

Nonlinear Degenerate Parabolic Equations with a Singular Nonlinearity

Hichem Khelifi^{1,2} D · Fares Mokhtari^{1,2} D

Received: 17 March 2023 / Accepted: 16 January 2024 / Published online: 30 January 2024 © The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract

In this paper, we study the existence and regularity results for some parabolic equations with degenerate coercivity, and a singular right-hand side. The model problem is

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}\left(\frac{\left(1+|\nabla u|^{-\Lambda}\right)|\nabla u|^{p-2}\nabla u}{(1+|u|)^{\theta}}\right) = \frac{f}{(e^u-1)^{\gamma}} & \text{in } \mathcal{Q}_T, \\ u(x,0) = 0 & \text{on } \Omega, \\ u = 0 & \text{on } \partial \mathcal{Q}_T, \end{cases}$$
(0.1)

where Ω is a bounded open subset of \mathbb{R}^N $N \ge 2$, T > 0, $\Lambda \in [0, p-1)$, f is a non-negative function belonging to $L^m(Q_T)$, $Q_T = \Omega \times (0, T)$, $\partial Q_T = \partial \Omega \times (0, T)$, $0 \le \theta and <math>0 \le \gamma .$

Keywords Degenerate parabolic equation \cdot Existence and regularity of solution \cdot Singular term \cdot Irregular data \cdot Fixed point theorem

Mathematics Subject Classification 35J60 · 35J70 · 35B45 · 35D30 · 35B65

1 Introduction

Let Ω is a bounded open subset of \mathbb{R}^N ($N \ge 2$), Q_T is the cylinder $\Omega \times (0, T)$ (T > 0), ∂Q_T is the lateral surface $\partial \Omega \times (0, T)$. We consider the following double nonlinear anisotropic singular parabolic problem

$$\begin{cases} \frac{\partial u}{\partial t} + Bu = g(u)f & \text{in } Q_T, \\ u(x,0) = 0 & \text{on } \Omega, \\ u = 0 & \text{on } \partial Q_T, \end{cases}$$
(1.1)

🖂 H. Khelifi

khelifi.hichemedp@gmail.com; h.khelifi@univ-alger.dz

F. Mokhtari fares_maths@yahoo.fr; f.mokhtari@mesrs.dz

¹ Department of Mathematics, University of Algiers 1, Algiers, Algeria

² Laboratory of Mathematical Analysis and Applications, University of Algiers 1, Algiers, Algeria

where $Bu = -\text{div}(b(x, t, u, \nabla u))$, f is a non-negative function belonging to a suitable Lebsgue space $L^m(Q_T)$ $(m \ge 1)$. Here, we suppose that $b : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function, and satisfying for almost every (x, t) in Q_T , for every $z \in \mathbb{R}$, for all $\xi, \eta \in \mathbb{R}^N$ the following

$$b(x, t, z, \xi) \cdot \xi \ge \frac{\alpha |\xi|^p}{(1+|z|)^{\theta}},$$
(1.2)

$$0 \le \theta (1.3)$$

$$|b(x,t,z,\xi)| \le a(x,t) + |z|^{p-1} + |\xi|^{p-1},$$
(1.4)

$$(b(x, t, z, \xi) - b(x, t, z, \eta)) \cdot (\xi - \eta) > 0, \quad \xi \neq \eta,$$
(1.5)

where α , β are strictly positive real numbers and a is a given positive function in $L^{p'}(Q_T)$ with $\frac{1}{p} + \frac{1}{p'} = 1$. Moreover, $g : [0, +\infty) \to [0, +\infty)$ is a continuous and possibly singular function with $g(0) \neq 0$ which it is finite outside the origin and such that

$$\exists c > 0: \quad g(z) \le \frac{c}{z^{\gamma}} \quad \text{for all } z > 0, \tag{1.6}$$

where $0 \le \gamma .$

In the uniform ellipticity and non singular case (i.e. $\theta = 0$ and $\gamma = 0$, it is proved the existence results for the problems (1.1) in [1–5, 7, 8, 28–30] when $f \in L^m(Q_T)$ or f is a bounded Radon measure on Q_T . We cite the paper [16], and the references therein, when p = 2, $\gamma = 0$, $0 \le \theta < 1 + \frac{2}{N}$ and $f \in L^m(Q_T)$, where $m \ge 1$. In the case $\theta = 0$ and $p \ge 2$, the existence and regularity solution have been treated in [11]. Problem (1.1), in the coercive case, has been treated in [9], they have proved the existence and regularity of solutions to problem

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}(|\nabla u|^{p-2}\nabla u) = \frac{f}{u^{\gamma}} & \text{in } Q_T, \\ u(x,0) = u_0(x) & \text{on } \Omega, \\ u = 0 & \text{on } \partial Q_T, \end{cases}$$

with $\gamma > 0$, $p \ge 2$, f > 0, $f \in L^m(Q_T)$, $m \ge 1$ and $u_0 \in L^\infty(\Omega)$. If $\gamma = 0$, the problem (1.1) is studied in [12, 19, 25].

Finally, concerning the singular model case the authors in [14] studied existence and regularity of problem

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}(b(x, t, u, \nabla u)) + |u|^{s-1}u = g(u)f & \text{in } Q_T, \\ u = 0 & \text{on } \partial Q_T, \\ u(x, 0) = 0 & \text{in } \Omega, \end{cases}$$

where $f \in L^m(Q_T)$ $(m \ge 1)$, $a : Q_T \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a carathéodory function satisfying for a.e $(x, t) \in Q_T$, $\forall z \in \mathbb{R}$, $\forall \xi \in \mathbb{R}^N$

$$b(x, t, z, \xi).\xi \ge \frac{\alpha |\xi|^p}{(1+|z|)^{\theta(p-1)}}$$
 with $0 \le \theta < 1$,

and the singular term g satisfying (1.6) with $0 < \gamma < 1$. The corresponding results for parabolic equations with singularities have been developed in [13, 15, 17]. The existence

and regularity results for weak solution of degenerate elliptic equation with singularities data have been proved in [18, 20, 21, 31–33].

Our main motive in this article is to investigate the results of [25] in the framework of the operator non-coercive B(u). To reach this goal, we will face the following difficulties. First, let us note that (1.1) can be singular on the right-hand side in the following sense: the solution is required to be zero on the boundary of the domain but, simultaneously, the right- hand side of (1.1) could blow up. Another important feature is the lack of coercivity for positive θ , the operator B(u) is not coercive as u becomes large. Due to the lack of coercivity, the classical methods can not be applied even if the data g(u) f are sufficiently regular (see [27]). We will overcome these two difficulties by approximation, truncating the degenerate coercivity of the operator term and the singularity of the right-hand side (see problems (3.1)). We will prove by Schauder's theorem that these problems admit a bounded finite energy solution u_n .

The following lemma is useful when proving the boundedness of the solution u_n of problem (3.1).

Lemma 1.1 (See [6]) Let M_1 , ν , ρ , ϑ , k_0 be real positive numbers, where $\vartheta > 1$ and $\rho \in [0, 1)$. Let $\Lambda : \mathbb{R}_+ \to \mathbb{R}_+$ be a decreasing function such that

$$\Lambda(h) \le \frac{M_1 k^{\nu \rho}}{(h-k)^{\nu}} [\Lambda(k)]^{\vartheta}, \quad \forall h > k \ge k_0.$$

Then there exists l > 0 *such that* $\Lambda(l) = 0$ *.*

Next, we will review the results of the renowned Gagliardo-Nirenberg embedding theorem.

Lemma 1.2 (See [10]) Let $v \in L^{\kappa}(0, T; W_0^{1,\kappa}(\Omega)) \cap L^{\infty}(0, T; L^{\varrho}(\Omega)), \kappa, \varrho \ge 1$. Then v belongs to $L^q(Q_T)$, where $q = \kappa \frac{N+\varrho}{N}$, and there exists a positive constant M_2 depending only on N, κ , ϱ such that

$$\int_{Q_T} |v(x,t)|^q dx dt \le M_2 \|v\|_{L^{\infty}(0,T;L^{\varrho}(\Omega))}^{\frac{\kappa}{N}} \int_{Q_T} |\nabla v(x,t)|^{\kappa} dx dt.$$
(1.7)

For any q > 1, $q' = \frac{q}{q-1}$ is the Hölder conjugate of q. For fixed k > 0 we will use of the truncation T_k defined as $T_k(s) = \max(-k, \min(k, s))$ and $G_k(s) = s - T_k(s)$. We will also use the following function

$$\Xi_{\lambda}(s) = \begin{cases} 1, & \text{if } s \leq \lambda, \\ \frac{\lambda - s}{\lambda}, & \text{if } \lambda < s < 2\lambda, \\ 0, & \text{if } s \geq 2\lambda. \end{cases}$$
(1.8)

For the sake of completeness, we recall a well-known inequality that will be useful in what follows

$$\forall a > 0, \forall \mu > 0, \exists C(\mu, a) > 0 : (1+t)^{\mu} \le Ct^{\mu}, \quad \forall t \in [a, +\infty).$$
(1.9)

2 Statements of Results

We first define the notion of a weak solution to (1.1) as follows:

Definition 2.1 We say that $u \in L^1(0, T; W_0^{1,1}(\Omega))$ is a weak solution of problem (1.1), if $b(x, t, u, \nabla u) \in (L^1(Q_T))^N$, $g(u)f \in L^1(Q_T)$ and the equality

$$\int_{Q_T} \frac{\partial u}{\partial t} \varphi dx dt + \int_{Q_T} b(x, t, u, \nabla u) \cdot \nabla \varphi dx dt = \int_{Q_T} g(u) f \varphi dx dt, \qquad (2.1)$$

for every $\varphi \in C^{\infty}([0, T] \times \overline{\Omega})$ which is zero in a neighborhood of ∂Q_T and $\Omega \times \{T\}$.

The first theorem we state concerns with the existence of L^{∞} -solutions to problem (1.1), where $f \in L^m(Q_T)$ with $m > \frac{N}{p} + 1$.

Theorem 2.2 Assume that (1.2)-(1.6) hold true. Let $f \in L^m(Q_T)$ with $m > \frac{N}{p} + 1$. Then there exists $u \in L^p(0, T; W_0^{1,p}(\Omega)) \cap L^{\infty}(Q_T)$ a weak solution to problem (1.1).

Remark 1 We apply Lemma 1.1, which requires the assumption $p \ge 2$, to obtain the L^{∞} -estimates for u_n the solutions of (3.1). In the case p = 2, $\gamma = 0$ the result of Theorem 2.2 coincides with the classical boundedness results for degenerate parabolic equations ([16], Theorem 1.1), furthermore if p > 2 the results of Theorem 2.2 are similar than the regularity results of [14, 25]. To obtain the L^{∞} -estimate, the conditions (1.4) and (1.5) are unnecessary. However, such conditions are needed to prove the existence of u_n solution of problem (3.1).

In the following theorem we give the result of existence and regularity in the case of exact values of the summability exponent $m = \frac{N}{n} + 1$.

Theorem 2.3 Suppose that assumptions (1.2)-(1.6) hold, $f \in L^m(Q_T)$ with $m = \frac{N}{p} + 1$. Then, for every $r \in [p, +\infty)$ there exists $u \in L^p(0, T; W_0^{1,p}(\Omega)) \cap L^r(Q_T)$ a weak solution to problem (1.1).

Remark 2 Theorem 2.3 gives the result in the limit case $m = \frac{N}{p} + 1$ for parabolic equations. As far as I know, the first time this case was addressed in the article [16] with p = 2 and $\gamma = 0$. The result of Theorem 2.3 has been obtained in [14, 25].

The next result deals with a given $m < \frac{N}{p} + 1$, which ensures the existence of solutions in $L^p(0, T; W_0^{1,p}(\Omega)) \cap L^{\delta}(Q_T)$.

Theorem 2.4 Let us assume that (1.2)-(1.6) hold true, and that $f \in L^m(Q_T)$, with

$$m_1 = \frac{p(N+\theta+2)}{(p-1)N+2p - (N-p)\theta + N\gamma} \le m < \frac{N}{p} + 1.$$
(2.2)

Then, there exists $u \in L^p(0, T; W_0^{1,p}(\Omega)) \cap L^{\delta}(Q_T)$ a weak solution to problem (1.1), such that

$$\delta = \frac{m[p + N(p - 1 - \theta) + \gamma(N + p)]}{N + p - pm}.$$
(2.3)

Remark 3 The condition (1.3) implies that the assumption (2.2) is well defined. By (1.3) and (2.2), we have $\delta > p$, since

$$(1.3) \Leftrightarrow \frac{p(N+\theta+2)}{(p-1)N+2p-(N-p)\theta+N\gamma} > \frac{p(N+p)}{p+N(p-1-\theta)+\gamma(N+p)+p^2}$$
$$\Rightarrow m > \frac{p(N+p)}{p+N(p-1-\theta)+\gamma(N+p)+p^2}$$
$$\Rightarrow \delta > p.$$

If $0 \le \theta < \frac{2}{N-1} + \gamma \frac{N}{(N-1)}$, then $m_1 < p'$, so $f \notin L^{p'}(0, T; W^{-1,p'}(\Omega))$. If $\frac{2}{N-1} + \gamma \frac{N}{(N-1)} \le \theta , then <math>m_1 \ge p'$, so $f \in L^{p'}(0, T; W^{-1,p'}(\Omega))$.

The first result deals with the case when the summability of f gives the existence of solution u belong to $L^q(0, T; W_0^{1,q}(\Omega))$, with p - 1 < q < p.

Theorem 2.5 If hypotheses (1.2)-(1.6) hold and $f \in L^m(Q_T)$ with m > 1, such that

$$m_2 = \frac{N + \theta + 2}{(p-1)N + p + 1 - \theta(N-1) + \gamma(N+p-1)} < m < m_1,$$
(2.4)

then there exists $u \in L^q(0, T; W_0^{1,q}(\Omega)) \cap L^{\delta}(Q_T)$ a weak solution to problem (1.1), such that

$$q = \frac{m[N(p-\theta-1)+p+\gamma(N+p)]}{N+1-(\theta+1)(m-1)+m\gamma},$$
(2.5)

where δ as defined in (2.3).

Remark 4 The hypothesis (2.5) is meaningful, because

$$m_2 < m_1 \Leftrightarrow \theta < p - 1 + \frac{p}{N} + \gamma \left(1 + \frac{p}{N}\right)$$

Notice that the inequality (2.4) guarantees that p - 1 < q < p. In Theorem 2.5, we also suppose m > 1,

$$m_2 < 1 \Leftrightarrow 0 \le \theta < p - 1 + \frac{p}{N} + \gamma \left(1 + \frac{p}{N}\right) - \frac{N + \gamma + 1}{N}$$

If $\gamma = 0$; the result of Theorem 2.5 is similar that of ([25], Theorem 2.5).

Remark 5 It will be noted to the reader that the choice of the test functions in the proof of the a priori estimates allowed us to widen the interval of variation of γ and θ compared to that in [14], with the same regularity of the solution. If we compare the results of theorems 2.2-2.5 with those of theorems in [25], we can easily see that the singular term allowed us to widen the interval of variation of θ compared to that the assumption (3) in [25].

3 Approximating Problems

Let us first consider the following approximation problems

$$\begin{cases} \frac{\partial u_n}{\partial t} - \operatorname{div}(b(x, t, T_n(u_n), \nabla u_n)) = g_n(u_n) f_n & \text{in } Q_T, \\ u_n(x, 0) = 0 & \text{on } \Omega. \\ u_n = 0 & \text{on } \partial Q_T, \end{cases}$$
(3.1)

where $f_n \in L^{\infty}(Q_T)$ (for example, $f_n = T_n(f)$), such that

$$\begin{cases} \|f_n\|_{L^m(Q_T)} \le \|f\|_{L^m(Q_T)} \le C, \\ f_n \to f \text{ strongly in } L^m(Q_T), \quad m \ge 1, \end{cases}$$

$$(3.2)$$

and, we define $g(0) = \lim_{z \to 0} g(z)$, we set

$$g_n(z) = \begin{cases} T_n(g(z)) & \text{for } z > 0, \\ \min\{n, g(0)\} & \text{otherwise.} \end{cases}$$

Using (1.6), we have for all z > 0

$$g_n(z) = T_n(g(z)) \le g(z) \le \frac{c}{z^{\gamma}}.$$
(3.3)

Lemma 3.1 Assume that (1.2), (1.5) and (1.6) hold true. Then, the approximating problem (3.1) has a non-negative solution u_n , such that

$$u_n \in L^p(0, T; W_0^{1, p}(\Omega)) \cap C([0, T]; L^2(\Omega)), \quad \frac{\partial u_n}{\partial t} \in L^{p'}(0, T; W_0^{-1, p'}(\Omega)).$$

and satisfying the weak formulation

$$\int_{0}^{T} \left\langle \frac{\partial u_{n}}{\partial t}, \varphi \right\rangle dt + \int_{Q_{T}} b(x, t, T_{n}(u_{n}), \nabla u_{n}) \cdot \nabla \varphi dx dt$$
$$= \int_{Q_{T}} g_{n}(u_{n}) f_{n} \varphi dx dt, \qquad (3.4)$$

for all $n \in \mathbb{N}$ fixed and for every $\varphi \in L^p(0, T; W_0^{1,p}(\Omega)) \cap L^{\infty}(Q_T)$, where

$$\left\langle \frac{\partial u_n}{\partial t}, \varphi \right\rangle = \int_{\Omega} \frac{\partial u_n}{\partial t} \varphi dx.$$

Proof Let $n \in \mathbb{N}$ and $v \in L^p(Q_T)$ be fixed. Consider the nonlinear parabolic problem

$$\begin{cases} \frac{\partial w}{\partial t} - \operatorname{div}(b(x, t, T_n(w), \nabla w)) = g_n(v) f_n & \text{in } Q_T, \\ w(x, 0) = 0 & \text{on } \Omega, \\ w = 0 & \text{on } \partial Q_T, \end{cases}$$
(3.5)

it is clear that the problem (3.5) has a unique solution w with

$$w \in L^{p}(0, T; W_{0}^{1, p}(\Omega)) \cap L^{\infty}(Q_{T}) \text{ and } \frac{\partial w}{\partial t} \in L^{p'}(0, T; W_{0}^{-1, p'}(\Omega)) + L^{1}(Q_{T}).$$

then, ther

the sequence
$$\{g_n(v)f_n\}_n$$
 in $L^{\infty}(Q_T)$, we have that $w \in L^{\infty}(Q_T)$ (see for example [14]), then, there exists $C_{\infty} > 0$, independents of v, w (but possibly depending in n), such that

$$\|w\|_{L^{\infty}(Q_T)} \le C_{\infty}. \tag{3.6}$$

Our aim is to prove the existence of fixed point of the map P. Using w as test function in (3.5), one gets

$$\frac{1}{2} \int_{\Omega} |w(T)|^2 dx + \int_{Q_T} b(x, t, T_n(w), \nabla w) \cdot \nabla w dx dt$$
$$= \int_{Q_T} g_n(v) f_n w dx dt.$$
(3.7)

By (1.2), (1.6) and dropping a positive term on the left-hand side in (3.7)

$$\alpha \int_{\mathcal{Q}_T} \frac{|\nabla w|^p}{(1+|T_n(w)|)^{\theta}} dx dt \le n^{\gamma+1} \int_{\mathcal{Q}_T} |w| dx dt.$$
(3.8)

Using the Hölder's inequality on the right-hand side in (3.8), we have

$$\int_{\mathcal{Q}_T} |\nabla w|^p dx dt \leq \frac{C_1}{\alpha} n^{\gamma+1} (1+n)^\theta |\mathcal{Q}_T|^{\frac{1}{p'}} \left(\int_{\mathcal{Q}_T} |w|^p dx dt \right)^{\frac{1}{p}}$$

Poincaré inequality imply

$$\|w\|_{L^{p}(Q_{T})} \le C(n, |Q_{T}|), \tag{3.9}$$

for some constant $C(n, |Q_T|)$ independent of v and w (possible depending on n). Let B is a ball of $L^p(Q_T)$ of radius $C(n, |Q_T|)$ is invariant for the map P. Now, we prove that the map P is continuous in B. Let $\{v_h\}_n$ be a bounded sequence in B. By (3.9) there exist a subsequence of $\{v_h\}_n$ still denoted by $\{v_h\}_n$, and a measurable function v belonging to $L^p(Q_T)$, such that

$$v_h \to v$$
 strongly in $L^p(Q_T)$. (3.10)

Let us choose w_h as a test function in the weak formulation of the problem solved by w_h , (3.8) implies that

$$\int_{0}^{T} \|\nabla w_{h}\|_{L^{p}(\Omega)}^{p} dt \leq C_{4} \int_{0}^{T} \left(\int_{\Omega} |w_{h}|^{p} dx \right)^{\frac{1}{p}} dt.$$
(3.11)

Since the ball of $L^p(Q_T)$ is invariant for P, we have w_h belong to B and so, from the inequality (3.11), we obtain that w_h is bounded in $L^p(0, T; W_0^{1,p}(\Omega))$. The growth assumption (1.4), implies

$$\begin{split} \int_{\mathcal{Q}_T} |b(x,t,w_h,\nabla w_h)|^{p'} dx dt &\leq \int_{\mathcal{Q}_T} \left[|a(x,t)| + |w_h|^{p-1} + |\nabla w_h|^{p-1} \right]^{\frac{p}{p-1}} dx dt \\ &\leq \|k\|_{L^{p'}(\mathcal{Q}_T)}^{p'} + \|w_h\|_{L^p(\mathcal{Q}_T)}^p + \|w_h\|_{L^p(0,T;W_0^{1,p}(\Omega))}^p \\ &< +\infty. \end{split}$$

Using the previous inequality with (3.5), and the fact that $g_n(v) f_n \in L^1(Q_T)$ we have $\frac{\partial w_h}{\partial t}$ is bounded in $L^{p'}(0, T; W_0^{-1, p'}(\Omega)) + L^1(Q_T)$. As a result of the Corollary 4 in [34], we can conclude that w_h is relatively strongly compact in $L^1(Q_T)$. Thus, there exists a subsequence of w_h still denoted by w_h , and a measurable function w belonging to $L^1(Q_T)$ such that

$$w_h \to w$$
 a.e in $L^1(Q_T)$. (3.12)

By (3.9), (3.12) and Lebesgue Theorem we have that w_h converges strongly to w in $L^p(Q_T)$, and so P is compact.

Now we prove that *P* is continuous. Let $w_h = P(v_h)$, (3.10) implies that $v_h \to v$ a.e in Q_T , hence $g_n(v_h) f_n$ converges to $g_n(v) f_n$ a.e in Q_T and by the dominated convergence theorem one has that $g_n(v_h) f_n$ converge strongly to $g_n(v) f_n$ in $L^p(Q_T)$. Hence, by uniqueness, one deduce that $w_h = P(v_h)$ converges to w = P(v) in $L^p(Q_T)$. This gives the continuity of *S*. Using Schauder's fixed point theorem for every fixed *n*, we have there exist u_n in $L^p(0, T; W_0^{1,p}(\Omega)) \cap C([0, T]; L^2(\Omega))$ and $\frac{\partial u_n}{\partial t} \in L^{p'}(0, T; W_0^{-1,p'}(\Omega)) + L^1(Q_T)$, such that $u_n = P(u_n)$.

Choosing $\varphi = -u_n^- = -u_n \chi_{\{u_n \le 0\}}$, where $\chi_{\{u_n \le 0\}}$ denotes the characteristic function of $\{(x, t) \in Q_T : u_n(x, t) \le 0\}$ as a test function in (3.1). Using (1.2), and recalling that $g_n(u_n) f_n$ is nonnegative, we obtain

$$-\frac{1}{2}\int_{\Omega}|u_n^-|^2dx-\frac{\alpha}{(1+n)^{\theta}}\int_{Q_T}|\nabla u_n^-|^pdxdt\geq -\int_{Q_T}g_n(u_n)f_nu_n^-dxdt\geq 0,$$

dropping the term $-\frac{1}{2}\int_{\Omega}|u_n^-|^2dx$, we have

$$-\int_{Q_T} |\nabla u_n^-|^p dx dt \ge 0,$$

so that $||u_n^-||_{L^p(0,T;W_0^{1,p}(\Omega))} = 0$, thus $u_n \ge 0$ almost everywhere in Q_T .

4 A Priori Estimates

We shall denote by C_i , i = 1, ..., N various constants depending only on the structure of p, θ , γ , T, $|\Omega|$. Let $u_n \in L^p(0, T; W_0^{1,p}(\Omega)) \cap C([0, T]; L^2(\Omega))$ be a solution to problem (3.1). In this section, we prove some uniform estimates for the sequence $\{u_n\}_n$ and $\{\frac{\partial u_n}{\partial t}\}_n$.

Lemma 4.1 Assume that (1.2)-(1.6), $p - 2 \le \gamma < 1$ hold true. Let $f \in L^m(Q_T)$ with $m > \frac{N}{p} + 1$. Then, the sequence $\{u_n\}_n$ is bounded in $L^{\infty}(Q_T) \cap L^p(0, T; W_0^{1, p}(\Omega))$ and $\{\frac{\partial u_n}{\partial t}\}_n$ is bounded in $L^{p'}(0, T; W^{-1, p'}(\Omega)) + L^m(Q_T)$.

Proof For every $\tau \in (0, T]$, we take $\varphi(u_n) = [(1+u_n)^{p-1} - 1]G'_k(u_n)\chi_{(0,\tau)}$ as a test function in (3.4), we use the assumption (1.2), and the fact that

$$\Phi(u_n) = \int_0^{u_n} \left((1+y)^{p-1} - 1 \right) G'_k(y) dy \ge \frac{1}{p} G_k(u_n)^p G'_k(u_n),$$

$$\int_{\Omega} \Phi(u_n) dx + \alpha(p-1) \int_0^{\tau} \int_{\Omega} \frac{|\nabla u_n|^p}{(1+u_n)^{\theta}} (1+u_n)^{p-2} G'_k(u_n) dx dt$$

$$\leq \int_0^{\tau} \int_{\Omega} f_n g_n(u_n) [(1+u_n)^{p-1} - 1] G'_k(u_n) dx dt.$$

By (3.3), (1.9), $(1 + u_n)^{p-1} - 1 \le (1 + u_n)^{p-1}$ and the fact that

$$\int_{Q_T \cap \{u_n=0\}} f_n g_n(u_n) [(1+u_n)^{p-1} - 1] G'_k(u_n) dx dt$$

$$\leq \int_{Q_T} f_n \lim_{z \to 0} g(z) [(1+0)^{p-1} - 1] G'_k(0) dx dt = 0,$$

we have

$$\begin{split} &\int_{\Omega} \Phi(u_n) dx + \alpha (p-1) \int_0^{\tau} \int_{\Omega} \frac{|\nabla u_n|^p}{(1+u_n)^{\theta}} (1+u_n)^{p-2} G'_k(u_n) dx dt \\ &\leq \int_{\mathcal{Q}_T \cap \{u_n>0\}} f_n \frac{(1+u_n)^{p-1}}{u_n^{\gamma}} G'_k(u_n) dx dt \\ &\quad + \int_{\mathcal{Q}_T \cap \{u_n=0\}} f_n g_n(u_n) [(1+u_n)^{p-1} - 1] G'_k(u_n) dx dt \\ &\leq \int_0^T \int_{\Omega} f_n (1+u_n)^{p-1-\gamma} G'_k(u_n) dx dt. \end{split}$$

Using Hölder's inequality on the right-hand side of the previous inequality, (3.2) and the fact that $1 + u_n \le 2(k + G_k(u_n))$ as $k \ge 1$, one has

$$\int_{E_{k,n}(\tau)} G_k(u_n(\tau))^p dx + \int_0^\tau \int_{E_{k,n}(t)} \frac{|\nabla u_n|^p}{(1+u_n)^{\theta-p+2}} dx dt$$

$$\leq C_1 \|f\|_{L^m(Q_T)} \left(\int_0^T \int_{E_{k,n}(t)} (k+G_k(u_n))^{(p-1-\gamma)m'} dx dt \right)^{\frac{1}{m'}}$$

where $E_{k,n}(t) = \{x \in \Omega : u_n(x, t) > k\}, t \in (0, T)$. Hence

$$\|G_{k}(u_{n})\|_{L^{\infty}(0,T;L^{p}(E_{k,n}))}^{p} + \int_{0}^{T} \int_{E_{k,n}(t)} \frac{|\nabla u_{n}|^{p}}{(1+u_{n})^{\theta-p+2}} dx dt$$

$$\leq C_{1} \|f\|_{L^{m}(Q_{T})} \left(\int_{0}^{T} \int_{E_{k,n}(t)} (k+G_{k}(u_{n}))^{(p-1-\gamma)m'} dx dt \right)^{\frac{1}{m'}}.$$
(4.1)

The proof is divided into two cases.

Case 1: Suppose that

$$p - 2 < \theta < p - 1 + \frac{p}{N} + \gamma (1 + \frac{p}{N}).$$

For all $1 \le p - 1 < \sigma < p$, Writing

$$\int_{\mathcal{Q}_T} |\nabla G_k(u_n)|^{\sigma} dx dt = \int_{\mathcal{Q}_T} \frac{|\nabla u_n|^{\sigma}}{(1+u_n)^{\frac{(\theta-p+2)\sigma}{p}}} (1+u_n)^{\frac{(\theta-p+2)\sigma}{p}} dx dt.$$

Using (3.2), (4.1) and Hölder's inequality, we have

$$\begin{split} &\int_{Q_T} |\nabla G_k(u_n)|^{\sigma} dx dt \\ &\leq \left(\int_0^T \int_{E_{k,n}(t)} \frac{|\nabla G_k(u_n)|^p}{(1+u_n)^{\theta-p+2}} dx dt \right)^{\frac{\sigma}{p}} \\ &\quad \times \left(\int_0^T \int_{E_{k,n}(t)} (1+u_n)^{\frac{(\theta-p+2)\sigma}{p-\sigma}} dx dt \right)^{\frac{p-\sigma}{p}} \\ &\leq C_2 \left(\int_0^T \int_{E_{k,n}(t)} (k+G_k(u_n))^{m'(p-1-\gamma)} dx dt \right)^{\frac{\sigma}{pm'}} \\ &\quad \times \left(\int_0^T \int_{E_{k,n}(t)} (k+G_k(u_n))^{\frac{(\theta-p+2)\sigma}{p-\sigma}} dx dt \right)^{\frac{p-\sigma}{p}}. \end{split}$$
(4.2)

Choosing $\sigma = \frac{2pN-2N+p^2-N\theta}{N+p}$, this choice of σ , implies that $p-1 < \sigma < p$ and $0 < \frac{(\theta-p+2)\sigma}{p-\sigma} = \frac{(N+p)\sigma}{N}$. By (4.2), we deduce that

$$\int_{Q_T} |\nabla G_k(u_n)|^{\sigma} dx dt$$

$$\leq C_2 \left(\int_0^T \int_{E_{k,n}(t)} (k + G_k(u_n))^{m'(p-1-\gamma)} dx dt \right)^{\frac{\sigma}{pm'}}$$

$$\times \left(\int_0^T \int_{E_{k,n}(t)} (k + G_k(u_n))^{\frac{(N+p)\sigma}{N}} dx dt \right)^{\frac{p-\sigma}{p}}.$$
(4.3)

From Lemma 1.2 (here $v = G_k(u_n)$, $\kappa = \sigma$, $\rho = p$), (4.1) and (4.3), we obtain

$$\int_{0}^{T} \int_{E_{k,n}(t)} G_{k}(u_{n})^{\frac{(N+p)\sigma}{N}} dx dt
\leq \left(\|G_{k}(u_{n})\|_{L^{\infty}(0,T;L^{p}(E_{k,n}))}^{p} \right)^{\frac{\sigma}{N}} \int_{0}^{T} \int_{E_{k,n}(t)} |\nabla G_{k}(u_{n})|^{\sigma} dx dt
\leq C_{2} \left(\int_{0}^{T} \int_{E_{k,n}(t)} (k + G_{k}(u_{n}))^{m'(p-1-\gamma)} dx dt \right)^{\frac{(N+p)\sigma}{pNm'}}
\times \left(\int_{0}^{T} \int_{E_{k,n}(t)} (k + G_{k}(u_{n}))^{\frac{(N+p)\sigma}{N}} dx dt \right)^{\frac{p-\sigma}{p}}.$$
(4.4)

Since

$$m > \frac{N}{p} + 1$$
, and $\sigma > p - 1 > p - 1 - \gamma$, (4.5)

then we have $\frac{\sigma(N+p)}{m'N(p-1-\gamma)} > 1$. Thus, using Hölder's inequality, we have

$$\int_{0}^{T} \int_{E_{k,n}(t)} (k + G_{k}(u_{n}))^{(p-1-\gamma)m'} dx dt$$

$$\leq \left(\int_{0}^{T} \int_{E_{k,n}(t)} (k + G_{k}(u_{n}))^{\frac{\sigma(N+p)}{N}} dx dt \right)^{\frac{(p-1-\gamma)m'N}{(N+p)\sigma}} \times \left(\int_{0}^{T} |E_{k,n}(t)| dt \right)^{1 - \frac{(p-1-\gamma)m'N}{(N+p)\sigma}}.$$
(4.6)

We denote by

$$\Lambda_n(k) = \int_0^T |E_{k,n}(t)| dt, \quad \mathbf{G}_{nk} = \int_0^T \int_{E_{k,n}(t)} G_k(u_n)^{\frac{(N+p)\sigma}{N}} dx dt.$$

From (4.6) and (4.4), we can write for all $k \ge 1$

$$\mathbf{G}_{nk} \leq C_3 \mathbf{G}_{nk}^{\frac{2p-1-\sigma-\gamma}{p}} \Lambda_n(k) \frac{\frac{(N+p)\sigma}{pNm'} - \frac{p-1-\gamma}{p}}{+ C_3 k^{\frac{(N+p)\sigma}{N} \left(\frac{2p-1-\sigma-\gamma}{p}\right)} \Lambda_n(k) \frac{\frac{(N+p)\sigma}{pNm'} + \frac{p-\sigma}{p}}{+ C_3 k^{\frac{N+p}{N} \left(\frac{2p-1-\sigma-\gamma}{p}\right)} \Lambda_n(k) \frac{(N+p)\sigma}{pNm'} + \frac{N+p-\sigma}{p}},$$
(4.7)

(4.5) implies that $\frac{2p-1-\sigma-\gamma}{p} < 1$, then, by Young's inequality for all $\varepsilon > 0$,

$$\mathbf{G}_{nk}^{\frac{2p-1-\sigma-\gamma}{p}}\Lambda_{n}(k)^{\frac{(N+p)\sigma}{pNm'}-\frac{p-1-\gamma}{p}} \leq C(\varepsilon)\Lambda_{n}(k)^{\left(\frac{(N+p)\sigma}{Nm'}-(p-1-\gamma)\right)\frac{1}{\sigma+1-p+\gamma}} +\varepsilon\mathbf{G}_{nk}.$$
(4.8)

Taking $\varepsilon = \frac{1}{2C_3}$ in (4.8) and applying (4.7) to (4.8), we get

$$\mathbf{G}_{nk} \leq C_4 \Lambda_n(k) \frac{\frac{(N+p)\sigma - Nm'(p-1-\gamma)}{Nm'(\sigma+1-p+\gamma)}}{+ C_4 k^{\frac{(N+p)\sigma}{N} \left(\frac{2p-1-\sigma-\gamma}{p}\right)} \Lambda_n(k) \frac{\frac{(N+p)\sigma + Nm'(p-\sigma)}{pNm'}}{k}.$$
(4.9)

The assumption $m > \frac{N}{p} + 1$ implies

$$\frac{(N+p)\sigma - Nm'(p-1-\gamma)}{Nm'(\sigma+1-p+\gamma)} > \frac{(N+p)\sigma + Nm'(p-\sigma)}{pNm'} > 1.$$

We note that $|\Lambda_n(k)| \le T |\Omega|, k \ge 1$, and so

$$\mathbf{G}_{nk} \le C_5 k^{\frac{\sigma(N+p)}{N} \left(\frac{2p-1-\sigma-\gamma}{p}\right)} \Lambda_n(k)^{\frac{(N+p)\sigma+Nm'(p-\sigma)}{pNm'}}.$$
(4.10)

Since $G_k(u_n) > h - k$ on $E_{h,n}(t)$ if h > k and $E_{h,n}(t) \subset E_{k,n}(t)$. By virtue of $\frac{2p-1-\sigma-\gamma}{p} < 1$, (4.10) can be written as

$$\Lambda_n(h) \le \frac{C_5 k^{\frac{\sigma(N+p)}{N} \left(\frac{2p-1-\sigma-\gamma}{p}\right)} \Lambda_n(k)^{\frac{(N+p)\sigma}{pNm'} + \frac{p-\sigma}{p}}}{(h-k)^{\frac{\sigma(N+p)}{N}}}, \quad \forall h > k \ge 1.$$

$$(4.11)$$

Lemma 1.1 applied to

$$\rho = \frac{2p - 1 - \sigma - \gamma}{p}, \quad \nu = \frac{(N + p)\sigma}{N}, \quad \text{and} \quad \vartheta = \frac{(N + p)\sigma}{pNm'} + \frac{p - \sigma}{p},$$

we have, there exists a positive constant l such that $\Lambda_n(l) = 0$. By the fact that $|\Lambda_n(k)| \le T |\Omega|$ (see the proof of Lemma A.1 of [6]), there exists a positive constant d_0 independent of n such that $l \le d_0$, so that

$$\Lambda_n(d_0) = 0. \tag{4.12}$$

Therefore, from (4.12), it follows that the sequence $\{u_n\}_n$ is bounded in $L^{\infty}(Q_T)$. **Case 2:** Suppose that $0 \le \theta \le p - 2$. By (4.1), we can write

$$\begin{split} \int_{Q_T} |\nabla G_k(u_n)|^p dx dt &\leq \int_0^T \int_{E_{n,k}(t)} |\nabla u_n|^p (1+u_n)^{p-2-\theta} dx dt \\ &\leq C_6 \left(\int_0^T \int_{E_{n,k}(t)} (k+G_k(u_n))^{(p-1-\gamma)m'} dx dt \right)^{\frac{1}{m'}}. \end{split}$$

From Lemma 1.2 (here $v = G_k(u_n)$, $\kappa = \varrho = p$), the previous inequality and (4.1) gives

$$\int_{0}^{T} \int_{E_{k,n}(t)} G_{k}(u_{n})^{\frac{(N+p)p}{N}} dx dt$$

$$\leq \left(\|G_{k}(u_{n})\|_{L^{\infty}(0,T;L^{p}(E_{k,n}))}^{p} \right)^{\frac{p}{N}} \int_{0}^{T} \int_{E_{k,n}(t)} |\nabla G_{k}(u_{n})|^{p} dx dt$$

$$\leq C_{7} \left(\int_{0}^{T} \int_{E_{k,n}(t)} (k+G_{k}(u_{n}))^{m'(p-1-\gamma)} dx dt \right)^{\frac{(N+p)}{Nm'}}.$$

By Hölder's inequality with exponent $\frac{(N+p)p}{Nm'(p-1-\gamma)} > 1$ (since $m > \frac{N}{p} + 1$), we have

$$\int_{0}^{T} \int_{E_{k,n}(t)} G_{k}(u_{n})^{\frac{(N+p)p}{N}} dx dt$$

$$\leq C_{8} \left(\int_{0}^{T} \int_{E_{k,n}(t)} (k+G_{k}(u_{n}))^{\frac{(N+p)p}{N}} dx dt \right)^{\frac{p-1-\gamma}{p}} \Lambda_{n}(k)^{\frac{p+N}{Nm'}-\frac{p-1-\gamma}{p}}.$$

Therefore, (4.11) holds true for $\sigma = p$

$$\Lambda_n(h) \leq \frac{C_9 k^{\frac{(N+p)p}{N} \cdot \frac{p-1-\gamma}{p}} \Lambda_n(k)^{\frac{(N+p)}{Nm'}}}{(h-k)^{\frac{(N+p)p}{N}}}, \quad \forall h > k \geq 1.$$

Using that $\frac{p-1-\gamma}{p} \in (0, 1)$ (since $p-2 \le \gamma < 1$) and that $\frac{(N+p)}{Nm'} > 1$, thus u_n is bounded in $L^{\infty}(Q_T)$.

Now, choosing u_n as a test function for problem (3.4). Using (1.2) and (1.6), we obtain

$$\frac{1}{2}\int_{\Omega}u_n(T)^2dx + \alpha \int_{Q_T}\frac{|\nabla u_n|^p}{(1+u_n)^{\theta}}dxdt \le \int_{Q_T}f_nu_n^{1-\gamma}dxdt.$$
(4.13)

Dropping the non-negative term, by Hölder's inequality on the right-hand side of the inequality (4.13), and the boundedness of the sequence $\{u_n\}_n$ in $L^{\infty}(Q_T)$, we obtain

$$\int_{Q_T} \frac{|\nabla u_n|^p}{(1+u_n)^{\theta}} dx dt \le \|f\|_{L^m(Q_T)} |Q_T|^{\frac{1}{m'}} \|u_n^{1-\gamma}\|_{L^{\infty}(Q_T)} \le C_{10} \|f\|_{L^m(Q_T)}.$$
(4.14)

Therefore, from (4.14) and since the sequence $\{u_n\}_n$ is bounded in $L^{\infty}(Q_T)$, we get

$$\int_{\mathcal{Q}_T} |\nabla u_n|^p dx dt = \int_{\mathcal{Q}_T} \frac{|\nabla u_n|^p}{(1+u_n)^\theta} (1+u_n)^\theta dx dt$$
$$\leq \left(1 + \|u_n\|_{L^{\infty}(\mathcal{Q}_T)}\right)^\theta \int_{\mathcal{Q}_T} \frac{|\nabla u_n|^p}{(1+u_n)^\theta} dx dt$$
$$\leq C_{11}.$$

Consequently the sequence $\{u_n\}_n$ is bounded in $L^p(0, T; W_0^{1,p}(\Omega))$. By (3.1), (3.2) and the boundedness of the sequence $\{u_n\}_n$ in $L^p(0, T; W_0^{1,p}(\Omega))$, we obtain the sequence $\{\frac{\partial u_n}{\partial t}\}_n$ is bounded in $L^{p'}(0, T; W^{-1,p'}(\Omega)) + L^m(Q_T)$.

Lemma 4.2 Let $m = \frac{N}{p} + 1$ and let (1.2)-(1.6) hold. Then, the sequence $\{u_n\}_n$ is bounded in $L^p(0, T; W_0^{1,p}(\Omega)) \cap L^r(Q_T)$ for every $r \in [p, +\infty)$.

Proof For $\tau \in (0, T]$, if we take $\varphi(u_n) = (1 + u_n)^{(p-1)\mu} - 1$ as a test function in (3.4), with

$$\mu \ge \frac{1+\theta}{p-1}.\tag{4.15}$$

By assumptions (1.2), (1.6), we obtain

$$\int_{\Omega} \Psi(u_{n}(x,\tau))dx + (p-1)\mu\alpha \int_{0}^{\tau} \int_{\Omega} \frac{|\nabla u_{n}|^{p}}{(1+u_{n})^{\theta}} (1+u_{n})^{(p-1)\mu-1} dxdt$$

$$\leq \int_{0}^{\tau} \int_{\Omega} f_{n} u_{n}^{(p-1)\mu-\gamma} dxdt, \qquad (4.16)$$

where

$$\Psi(s) = \int_0^{\zeta} \varphi(y) dy \ge \frac{\zeta^{(p-1)\mu+1}}{(p-1)\mu+1} \quad \forall \zeta > 0, \ \mu > 1.$$
(4.17)

Thus, (4.16), (4.17), (3.2), and Hölder's inequality on the last integral, we get

$$\frac{1}{(p-1)\mu+1} \int_{\Omega} u_n(x,\tau)^{(p-1)\mu+1} dx
+ (p-1)\mu\alpha \int_0^{\tau} \int_{\Omega} |\nabla u_n|^p (1+u_n)^{(p-1)\mu-1-\theta} dx dt
\leq \|f\|_{L^m(Q_T)} \left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt \right)^{\frac{1}{m'}}.$$
(4.18)

The condition (4.15) implies that $(p-1)\mu + p - 1 - \theta \ge p$, so (4.18) and (3.2) yield

$$ess \sup_{t \in [0,T]} \int_{\Omega} \left[u_n(x,\tau)^{\frac{(p-1)\mu+p-1-\theta}{p}} \right]^{\frac{p((p-1)\mu+1)}{(p-1)\mu+p-1-\theta}} dx + \int_{Q_T} \left| \nabla u_n^{\frac{(p-1)\mu+p-1-\theta}{p}} \right|^p dx dt \leq C_{12} \left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt \right)^{\frac{1}{m'}} + C_{12}.$$
(4.19)

Thus, by the Gagliardo-Nirenberg inequality (1.7), where

$$v(x,t) = u_n(x,t)^{\frac{(p-1)\mu+p-1-\theta}{p}}, \quad \varrho = \frac{p((p-1)\mu+1)}{(p-1)\mu+p-1-\theta}, \quad \kappa = p,$$

we have

$$\int_{Q_{T}} \left[u_{n}^{\frac{(p-1)\mu+p-1-\theta}{p}} \right]^{p} \frac{N + \frac{p((p-1)\mu+1)}{(p-1)\mu+p-1-\theta}}{N} dx dt \\
\leq M_{2} \left(ess \sup_{0 \leq t \leq T} \int_{\Omega} \left[u_{n}(x,t)^{\frac{(p-1)\mu+p-1-\theta}{p}} \right]^{\frac{p((p-1)\mu+1)}{(p-1)\mu+p-1-\theta}} dx \right)^{\frac{p}{N}} \\
\times \int_{Q_{T}} \left| \nabla u_{n}^{\frac{(p-1)\mu+p-1-\theta}{p}} \right|^{p} dx dt.$$
(4.20)

By (4.19)-(4.20) and taking

$$s = \frac{p((p-1)\mu + 1) + N((p-1)\mu + p - 1 - \theta)}{N},$$

we obtain

$$\int_{Q_T} u_n^s dx dt \le C_{13} \left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt \right)^{\frac{N+p}{Nm'}} + C_{13}.$$
(4.21)

Since $\frac{N+p}{Nm'} = 1$ and by (1.3), we obtain

$$((p-1)\mu - \gamma)m' = ((p-1)\mu - \gamma)\frac{N+p}{N} < s.$$
(4.22)

From (4.22), Hölder's inequality and Young's inequality with $\varepsilon > 0$, we deduce that

$$\int_{Q_T} u_n^{\frac{((p-1)\mu-\gamma)(N+p)}{N}} dx dt \leq C_{14} \left(\int_{Q_T} u_n^s dx dt \right)^{\frac{((p-1)\mu-\gamma)(N+p)}{sN}} \leq \varepsilon \int_{Q_T} |u_n|^s dx dt + c(\varepsilon).$$
(4.23)

By (4.21), (4.23) and letting $\varepsilon = \frac{1}{2C_{13}}$, we get

$$\int_{Q_T} |u_n|^s dx dt \le C_{15}.$$
(4.24)

On the other hand, since

$$\mu \geq \frac{1+\theta}{p-1} \geq \frac{N(\theta+1)-p}{(p-1)(p+N)},$$

and

$$s \ge p \Leftrightarrow \mu \ge \frac{N(\theta+1)-p}{(p-1)(p+N)},$$

therefore, from (4.24) with r = s, it follows that the sequence $\{u_n\}_n$ is bounded in $L^r(Q_T)$. Inequalities (4.18), (4.23), and the boundedness of the sequence $\{u_n\}_n$ in $L^r(Q_T)$, imply then

$$\int_{Q_T} |\nabla u_n|^p dx dt \le \int_{Q_T} |\nabla u_n|^p (1+u_n)^{(p-1)\mu-1-\theta} dx dt \le C_{16}.$$
(4.25)

Thus from (4.25) immediately follows the boundedness of the sequence $\{u_n\}_n$ in $L^p(0, T; W_0^{1,p}(\Omega))$.

Lemma 4.3 Let $f \in L^m(Q_T)$, with m satisfies (2.2), and (1.2)-(1.6) hold. Then, the sequence $\{u_n\}_n$ is bounded in $L^{\delta}(Q_T) \cap L^p(0, T; W_0^{1, p}(\Omega))$, where δ as in (2.3).

Proof We put

$$((p-1)\mu - \gamma)m' = \frac{p((p-1)\mu + 1) + N((p-1)\mu + p - 1 - \theta)}{N},$$
(4.26)

in the proof of Lemma 4.2. By (2.2) and (4.26) we get

$$\mu = \frac{(m-1)(p+N(p-1-\theta))+\gamma mN}{(p-1)(N+p-pm)} \geq \frac{1+\theta}{p-1}$$

Consequently

$$\delta = ((p-1)\mu - \gamma)\frac{m}{m-1} = \frac{m(p+N(p-1-\theta) + \gamma(N+p))}{N+p-pm}.$$
 (4.27)

$$\left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt\right)^{\frac{N+p}{Nm'}} \le \varepsilon \int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt + c(\varepsilon).$$
(4.28)

Taking (4.28) in (4.21) and letting $\varepsilon = \frac{1}{2C_{13}}$, by (4.26) and (4.27), we deduce that the sequence $\{u_n\}_n$ is bounded in $L^{\delta}(Q_T)$. The rest of the proof is the same way in proof of Lemma 4.2.

Lemma 4.4 Let f belongs to $L^m(Q_T)$, with m satisfies (2.4), and (1.2)-(1.6) hold. Then, the sequence $\{u_n\}_n$ is bounded in $L^{\delta}(Q_T) \cap L^q(0, T; W_0^{1,q}(\Omega))$, where δ and q are defined in Theorem 2.5.

Proof Suppose that

$$0 < \mu < \frac{1+\theta}{p-1}.$$

Let φ and Ψ as in (4.17). Choosing $\varphi(u_n(x, t))\chi_{(0,\tau)}(t)$ as a test function in (3.4). Using the fact that

$$\Psi(\zeta) \ge c \zeta^{\mu(p-1)+1} - c \quad \forall s \in \mathbb{R}_+,$$

we have

$$ess \sup_{0 \le t \le \tau} \int_{\Omega} u_n(x,\tau)^{(p-1)\mu+1} dx + \int_{Q_T} \frac{|\nabla u_n|^p}{(1+u_n)^{\theta+1-(p-1)\mu}} dx dt$$
$$\le C_{17} \left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt \right)^{\frac{1}{m'}} + C_{17}.$$
(4.29)

Using Hölder's inequality with the exponents $\frac{p}{a}$ and (4.29), we obtain

$$\begin{split} \int_{Q_T} |\nabla u_n|^q dx dt &\leq \left(\int_{Q_T} \frac{|\nabla u_n|^p}{(1+u_n)^{\theta+1-(p-1)\mu}} dx dt \right)^{\frac{q}{p}} \\ &\times \left(\int_{Q_T} (1+u_n)^{\frac{(\theta+1-(p-1)\mu)q}{p-q}} dx dt \right)^{\frac{p-q}{p}} \\ &\leq C_{18} \left(\left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt \right)^{\frac{1}{m'}} + 1 \right)^{\frac{q}{p}} \\ &\times \left(\int_{Q_T} u_n^{\frac{(\theta+1-(p-1)\mu)q}{p-q}} dx dt + 1 \right)^{\frac{p-q}{p}}. \end{split}$$
(4.30)

Now we take μ , such that

$$\mu = \frac{(\theta + 1)q + \gamma m'(p - q)}{(p - 1)((p - q)m' + q)} < \frac{1 + \theta}{p - 1},$$

$$((p-1)\mu - \gamma)m' = \frac{(\theta + 1 - (p-1)\mu)q}{p-q}.$$
(4.31)

Then, by the inequality (4.30), we get

$$\int_{Q_T} |\nabla u_n|^q dx dt \le C_{19} \left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'dxdt} \right)^{\frac{q}{pm'} + \frac{p-q}{p}} + C_{19}.$$
(4.32)

Applying Lemma 1.2 (here $v(x, t) = u_n(x, t)$, $\rho = (p - 1)\mu + 1$, $\kappa = q$) and from (4.29), (4.32), we have

$$\int_{Q_T} u_n^{\frac{(N+(p-1)\mu+1)q}{N}} dx dt$$

$$\leq \left(ess \sup_{0 \le t \le T} \int_{\Omega} u_n(x,t)^{(p-1)\mu+1} dx \right)^{\frac{q}{N}} \int_{Q_T} |\nabla u_n|^q dx dt$$

$$\leq C_{20} \left(\int_{Q_T} u_n^{((p-1)\mu-\gamma)m'} dx dt \right)^{\frac{q(N+p)}{pNm'} + \frac{p-q}{p}} + C_{20}.$$
(4.33)

Set

$$((p-1)\mu - \gamma)\frac{m}{m-1} = \frac{(N+(p-1)\mu + 1)q}{N}$$

then, by (4.31) we obtain

$$\mu = \frac{(m-1)(p+N(p-1-\theta)) + m\gamma N}{(p-1)(N+p-pm)},$$
(4.34)

and

$$q = \frac{m[N(p-\theta-1) + p + \gamma(N+p)]}{N+1 - (\theta+1)(m-1) + m\gamma}.$$
(4.35)

By (4.34), (4.35) and (4.33), we have $(p-1)\mu m' = \delta$ and

$$\int_{Q_T} u_n^{\delta} dx dt \le C_{20} \left(\int_{Q_T} u_n^{\delta} dx dt \right)^{\frac{q(N+p)}{pNm'} + \frac{p-q}{p}} + C_{20}.$$
(4.36)

Since $\frac{q(N+p)}{pNm'} + \frac{p-q}{p} < 1$, then from (4.36), we deduce that the sequence $\{u_n\}_n$ is bounded in $L^{\delta}(Q_T)$. Going back to (4.32) and (4.35), this in turn implies that the sequence $\{u_n\}_n$ is bounded in $L^q(0, T; W_0^{1,q}(\Omega))$.

5 Proof of Main Results

5.1 Proof of Theorem 2.2

In virtue of Lemma 4.1, we have the sequence $\{u_n\}_n$ is bounded in $L^{\infty}(Q_T) \cap L^p(0, T; W_0^{1,p}(\Omega))$. Then, there exists a function $u \in L^{\infty}(Q_T) \cap L^p(0, T; W_0^{1,p}(\Omega))$, such that, up to

subsequence,

$$u_n \rightarrow u$$
 weakly in $L^p(0, T; W_0^{1, p}(\Omega),$
 $u_n \rightarrow u$ weakly*in $L^{\infty}(Q_T)$ for $\sigma^*(L^{\infty}(Q_T), L^1(Q_T)).$

In view of Lemma 4.1, we have that the sequence $\left\{\frac{\partial u_n}{\partial t}\right\}_n$ is bounded in $L^1(Q_T) \cap L^{p'}(0,T; W_0^{-1,p'}(\Omega))$. So, using compactness results (corollary 4 of [34]) we obtain $\{u_n\}_n$ is relatively compact in $L^1(Q_T)$. This implies that

$$u_n \to u$$
 strongly in $L^1(Q_T)$, and a.e. in Q_T . (5.1)

To carry on the proof, we need the following Lemma.

Lemma 5.1 [23] For all k > 0, there exists a function θ_k such that for all $\varepsilon > 0$, we have

$$\limsup_{n} \int_{\{|u_n-u^k|\leq \varepsilon\}} a(x,t,T_n(u_n),\nabla u_n)(\nabla u_n-\nabla u^k)dxdt \leq \theta_k(\varepsilon),$$

with $\lim \theta_k(\varepsilon) = 0, u^k = \phi_k(u).$

By Lemma 5.1, we can adopt the approach of [22, 26], we deduce that there exists a subsequence, still denoted by $\{u_n\}_n$, such that

$$\nabla u_n \to \nabla u$$
 almost everywhere in Q_T . (5.2)

From (5.1), (5.2) and the fact that b is Carathéodory function, we obtain

$$b(x, t, u_n, \nabla u_n) \to b(x, t, u, \nabla u)$$
 almost everywhere in Q_T . (5.3)

By (5.3), and Vitali's theorem, one has

$$a(x, t, u_n, \nabla u_n) \to a(x, t, u, \nabla u) \quad \text{strongly in } L^{p'}(Q_T).$$
 (5.4)

We begin by proving an important lemma useful to prove of Theorem 2.2-2.5.

Lemma 5.2 Let u_n be a weak solution of (3.1). Then

$$\lim_{n \to +\infty} \int_{Q_T} g_n(u_n) f_n \psi dx dt = \int_{Q_T} g(u) f \psi dx dt,$$
(5.5)

for all $\psi \in L^p(0, T; W^{1,p}_0(\Omega)) \cap L^{\infty}(Q_T)$.

Proof Let $\psi \in L^p(0, T; W_0^{1, p}(\Omega)) \cap L^{\infty}(Q_T)$ as a test function in (3.1), we obtain

$$\int_{Q} \frac{\partial u_{n}}{\partial t} \psi dx dt + \int_{Q_{T}} b(x, t, T_{n}(u_{n}), \nabla u_{n}) \cdot \nabla \psi dx dt$$
$$= \int_{Q_{T}} g_{n}(u_{n}) f_{n} \psi dx dt.$$
(5.6)

If $g(0) < +\infty$, we obtain (5.5) hold true. Suppose that $g(0) = \lim_{z\to 0} g(z)$. Let ψ be a non-negative function in $L^{\infty}(Q_T) \cap L^p(0, T; W_0^{1,p}(\Omega))$ as a test function in the weak formulation (5.6), using (1.4) and Young's inequality, we obtain

$$\begin{split} \int_{Q_T} g_n(u_n) f_n \psi dx dt &\leq \frac{1}{p} \int_{Q_T} |u_n|^p dx dt + \frac{1}{p'} \int_{Q_T} \left| \frac{\partial \psi}{\partial t} \right|^{p'} dx dt \\ &+ \frac{1}{p} \int_{Q_T} |\nabla \psi|^p dx dt \\ &+ \frac{1}{p'} \int_{Q_T} \left(a(x,t) + |T_n(u_n)|^{p-1} + |\nabla u_n|^{p-1} \right)^{p'} dx dt \\ &\leq C \left(\|u_n\|_{L^p(Q_T)} + \left\| \frac{\partial \psi}{\partial t} \right\|_{L^{p'}(Q_T)} + \|k\|_{L^{p'}(Q_T)} \right) \\ &+ C \left(\|u_n\|_{L^p(0,T;W_0^{1,p}(\Omega)} + \|\psi\|_{L^p(0,T;W_0^{1,p}(\Omega)} \right) \\ &\leq C. \end{split}$$
(5.7)

Therefore (5.7) implies that $\{f_n g_n(u_n)\}_n$ is bounded in $L^1(Q_T)$. Passing to the limit as $n \to +\infty$ in (5.5), Fatou's lemma implies

$$\int_{Q_T} fg(u)\psi dxdt \le C \quad \forall n,$$
(5.8)

then we have

$$\int_{\{u=0\}} \lim_{z\to 0} g(z) f\varphi \, dx dt < +\infty,$$

so that, $f\varphi = 0$ a.e. on $\{u = 0\}$ for all nonnegative $\varphi \in L^p(0, T; W_0^{1, p}(\Omega)) \cap L^{\infty}(Q_T)$. Yielding

$$f = 0$$
 a.e. on $\{u = 0\}$. (5.9)

For every fixed $\lambda > 0$, we can write

$$\int_{Q_T} f_n g_n(u_n) \psi dx dt = \int_{Q_T \cap \{u_n > \lambda\}} f_n g_n(u_n) \psi dx dt + \int_{Q_T \cap \{u_n \le \lambda\}} f_n g_n(u_n) \psi dx dt = \mathcal{I}_{n,\lambda}^1 + \mathcal{I}_{n,\lambda}^2.$$
(5.10)

For $\mathcal{I}_{n,\lambda}^1$, we have

$$0 \le g_n(u_n) f_n \chi_{\{u_n > \lambda\}} \varphi \le \sup_{z \in [\lambda, +\infty)} [g(z)] f \varphi \in L^1(Q_T).$$
(5.11)

Using Lebesgue's dominated convergence theorem and that the sequence $\{\chi_{\{u_n>\lambda\}}\}_n$ converges to $\chi_{\{u\geq\lambda\}}$ a.e. in Q_T , we get

$$\lim_{n\to\infty}\mathcal{I}^1_{n,\lambda}=\int_{\mathcal{Q}_T\cap\{u\geq\lambda\}}g(u)f\psi dxdt.$$

Since $g(u) f \varphi \in L^1(Q_T)$, Lebesgue's theorem, with respect to λ , imply that

$$\lim_{\lambda \to 0^+} \lim_{n \to \infty} \mathcal{I}^1_{n,\lambda} = \int_{\mathcal{Q}_T \cap \{u \ge 0\}} g(u) f \psi dx dt = \int_{\mathcal{Q}_T} g(u) f \psi dx dt$$

By (5.9), it follows that

$$\lim_{\lambda \to 0^+} \lim_{n \to \infty} \mathcal{I}^1_{n,\lambda} = \int_{\mathcal{Q}_T \cap \{u > 0\}} g(u) f \psi dx dt = \int_{\mathcal{Q}_T} g(u) f \psi dx dt.$$
(5.12)

Now in order to get rid of $\mathcal{I}_{n,\lambda}^2$. We take $\Xi_{\lambda}(u_n)\psi$ as test function in (3.1), where Ξ_{λ} is defined in (1.8), we obtain

$$\int_{Q_T} \frac{\partial u_n}{\partial t} \Xi_{\lambda}(u_n) \psi dx dt + \int_{Q_T} b(x, t, T_n(u_n), \nabla u_n) \nabla(\Xi_{\lambda}(u_n) \psi) dx dt$$
$$= \int_{Q_T} f_n g_n(u_n) \Xi_{\lambda}(u_n) \psi dx dt.$$
(5.13)

Using integration by parties and definition of Ξ_{λ} , we have

$$\int_{Q_T} \frac{\partial u_n}{\partial t} \Xi_{\lambda}(u_n) \psi dx dt = -\int_{Q_T} \Theta(u_n) \frac{\partial \psi}{\partial t} dx dt, \qquad (5.14)$$

where

$$\Theta(\zeta) = \int_0^\zeta \Xi_\lambda(y) dy.$$

Using (1.2), $\Xi'_{\lambda}(u_n) = -\frac{1}{\lambda}$ and the fact that

$$\nabla(\Xi_{\lambda}(u_n)\psi) = \Xi_{\lambda}(u_n)\nabla\psi - \frac{1}{\lambda}(u_n)\psi\nabla u_n,$$

we get

$$\int_{Q_T} b(x, t, T_n(u_n), \nabla u_n) \nabla (\Xi_{\lambda}(u_n)\psi) dx dt$$

$$\leq \int_{Q_T} b(x, t, T_n(u_n), \nabla u_n) \Xi_{\lambda}(u_n) \cdot \nabla \psi dx dt.$$
(5.15)

On the other hand

$$\begin{aligned} \int_{\mathcal{Q}_T} f_n g_n(u_n) \Xi_{\lambda}(u_n) \psi dx dt &= \int_{\mathcal{Q}_T \cap \{u_n \le \lambda\}} f_n g_n(u_n) \Xi_{\lambda}(u_n) \psi dx dt \\ &+ \int_{\mathcal{Q}_T \cap \{\lambda < u_n < 2\lambda\}} f_n g_n(u_n) \Xi_{\lambda}(u_n) \psi dx dt \\ &\leq \int_{\mathcal{Q}_T \cap \{u_n \le \lambda\}} f_n g_n(u_n) \Xi_{\lambda}(u_n) \psi dx dt. \end{aligned}$$
(5.16)

Combining (5.13)-(5.15) and (5.16), we obtain

$$\begin{split} \int_{\mathcal{Q}_T \cap \{u_n \leq \lambda\}} f_n g_n(u_n) \Xi_\lambda(u_n) \psi dx dt &\leq \int_{\mathcal{Q}_T} b(x, t, T_n(u_n), \nabla u_n) \Xi_\lambda(u_n) \cdot \nabla \psi dx dt \\ &- \int_{\mathcal{Q}_T} \Theta(u_n) \frac{\partial \psi}{\partial t} dx dt. \end{split}$$

Using that Ξ_{λ} is bounded and Θ is continue we deduce that as *n* tends to infinity

$$\Theta(u_n)\frac{\partial\psi}{\partial t}\to\Theta(u)\frac{\partial\psi}{\partial t}\quad\text{strongly in }L^1(Q_T),$$

and

$$b(x, t, T_n(u_n), \nabla u_n) \Xi_{\lambda}(u_n) \rightarrow b(x, t, u, \nabla u) \Xi_{\lambda}(u)$$
 weakly in $L^{p'}(Q_T)$.

This implies that

$$\begin{split} &\limsup_{n \to +\infty} \int_{Q_T \cap \{u_n \le \lambda\}} f_n g_n(u_n) \Xi_\lambda(u_n) \psi dx dt \\ &\leq -\int_{\{u=0\}} \Theta(u) \frac{\partial \psi}{\partial t} dx dt + \int_{\{u=0\}} b(x, t, u, \nabla u) \Xi_\lambda(u) \cdot \nabla \psi dx dt, \end{split}$$

then

$$\lim_{\lambda \to 0} \lim_{n \to \infty} \mathcal{I}^2_{n,\lambda} = 0.$$
(5.17)

By (5.12) and (5.17) we deduce that, for all nonnegative $\psi \in L^p(0, T; W_0^{1, p}(\Omega)) \cap L^{\infty}(Q_T)$

$$\lim_{n \to \infty} \int_{Q_T} f_n g_n(u_n) \psi dx dt = \int_{Q_T} fg(u) \psi dx dt.$$
(5.18)

Moreover, by decomposing any $\psi = \psi^+ - \psi^-$ with $\psi^+ = \max\{\psi, 0\}$ and $\psi^- = -\min\{\varphi, 0\}$, we deduce that (5.18) holds for every $\psi \in L^p(0, T; W_0^{1, p}(\Omega)) \cap L^{\infty}(Q_T)$. This concludes (5.5).

Let $n \to +\infty$ in (5.6), by (5.1), (5.4) and (5.5) we get

$$\int_{Q_T} \frac{\partial u}{\partial t} \psi dx dt + \int_{Q_T} b(x, t, u, \nabla u) \cdot \nabla \psi dx dt = \int_{Q_T} g(u) f \psi dx dt,$$
(5.19)

for every $\psi \in L^p(0, T; W_0^{1, p}(\Omega)) \cap L^{\infty}(Q_T)$.

5.2 Proof of the Theorem 2.5

From Lemma 4.4, we have the sequence $\{u_n\}_n$ is bounded in $L^q(0, T; W_0^{1,q}(\Omega)) \cap L^{\delta}(Q_T)$ and $\{\frac{\partial u_n}{\partial t}\}_n$ is bounded in $L^{q'}(0, T; W^{-1,q'}(\Omega)) + L^m(Q_T)$. Thus, the sequence $\{\frac{\partial u_n}{\partial t}\}_n$ is bounded in $L^1(0, T, W^{-1,\epsilon}(\Omega))$ for every $\epsilon < \min\{\frac{N}{N-1}, q'\}$. So, by corollary 4 of [34], we get the sequence $\{u_n\}_n$ is relatively compact in $L^1(Q_T)$. This implies that we can extract a subsequence (denote again by $\{u_n\}_n$) such that the sequence $\{u_n\}_n$ converges to u strongly in $L^1(Q_T)$. From (5.1), (5.2), we obtain

$$b(x, t, u_n, \nabla u_n) \to b(x, t, u, \nabla u)$$
 a.e. in Q_T . (5.20)

Using Lemma 4.4, (5.20), $\frac{q}{p-1} > 1$ and Vitali's theorem, one has

$$b(x, t, u_n, \nabla u_n) \rightarrow b(x, t, u, \nabla u)$$
 strongly in $L^{\frac{q}{p-1}}(Q_T)$.

Thus, it is possible to pass to the limit in (5.6) as $n \to +\infty$, obtaining (5.19).

Acknowledgements The authors would like to thank the referees for their comments and suggestions.

Funding Not applicable.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Competing Interests I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical Approval Not applicable.

References

- Blanchard, D., Murat, F.: Renormalized solutions of nonlinear parabolic problems with L¹ data, existence and uniqueness. Proc. R. Soc. Edinb., Sect. A 127(6), 1137–1152 (1997)
- Blanchard, D., Redwane, H.: Renormalized solutions for a class of nonlinear evolution problems. J. Math. Pures Appl. 77(2), 117–151 (1998)
- Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differ. Equ. 177(2), 331–374 (2001)
- Boccardo, L., Gallouet, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)
- Boccardo, L., Dall'Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147(1), 237–258 (1997)
- Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 46, 51–81 (1998)
- Boccardo, L., Porzio, M.M., Primo, A.: Summability and existence results for nonlinear parabolic equations. Nonlinear Anal., Theory Methods Appl. 71(3–4), 978–990 (2009)
- Dall'Aglio, A., Orsina, L.: Existence results for some nonlinear parabolic equations with nonregular data. Differ. Integral Equ. 5(6), 1335–1354 (1992)
- De Bonis, I., De Cave, L.M.: Degenerate parabolic equations with singular lower order terms. Differ. Integral Equ. 27(9–10), 949–976 (2014)
- 10. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)
- El Hadfi, Y., Benkirane, A., Youssfi, A.: Existence and regularity results for parabolic equations with degenerate coercivity. Complex Var. Elliptic Equ. 63(5), 715–729 (2018)

- El Hadfi, Y., El Ouardy, M., Ifzarne, A., Sabi, A.: On nonlinear parabolic equations with singular lower order term. J. Elliptic Parabolic Equ. 8(1), 49–75 (2022)
- El Ouardy, M., El Hadfi, Y.: Some nonlinear parabolic problems with singular natural growth term. Results Math. 77, 95 (2022)
- El Ouardy, M., El Hadfi, Y., Ifzarne, A.: Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete Contin. Dyn. Syst., Ser. S 15(1), 117–141 (2022)
- El Ouardy, M., El Hadfi, Y., Sabi, A.: Existence of positive solutions to nonlinear singular parabolic equations with Hardy potential. J. Pseudo-Differ. Oper. Appl. 13, 28 (2022)
- Fengquan, L.: Existence and regularity results for some parabolic equations with degenerate coercivity. Ann. Acad. Sci. Fenn., Math. Diss. 37, 605–633 (2012)
- Khelifi, H.: Some regularity of nonlinear degenerate parabolic equations with L¹-data. Commun. Optim. Theory 2021, Article ID 11 (2021)
- Khelifi, H.: Existence and regularity for solution to a degenerate problem with singular gradient lower order term. Moroccan J. Pure Appl. Anal. 8(3), 310–327 (2022)
- 19. Khelifi, H.: Regularity for entropy solutions of degenerate parabolic equations with L^m data. Math. Model. Comput. **10**(1), 119–132 (2023)
- Khelifi, H.: Existence and regularity for a degenerate problem with singular gradient lower order term. Mem. Differ. Equ. Math. Phys. 90 (2023)
- Khelifi, H., El Hadfi, Y.: Nonlinear elliptic equations with variable exponents involving singular nonlinearity. Math. Model. Comput. 8(4), 705–715 (2021)
- Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)
- Mokhtari, F.: Anisotropic parabolic problems with measure data. Differ. Equ. Appl. 2(1), 123–150 (2010)
- 24. Mokhtari, F.: Nonlinear anisotropic parabolic equations in L^m. Arab J. Math. Sci. 20(1), 1–10 (2014)
- Mokhtari, F., Khelifi, H.: Regularity results for degenerate parabolic equations with L^m data. Complex Var. Elliptic Equ. 68, 2001–2015 (2023). https://doi.org/10.1080/17476933.2022.2103806
- 26. Mokhtari, F., Mecheter, R.: Anisotropic degenerate parabolic problems in \mathbb{R}^N with variable exponent and locally integrable data. Mediterr. J. Math. **16**, 61 (2019)
- Porretta, A.: Uniqueness and homogeneization for a class of noncoercive operators in divergence form. Atti Semin. Mat. Fis. Univ. Modena 46, 915–936 (1998)
- Porzio, M.M.: Existence of solutions for some "noncoercive" parabolic equations. Discrete Contin. Dyn. Syst., Ser. S 5(3), 553–568 (1999)
- Prignet, A.: Existence and uniqueness of "entropy" solutions of parabolic problems with L¹ data. Nonlinear Anal., Theory Methods Appl. 28(12), 1943–1954 (1997)
- Rakotoson, J.M.: A compactness lemma for quasilinear problems application to parabolic equations. J. Funct. Anal. 106, 358–374 (1992)
- Sabi, A., El Hadfi, Y.: Degenerate elliptic problem with a singular nonlinearity. Complex Var. Elliptic Equ. 68(5), 701–718 (2023)
- Sabi, A., El Hadfi, Y., El Ouardy, M.: Singular elliptic problem involving a Hardy potential and lower order term. Asymptot. Anal. 134(1–2), 213–225 (2023)
- Sabi, A., El Hadfi, Y., Zeng, S.: Nonlinear singular elliptic equations of *p*-Laplace type with superlinear growth in the gradient. Mediterr. J. Math. 20, 32 (2023)
- 34. Simon, J.: Compact sets in the space $L^{p}(0, T; B)$. Ann. Mat. Pura Appl. **146**, 65–96 (1987)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.