}} \vert \nabla u_{n}\vert ^{p}(1+ u_{n})^{(p-1)\mu -1-\theta} dxdt\leq C_{16}. $$
(4.25)

Thus from (4.25) immediately follows the boundedness of the sequence \(\{u_{n}\}_{n}\) in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\). □

Lemma 4.3

Let \(f\in L^{m}(Q_{T})\), with \(m\) satisfies (2.2), and (1.2)-(1.6) hold. Then, the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\delta}(Q_{T})\cap L^{p}(0,T;W_{0}^{1,p}(\Omega ))\), where \(\delta \) as in (2.3).

Proof

We put

$$ ((p-1)\mu -\gamma ) m'= \frac{p((p-1)\mu +1)+ N((p-1)\mu +p-1-\theta )}{N}, $$
(4.26)

in the proof of Lemma 4.2. By (2.2) and (4.26) we get

$$ \mu =\frac{(m-1)(p+N(p-1-\theta ))+\gamma mN}{(p-1)(N+p-pm)}\geq \frac{1+\theta}{p-1}. $$

Consequently

$$ \delta =((p-1)\mu -\gamma ) \frac{m}{m-1}= \frac{m(p+N(p-1-\theta )+\gamma (N+p))}{N+p-pm}. $$
(4.27)

Note that \(\frac{N+p}{Nm'}<1\). The Young’s inequality gives

$$ \left (\int _{Q_{T}} u_{n}^{((p-1)\mu -\gamma ) m'}dxdt\right )^{ \frac{N+p}{Nm'}}\leq \varepsilon \int _{Q_{T}}u_{n}^{((p-1)\mu - \gamma ) m'}dxdt+c(\varepsilon ). $$
(4.28)

Taking (4.28) in (4.21) and letting \(\varepsilon =\frac{1}{2C_{13}}\), by (4.26) and (4.27), we deduce that the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\delta}(Q_{T})\). The rest of the proof is the same way in proof of Lemma 4.2. □

Lemma 4.4

Let \(f\) belongs to \(L^{m}(Q_{T})\), with \(m\) satisfies (2.4), and (1.2)-(1.6) hold. Then, the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\delta}(Q_{T})\cap L^{q}(0,T;W_{0}^{1,q}(\Omega ))\), where \(\delta \) and \(q\) are defined in Theorem 2.5.

Proof

Suppose that

$$ 0< \mu < \frac{1+\theta}{p-1}. $$

Let \(\varphi \) and \(\Psi \) as in (4.17). Choosing \(\varphi (u_{n}(x,t))\chi _{(0,\tau )}(t)\) as a test function in (3.4). Using the fact that

$$ \Psi (\zeta )\geq c \zeta ^{\mu (p-1)+1}-c\quad \forall s\in \mathbb{R}_{+}, $$

we have

$$\begin{aligned} &ess\sup _{0\leq t\leq \tau}\int _{\Omega} u_{n}(x,\tau )^{(p-1) \mu +1}dx+ \int _{Q_{T}} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta +1-(p-1)\mu}} dxdt \\ &\quad \leq C_{17}\left (\int _{Q_{T}} u_{n}^{((p-1)\mu -\gamma ) m'} dx dt\right )^{\frac{1}{m'}}+C_{17}. \end{aligned}$$
(4.29)

Using Hölder’s inequality with the exponents \(\frac{p}{q}\) and (4.29), we obtain

$$\begin{aligned} \int _{Q_{T}}\vert \nabla u_{n}\vert ^{q} dxdt&\leq \left (\int _{Q_{T}} \frac{\vert \nabla u_{n}\vert ^{p}}{(1+ u_{n})^{\theta +1-(p-1)\mu}} dxdt \right )^{\frac{q}{p}} \\ &\quad \times \left (\int _{Q_{T}}(1+ u_{n})^{ \frac{(\theta +1-(p-1)\mu )q}{p-q}}dxdt\right )^{\frac{p-q}{p}} \\ &\quad \leq C_{18}\left (\left (\int _{Q_{T}} u_{n}^{((p-1)\mu - \gamma ) m'}dxdt\right )^{\frac{1}{m'}}+1\right )^{\frac{q}{p}} \\ &\qquad \times \left (\int _{Q_{T}} u_{n}^{ \frac{(\theta +1-(p-1)\mu )q}{p-q}}dxdt+1\right )^{\frac{p-q}{p}}. \end{aligned}$$
(4.30)

Now we take \(\mu \), such that

$$ \mu =\frac{(\theta +1)q+\gamma m'(p-q)}{(p-1)((p-q)m'+q)}< \frac{1+\theta}{p-1}, $$

hence

$$ ((p-1)\mu -\gamma ) m'=\frac{(\theta +1-(p-1)\mu )q}{p-q}. $$
(4.31)

Then, by the inequality (4.30), we get

$$ \int _{Q_{T}}\vert \nabla u_{n}\vert ^{q} dxdt\leq C_{19}\left (\int _{Q_{T}} u_{n}^{((p-1)\mu -\gamma ) m' dxdt}\right )^{\frac{q}{pm'}+ \frac{p-q}{p}}+C_{19}. $$
(4.32)

Applying Lemma 1.2 (here \(v(x,t)=u_{n}(x,t)\), \(\varrho =(p-1)\mu +1\), \(\kappa =q\)) and from (4.29), (4.32), we have

$$\begin{aligned} &\int _{Q_{T}} u_{n}^{\frac{(N+(p-1)\mu +1)q}{N}} dxdt \\ &\quad \leq \left (ess\sup _{0\leq t\leq T}\int _{\Omega} u_{n}(x,t)^{(p-1) \mu +1}dx\right )^{\frac{q}{N}}\int _{Q_{T}}\vert \nabla u_{n}\vert ^{q}dxdt \\ &\quad \leq C_{20}\left (\int _{Q_{T}} u_{n}^{((p-1)\mu -\gamma ) m'}dxdt \right )^{\frac{q(N+p)}{pNm'}+\frac{p-q}{p}}+C_{20}. \end{aligned}$$
(4.33)

Set

$$ ((p-1)\mu -\gamma ) \frac{m}{m-1}=\frac{(N+(p-1)\mu +1)q}{N}, $$

then, by (4.31) we obtain

$$\begin{aligned} &\mu =\frac{(m-1)(p+N(p-1-\theta ))+m\gamma N}{(p-1)(N+p-pm)}, \end{aligned}$$
(4.34)

and

$$\begin{aligned} &q= \frac{m[N(p-\theta -1)+p+\gamma (N+p)]}{N+1-(\theta +1)(m-1)+m\gamma}. \end{aligned}$$
(4.35)

By (4.34), (4.35) and (4.33), we have \((p-1)\mu m'=\delta \) and

$$ \int _{Q_{T}} u_{n}^{\delta} dxdt\leq C_{20}\left (\int _{Q_{T}} u_{n}^{ \delta}dxdt\right )^{\frac{q(N+p)}{pNm'}+\frac{p-q}{p}}+C_{20}. $$
(4.36)

Since \(\frac{q(N+p)}{pNm'}+\frac{p-q}{p}<1\), then from (4.36), we deduce that the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\delta}(Q_{T})\). Going back to (4.32) and (4.35), this in turn implies that the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{q}(0,T;W_{0}^{1,q}(\Omega ))\). □

5 Proof of Main Results

5.1 Proof of Theorem 2.2

In virtue of Lemma 4.1, we have the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{\infty}(Q_{T})\cap L^{p}(0,T; W_{0}^{1,p}(\Omega ))\). Then, there exists a function \(u\in L^{\infty}(Q_{T})\cap L^{p}(0,T;W_{0}^{1,p}(\Omega ))\), such that, up to subsequence,

$$\begin{aligned} &u_{n}\rightharpoonup u\quad \text{weakly in }\; L^{p}(0,T;W_{0}^{1,p}( \Omega ), \\ &u_{n}\rightharpoonup u\quad \text{weakly}^{*} \text{in }\; L^{\infty}(Q_{T}) \;\; \text{for }\; \sigma ^{*}(L^{\infty}(Q_{T}),L^{1}(Q_{T})). \end{aligned}$$

In view of Lemma 4.1, we have that the sequence \(\big\{\frac{\partial u_{n}}{\partial t}\big\}_{n}\) is bounded in \(L^{1}(Q_{T})\cap L^{p'}(0,T;W_{0}^{-1,p'}(\Omega ))\). So, using compactness results (corollary 4 of [34]) we obtain \(\{u_{n}\}_{n}\) is relatively compact in \(L^{1}(Q_{T})\). This implies that

$$\begin{aligned} &u_{n}\rightarrow u\quad \text{strongly in }\; L^{1}(Q_{T}),\;\; \text{and a.e. in}\; Q_{T} . \end{aligned}$$
(5.1)

To carry on the proof, we need the following Lemma.

Lemma 5.1

[23] For all \(k>0\), there exists a function \(\theta _{k}\) such that for all \(\varepsilon >0\), we have

$$ \limsup _{n}\int _{\{|u_{n}-u^{k}|\leq \varepsilon \}}a(x,t,T_{n}(u_{n}), \nabla u_{n})(\nabla u_{n}-\nabla u^{k})dxdt\leq \theta _{k}( \varepsilon ), $$

with \(\lim \theta _{k}(\varepsilon )=0\), \(u^{k}=\phi _{k}(u)\).

By Lemma 5.1, we can adopt the approach of [22, 26], we deduce that there exists a subsequence, still denoted by \(\{u_{n}\}_{n}\), such that

$$ \nabla u_{n}\rightarrow \nabla u\quad \text{almost everywhere in}\; Q_{T}. $$
(5.2)

From (5.1), (5.2) and the fact that \(b\) is Carathéodory function, we obtain

$$ b(x,t,u_{n},\nabla u_{n})\rightarrow b(x,t,u,\nabla u) \quad \text{almost everywhere in}\; Q_{T}. $$
(5.3)

By (5.3), and Vitali’s theorem, one has

$$ a(x,t,u_{n},\nabla u_{n})\rightarrow a(x,t,u,\nabla u) \quad \text{strongly in}\; L^{p'}(Q_{T}). $$
(5.4)

We begin by proving an important lemma useful to prove of Theorem 2.2-2.5.

Lemma 5.2

Let \(u_{n}\) be a weak solution of (3.1). Then

$$ \lim _{n\rightarrow +\infty}\int _{Q_{T}}g_{n}(u_{n})f_{n} \psi dxdt=\int _{Q_{T}}g(u)f\psi dxdt, $$
(5.5)

for all \(\psi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\).

Proof

Let \(\psi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\) as a test function in (3.1), we obtain

$$\begin{aligned} &\int _{Q}\frac{\partial u_{n}}{\partial t}\psi dxdt+\int _{Q_{T}}b(x,t,T_{n}(u_{n}), \nabla u_{n}).\nabla \psi dxdt \\ &\quad =\int _{Q_{T}} g_{n}(u_{n})f_{n}\psi dxdt. \end{aligned}$$
(5.6)

If \(g(0)<+\infty \), we obtain (5.5) hold true. Suppose that \(g(0)=\lim _{z\rightarrow 0}g(z)\). Let \(\psi \) be a non-negative function in \(L^{\infty}(Q_{T})\cap L^{p}(0,T;W_{0}^{1,p}(\Omega ))\) as a test function in the weak formulation (5.6), using (1.4) and Young’s inequality, we obtain

$$\begin{aligned} \int _{Q_{T}} g_{n}(u_{n})f_{n}\psi dxdt&\leq \frac{1}{p}\int _{Q_{T}} \vert u_{n}\vert ^{p}dxdt+\frac{1}{p'}\int _{Q_{T}}\bigg\vert \frac{\partial \psi}{\partial t}\bigg\vert ^{p'}dxdt \\ &\quad +\frac{1}{p}\int _{Q_{T}}\vert \nabla \psi \vert ^{p}dxdt \\ &+ \frac{1}{p'}\int _{Q_{T}}\left (a(x,t)+\vert T_{n}(u_{n})\vert ^{p-1}+ \vert \nabla u_{n}\vert ^{p-1}\right )^{p'}dxdt \\ &\leq C\left (\Vert u_{n}\Vert _{L^{p}(Q_{T})}+\bigg\Vert \frac{\partial \psi}{\partial t}\bigg\Vert _{L^{p'}(Q_{T})}+\Vert k \Vert _{L^{p'}(Q_{T})}\right ) \\ &\quad + C\left (\Vert u_{n}\Vert _{L^{p}(0,T;W_{0}^{1,p}(\Omega )}+ \Vert \psi \Vert _{L^{p}(0,T;W_{0}^{1,p}(\Omega )}\right ) \\ &\leq C. \end{aligned}$$
(5.7)

Therefore (5.7) implies that \(\{f_{n}g_{n}(u_{n})\}_{n}\) is bounded in \(L^{1}(Q_{T})\). Passing to the limit as \(n\rightarrow +\infty \) in (5.5), Fatou’s lemma implies

$$\begin{aligned} \int _{Q_{T}}fg(u)\psi dxdt\leq C\quad \forall n, \end{aligned}$$
(5.8)

then we have

$$ \int _{\{u=0\}}\lim _{z\rightarrow 0}g(z) f \varphi \ dxdt < + \infty , $$

so that, \(f\varphi = 0 \ \text{a.e.}\ \text{on}\ \{u=0\}\) for all nonnegative \(\varphi \in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\). Yielding

$$\begin{aligned} f=0\ \text{a.e.}\ \text{on}\ \{u=0\}. \end{aligned}$$
(5.9)

For every fixed \(\lambda >0\), we can write

$$\begin{aligned} \int _{Q_{T}}f_{n}g_{n}(u_{n})\psi dxdt&=\int _{Q_{T}\cap \{u_{n}> \lambda \}}f_{n}g_{n}(u_{n})\psi dxdt \\ &\quad +\int _{Q_{T}\cap \{u_{n}\leq \lambda \}}f_{n}g_{n}(u_{n}) \psi dxdt \\ &=\mathcal{I}_{n,\lambda}^{1}+ \mathcal{I}_{n,\lambda}^{2}. \end{aligned}$$
(5.10)

For \(\mathcal{I}_{n,\lambda}^{1}\), we have

$$ 0\leq g_{n}(u_{n})f_{n}\chi _{\{u_{n}>\lambda \}}\varphi \leq \sup _{z\in [\lambda ,+\infty )}[g(z)]f\varphi \in L^{1}(Q_{T}). $$
(5.11)

Using Lebesgue’s dominated convergence theorem and that the sequence \(\big\{\chi _{\{u_{n}>\lambda \}}\big\}_{n}\) converges to \(\chi _{\{u\geq \lambda \}}\) a.e. in \(Q_{T}\), we get

$$ \lim _{n\rightarrow \infty}\mathcal{I}_{n,\lambda}^{1}=\int _{Q_{T} \cap \{u\geq \lambda \}}g(u)f\psi dxdt. $$

Since \(g(u)f \varphi \in L^{1}(Q_{T})\), Lebesgue’s theorem, with respect to \(\lambda \), imply that

$$\begin{aligned} \lim _{\lambda \rightarrow 0^{+}}\lim _{n\rightarrow \infty}\mathcal{I}_{n,\lambda}^{1}=\int _{Q_{T}\cap \{u\geq 0\}}g(u)f \psi dxdt=\int _{Q_{T}}g(u)f\psi dxdt. \end{aligned}$$

By (5.9), it follows that

$$\begin{aligned} \lim _{\lambda \rightarrow 0^{+}}\lim _{n\rightarrow \infty}\mathcal{I}_{n,\lambda}^{1}=\int _{Q_{T}\cap \{u>0\}}g(u)f \psi dxdt=\int _{Q_{T}}g(u)f\psi dxdt. \end{aligned}$$
(5.12)

Now in order to get rid of \(\mathcal{I}_{n,\lambda}^{2}\). We take \(\Xi _{\lambda}(u_{n})\psi \) as test function in (3.1), where \(\Xi _{\lambda}\) is defined in (1.8), we obtain

$$\begin{aligned} &\int _{Q_{T}}\frac{\partial u_{n}}{\partial t}\Xi _{\lambda}(u_{n}) \psi dxdt+\int _{Q_{T}}b(x,t,T_{n}(u_{n}),\nabla u_{n})\nabla (\Xi _{ \lambda}(u_{n})\psi )dxdt \\ &\quad =\int _{Q_{T}}f_{n}g_{n}(u_{n})\Xi _{\lambda}(u_{n})\psi dxdt. \end{aligned}$$
(5.13)

Using integration by parties and definition of \(\Xi _{\lambda}\), we have

$$\begin{aligned} \int _{Q_{T}}\frac{\partial u_{n}}{\partial t}\Xi _{\lambda}(u_{n}) \psi dxdt=-\int _{Q_{T}}\Theta (u_{n}) \frac{\partial \psi}{\partial t} dxdt, \end{aligned}$$
(5.14)

where

$$ \Theta (\zeta )=\int _{0}^{\zeta}\Xi _{\lambda}(y)dy. $$

Using (1.2), \(\Xi '_{\lambda}(u_{n})=-\frac{1}{\lambda}\) and the fact that

$$ \nabla (\Xi _{\lambda}(u_{n})\psi )=\Xi _{\lambda}(u_{n})\nabla \psi - \frac{1}{\lambda}(u_{n})\psi \nabla u_{n}, $$

we get

$$\begin{aligned} &\int _{Q_{T}}b(x,t,T_{n}(u_{n}),\nabla u_{n})\nabla (\Xi _{\lambda}(u_{n}) \psi )dxdt \\ &\quad \leq \int _{Q_{T}}b(x,t,T_{n}(u_{n}),\nabla u_{n})\Xi _{ \lambda}(u_{n}).\nabla \psi dxdt. \end{aligned}$$
(5.15)

On the other hand

$$\begin{aligned} \int _{Q_{T}}f_{n}g_{n}(u_{n})\Xi _{\lambda}(u_{n})\psi dxdt&=\int _{Q_{T} \cap \{u_{n}\leq \lambda \}}f_{n}g_{n}(u_{n})\Xi _{\lambda}(u_{n}) \psi dxdt \\ &\qquad +\int _{Q_{T}\cap \{\lambda < u_{n}< 2\lambda \}}f_{n}g_{n}(u_{n}) \Xi _{\lambda}(u_{n})\psi dxdt \\ &\quad \leq \int _{Q_{T}\cap \{u_{n}\leq \lambda \}}f_{n}g_{n}(u_{n}) \Xi _{\lambda}(u_{n})\psi dxdt. \end{aligned}$$
(5.16)

Combining (5.13)-(5.15) and (5.16), we obtain

$$\begin{aligned} \int _{Q_{T}\cap \{u_{n}\leq \lambda \}}f_{n}g_{n}(u_{n})\Xi _{ \lambda}(u_{n})\psi dxdt&\leq \int _{Q_{T}}b(x,t,T_{n}(u_{n}),\nabla u_{n}) \Xi _{\lambda}(u_{n}).\nabla \psi dxdt \\ &\quad -\int _{Q_{T}}\Theta (u_{n})\frac{\partial \psi}{\partial t} dxdt. \end{aligned}$$

Using that \(\Xi _{\lambda}\) is bounded and \(\Theta \) is continue we deduce that as \(n\) tends to infinity

$$ \Theta (u_{n})\frac{\partial \psi}{\partial t}\rightarrow \Theta (u) \frac{\partial \psi}{\partial t}\quad \text{strongly in}\; L^{1}(Q_{T}), $$

and

$$ b(x,t,T_{n}(u_{n}),\nabla u_{n})\Xi _{\lambda}(u_{n})\rightharpoonup b(x,t,u, \nabla u)\Xi _{\lambda}(u)\quad \text{weakly in}\; L^{p'}(Q_{T}). $$

This implies that

$$\begin{aligned} &\limsup \limits _{n\rightarrow +\infty}\int _{Q_{T}\cap \{u_{n}\leq \lambda \}}f_{n}g_{n}(u_{n})\Xi _{\lambda}(u_{n})\psi dxdt \\ &\leq -\int _{\{u=0\}}\Theta (u)\frac{\partial \psi}{\partial t} dxdt+ \int _{\{u=0\}}b(x,t,u,\nabla u)\Xi _{\lambda}(u).\nabla \psi dxdt, \end{aligned}$$

then

$$\begin{aligned} \lim _{\lambda \rightarrow 0}\lim _{n\rightarrow \infty}\mathcal{I}_{n,\lambda}^{2}=0. \end{aligned}$$
(5.17)

By (5.12) and (5.17) we deduce that, for all nonnegative \(\psi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\)

$$ \lim _{n\rightarrow \infty}\int _{Q_{T}}f_{n}g_{n}(u_{n}) \psi dxdt=\int _{Q_{T}}fg(u)\psi dxdt. $$
(5.18)

Moreover, by decomposing any \(\psi =\psi ^{+}-\psi ^{-}\) with \(\psi ^{+}=\max \{\psi ,0\}\) and \(\psi ^{-}= -\min \{\varphi ,0\}\), we deduce that (5.18) holds for every \(\psi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\). This concludes (5.5).

Let \(n\rightarrow +\infty \) in (5.6), by (5.1), (5.4) and (5.5) we get

$$\begin{aligned} &\int _{Q_{T}}\frac{\partial u}{\partial t}\psi dxdt+\int _{Q_{T}}b(x,t,u, \nabla u).\nabla \psi dxdt=\int _{Q_{T}} g(u)f\psi dxdt, \end{aligned}$$
(5.19)

for every \(\psi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ))\cap L^{\infty}(Q_{T})\). □

5.2 Proof of the Theorem 2.5

From Lemma 4.4, we have the sequence \(\{u_{n}\}_{n}\) is bounded in \(L^{q}(0,T;W_{0}^{1,q}(\Omega ))\cap L^{\delta}(Q_{T})\) and \(\big\{\frac{\partial u_{n}}{\partial t}\big\}_{n}\) is bounded in \(L^{q'}(0,T;W^{-1,q'}(\Omega ))+L^{m}(Q_{T})\). Thus, the sequence \(\big\{\frac{\partial u_{n}}{\partial t}\big\}_{n}\) is bounded in \(L^{1}(0,T,W^{-1,\epsilon}(\Omega ))\) for every \(\epsilon <\min \left \{\frac{N}{N-1},q'\right \}\). So, by corollary 4 of [34], we get the sequence \(\{u_{n}\}_{n}\) is relatively compact in \(L^{1}(Q_{T})\). This implies that we can extract a subsequence (denote again by \(\{u_{n}\}_{n}\)) such that the sequence \(\{u_{n}\}_{n}\) converges to \(u\) strongly in \(L^{1}(Q_{T})\). From (5.1), (5.2), we obtain

$$ b(x,t,u_{n},\nabla u_{n})\rightarrow b(x,t,u,\nabla u) \quad \text{a.e. in}\;\; Q_{T}. $$
(5.20)

Using Lemma 4.4, (5.20), \(\frac{q}{p-1}>1\) and Vitali’s theorem, one has

$$ b(x,t,u_{n},\nabla u_{n})\rightarrow b(x,t,u,\nabla u) \quad \text{strongly in}\;\; L^{\frac{q}{p-1}}(Q_{T}). $$

Thus, it is possible to pass to the limit in (5.6) as \(n\rightarrow +\infty \), obtaining (5.19).