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Abstract
In this paper, we study the existence and regularity results for some parabolic equations with
degenerate coercivity, and a singular right-hand side. The model problem is

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t

− div

((
1+|∇u|−�

)
|∇u|p−2∇u

(1+|u|)θ

)

= f

(eu−1)γ
in QT ,

u(x,0) = 0 on �,

u = 0 on ∂QT ,

(0.1)

where � is a bounded open subset of RN N ≥ 2, T > 0, � ∈ [0,p − 1), f is a non-negative
function belonging to Lm(QT ), QT = � × (0, T ), ∂QT = ∂� × (0, T ), 0 ≤ θ < p − 1 +
p

N
+ γ (1 + p

N
) and 0 ≤ γ < p − 1.

Keywords Degenerate parabolic equation · Existence and regularity of solution · Singular
term · Irregular data · Fixed point theorem

Mathematics Subject Classification 35J60 · 35J70 · 35B45 · 35D30 · 35B65

1 Introduction

Let � is a bounded open subset of RN (N ≥ 2), QT is the cylinder �× (0, T ) (T > 0), ∂QT

is the lateral surface ∂� × (0, T ). We consider the following double nonlinear anisotropic
singular parabolic problem

⎧
⎨

⎩

∂u
∂t

+ Bu = g(u)f in QT ,

u(x,0) = 0 on �,

u = 0 on ∂QT ,

(1.1)
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where Bu = −div(b(x, t, u,∇u)), f is a non-negative function belonging to a suitable Leb-
sgue space Lm(QT ) (m ≥ 1). Here, we suppose that b : �×R×R

N →R is a Carathéodory
function, and satisfying for almost every (x, t) in QT , for every z ∈ R, for all ξ, η ∈ R

N the
following

b(x, t, z, ξ) · ξ ≥ α|ξ |p
(1 + |z|)θ

, (1.2)

0 ≤ θ < p − 1 + p

N
+ γ (1 + p

N
), (1.3)

|b(x, t, z, ξ)| ≤ a(x, t) + |z|p−1 + |ξ |p−1, (1.4)

(b(x, t, z, ξ) − b(x, t, z, η)) · (ξ − η) > 0, ξ �= η, (1.5)

where α, β are strictly positive real numbers and a is a given positive function in Lp′
(QT )

with 1
p

+ 1
p′ = 1. Moreover, g : [0,+∞) → [0,+∞) is a continuous and possibly singular

function with g(0) �= 0 which it is finite outside the origin and such that

∃ c > 0 : g(z) ≤ c

zγ
for all z > 0, (1.6)

where 0 ≤ γ < p − 1.
In the uniform ellipticity and non singular case (i.e. θ = 0 and γ = 0, it is proved the

existence results for the problems (1.1) in [1–5, 7, 8, 28–30] when f ∈ Lm(QT ) or f is a
bounded Radon measure on QT . We cite the paper [16], and the references therein, when
p = 2, γ = 0, 0 ≤ θ < 1 + 2

N
and f ∈ Lm(QT ), where m ≥ 1. In the case θ = 0 and p ≥ 2,

the existence and regularity solution have been treated in [11]. Problem (1.1), in the coercive
case, has been treated in [9], they have proved the existence and regularity of solutions to
problem

⎧
⎨

⎩

∂u
∂t

− div(|∇u|p−2∇u) = f

uγ in QT ,

u(x,0) = u0(x) on �,

u = 0 on ∂QT ,

with γ > 0, p ≥ 2, f > 0, f ∈ Lm(QT ), m ≥ 1 and u0 ∈ L∞(�). If γ = 0, the problem
(1.1) is studied in [12, 19, 25].

Finally, concerning the singular model case the authors in [14] studied existence and
regularity of problem

⎧
⎨

⎩

∂u
∂t

− div(b(x, t, u,∇u)) + |u|s−1u = g(u)f in QT ,

u = 0 on ∂QT ,

u(x,0) = 0 in �,

where f ∈ Lm(QT ) (m ≥ 1), a : QT × R × R
N → R is a carathéodory function satisfying

for a.e (x, t) ∈ QT , ∀z ∈R, ∀ξ ∈ R
N

b(x, t, z, ξ).ξ ≥ α|ξ |p
(1 + |z|)θ(p−1)

with 0 ≤ θ < 1,

and the singular term g satisfying (1.6) with 0 < γ < 1. The corresponding results for
parabolic equations with singularities have been developed in [13, 15, 17]. The existence
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and regularity results for weak solution of degenerate elliptic equation with singularities
data have been proved in [18, 20, 21, 31–33].

Our main motive in this article is to investigate the results of [25] in the framework of
the operator non-coercive B(u). To reach this goal, we will face the following difficulties.
First, let us note that (1.1) can be singular on the right-hand side in the following sense:
the solution is required to be zero on the boundary of the domain but, simultaneously, the
right- hand side of (1.1) could blow up. Another important feature is the lack of coercivity
for positive θ , the operator B(u) is not coercive as u becomes large. Due to the lack of
coercivity, the classical methods can not be applied even if the data g(u)f are sufficiently
regular (see [27]). We will overcome these two difficulties by approximation, truncating the
degenerate coercivity of the operator term and the singularity of the right-hand side (see
problems (3.1)). We will prove by Schauder’s theorem that these problems admit a bounded
finite energy solution un.

The following lemma is useful when proving the boundedness of the solution un of prob-
lem (3.1).

Lemma 1.1 (See [6]) Let M1, ν, ρ, ϑ , k0 be real positive numbers, where ϑ > 1 and ρ ∈
[0,1). Let � :R+ →R+ be a decreasing function such that

�(h) ≤ M1k
νρ

(h − k)ν
[�(k)]ϑ , ∀h > k ≥ k0.

Then there exists l > 0 such that �(l) = 0.

Next, we will review the results of the renowned Gagliardo-Nirenberg embedding theo-
rem.

Lemma 1.2 (See [10]) Let v ∈ Lκ(0, T ;W 1,κ
0 (�)) ∩ L∞(0, T ;L�(�)), κ,� ≥ 1. Then v be-

longs to Lq(QT ), where q = κ
N+�

N
, and there exists a positive constant M2 depending only

on N , κ , � such that

∫

QT

|v(x, t)|qdxdt ≤ M2‖v‖ κ
N

L∞(0,T ;L�(�))

∫

QT

|∇v(x, t)|κdxdt. (1.7)

For any q > 1, q ′ = q

q−1 is the Hölder conjugate of q . For fixed k > 0 we will use of the
truncation Tk defined as Tk(s) = max(−k,min(k, s)) and Gk(s) = s − Tk(s). We will also
use the following function

�λ(s) =

⎧
⎪⎨

⎪⎩

1, if s ≤ λ,
λ−s
λ

, if λ < s < 2λ,

0, if s ≥ 2λ.

(1.8)

For the sake of completeness, we recall a well-known inequality that will be useful in
what follows

∀a > 0,∀μ > 0, ∃C(μ,a) > 0 : (1 + t)μ ≤ Ctμ, ∀t ∈ [a,+∞). (1.9)
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2 Statements of Results

We first define the notion of a weak solution to (1.1) as follows:

Definition 2.1 We say that u ∈ L1(0, T ;W 1,1
0 (�)) is a weak solution of problem (1.1), if

b(x, t, u,∇u) ∈ (L1(QT ))N , g(u)f ∈ L1(QT ) and the equality
∫

QT

∂u

∂t
ϕdxdt +

∫

QT

b(x, t, u,∇u).∇ϕdxdt =
∫

QT

g(u)f ϕdxdt, (2.1)

for every ϕ ∈ C∞([0, T ] × �) which is zero in a neighborhood of ∂QT and � × {T }.

The first theorem we state concerns with the existence of L∞-solutions to problem (1.1),
where f ∈ Lm(QT ) with m > N

p
+ 1.

Theorem 2.2 Assume that (1.2)-(1.6) hold true. Let f ∈ Lm(QT ) with m > N
p

+ 1. Then

there exists u ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ) a weak solution to problem (1.1).

Remark 1 We apply Lemma 1.1, which requires the assumption p ≥ 2, to obtain the L∞-
estimates for un the solutions of (3.1). In the case p = 2, γ = 0 the result of Theorem 2.2
coincides with the classical boundedness results for degenerate parabolic equations ([16],
Theorem 1.1), furthermore if p > 2 the results of Theorem 2.2 are similar than the regularity
results of [14, 25]. To obtain the L∞-estimate, the conditions (1.4) and (1.5) are unnecessary.
However, such conditions are needed to prove the existence of un solution of problem (3.1).

In the following theorem we give the result of existence and regularity in the case of
exact values of the summability exponent m = N

p
+ 1.

Theorem 2.3 Suppose that assumptions (1.2)-(1.6) hold, f ∈ Lm(QT ) with m = N
p

+ 1.

Then, for every r ∈ [p,+∞) there exists u ∈ Lp(0, T ;W 1,p

0 (�)) ∩ Lr(QT ) a weak solution
to problem (1.1).

Remark 2 Theorem 2.3 gives the result in the limit case m = N
p

+ 1 for parabolic equations.
As far as I know, the first time this case was addressed in the article [16] with p = 2 and
γ = 0. The result of Theorem 2.3 has been obtained in [14, 25].

The next result deals with a given m < N
p

+ 1, which ensures the existence of solutions

in Lp(0, T ;W 1,p

0 (�)) ∩ Lδ(QT ).

Theorem 2.4 Let us assume that (1.2)-(1.6) hold true, and that f ∈ Lm(QT ), with

m1 = p(N + θ + 2)

(p − 1)N + 2p − (N − p)θ + Nγ
≤ m <

N

p
+ 1. (2.2)

Then, there exists u ∈ Lp(0, T ;W 1,p

0 (�)) ∩ Lδ(QT ) a weak solution to problem (1.1), such
that

δ = m[p + N(p − 1 − θ) + γ (N + p)]
N + p − pm

. (2.3)
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Remark 3 The condition (1.3) implies that the assumption (2.2) is well defined. By (1.3) and
(2.2), we have δ > p, since

(1.3) ⇔ p(N + θ + 2)

(p − 1)N + 2p − (N − p)θ + Nγ
>

p(N + p)

p + N(p − 1 − θ) + γ (N + p) + p2

⇒ m >
p(N + p)

p + N(p − 1 − θ) + γ (N + p) + p2

⇒ δ > p.

If 0 ≤ θ < 2
N−1 +γ N

(N−1)
, then m1 < p′, so f /∈ Lp′

(0, T ;W−1,p′
(�)). If 2

N−1 +γ N
(N−1)

≤
θ < p − 1 + p

N
+ γ (1 + p

N
), then m1 ≥ p′, so f ∈ Lp′

(0, T ;W−1,p′
(�)).

The first result deals with the case when the summability of f gives the existence of
solution u belong to Lq(0, T ;W 1,q

0 (�)), with p − 1 < q < p.

Theorem 2.5 If hypotheses (1.2)-(1.6) hold and f ∈ Lm(QT ) with m > 1, such that

m2 = N + θ + 2

(p − 1)N + p + 1 − θ(N − 1) + γ (N + p − 1)
< m < m1, (2.4)

then there exists u ∈ Lq(0, T ;W 1,q

0 (�)) ∩ Lδ(QT ) a weak solution to problem (1.1), such
that

q = m[N(p − θ − 1) + p + γ (N + p)]
N + 1 − (θ + 1)(m − 1) + mγ

, (2.5)

where δ as defined in (2.3).

Remark 4 The hypothesis (2.5) is meaningful, because

m2 < m1 ⇔ θ < p − 1 + p

N
+ γ

(
1 + p

N

)
.

Notice that the inequality (2.4) guarantees that p − 1 < q < p. In Theorem 2.5, we also
suppose m > 1,

m2 < 1 ⇔ 0 ≤ θ < p − 1 + p

N
+ γ

(
1 + p

N

)
− N + γ + 1

N
.

If γ = 0; the result of Theorem 2.5 is similar that of ([25], Theorem 2.5).

Remark 5 It will be noted to the reader that the choice of the test functions in the proof of
the a priori estimates allowed us to widen the interval of variation of γ and θ compared to
that in [14], with the same regularity of the solution. If we compare the results of theorems
2.2-2.5 with those of theorems in [25], we can easily see that the singular term allowed us
to widen the interval of variation of θ compared to that the assumption (3) in [25].
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3 Approximating Problems

Let us first consider the following approximation problems

⎧
⎨

⎩

∂un

∂t
− div(b(x, t, Tn(un),∇un)) = gn(un)fn in QT ,

un(x,0) = 0 on �.

un = 0 on ∂QT ,

(3.1)

where fn ∈ L∞(QT ) (for example, fn = Tn(f )), such that

{‖fn‖Lm(QT ) ≤ ‖f ‖Lm(QT ) ≤ C,

fn → f strongly in Lm(QT ), m ≥ 1,
(3.2)

and, we define g(0) = limz→0 g(z), we set

gn(z) =
{

Tn(g(z)) for z > 0,

min{n,g(0)} otherwise.

Using (1.6), we have for all z > 0

gn(z) = Tn(g(z)) ≤ g(z) ≤ c

zγ
. (3.3)

Lemma 3.1 Assume that (1.2), (1.5) and (1.6) hold true. Then, the approximating problem
(3.1) has a non-negative solution un, such that

un ∈ Lp(0, T ;W 1,p

0 (�)) ∩ C([0, T ];L2(�)),
∂un

∂t
∈ Lp′

(0, T ;W−1,p′
0 (�)),

and satisfying the weak formulation

∫ T

0

〈∂un

∂t
, ϕ

〉
dt +

∫

QT

b(x, t, Tn(un),∇un).∇ϕdxdt

=
∫

QT

gn(un)fnϕdxdt, (3.4)

for all n ∈N fixed and for every ϕ ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ), where

〈∂un

∂t
, ϕ

〉
=

∫

�

∂un

∂t
ϕdx.

Proof Let n ∈N and v ∈ Lp(QT ) be fixed. Consider the nonlinear parabolic problem

⎧
⎨

⎩

∂w
∂t

− div(b(x, t, Tn(w),∇w)) = gn(v)fn in QT ,

w(x,0) = 0 on �,

w = 0 on ∂QT ,

(3.5)

it is clear that the problem (3.5) has a unique solution w with

w ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ) and
∂w

∂t
∈ Lp′

(0, T ;W−1,p′
0 (�)) + L1(QT ).



Degenerate and Singular Parabolic Equations Page 7 of 23 6

Since the right-hand side on (3.5) belongs to L∞(QT ) see for instance [23, 24]. In particular,
it is well defined a map P : Lp(QT ) → Lp(QT ) where P (v) = w. By the boundedness of
the sequence {gn(v)fn}n in L∞(QT ), we have that w ∈ L∞(QT ) (see for example [14]),
then, there exists C∞ > 0, independents of v, w (but possibly depending in n), such that

‖w‖L∞(QT ) ≤ C∞. (3.6)

Our aim is to prove the existence of fixed point of the map P . Using w as test function in
(3.5), one gets

1

2

∫

�

|w(T )|2dx +
∫

QT

b(x, t, Tn(w),∇w).∇wdxdt

=
∫

QT

gn(v)fnwdxdt. (3.7)

By (1.2), (1.6) and dropping a positive term on the left-hand side in (3.7)

α

∫

QT

|∇w|p
(1 + |Tn(w)|)θ

dxdt ≤ nγ+1
∫

QT

|w|dxdt. (3.8)

Using the Hölder’s inequality on the right-hand side in (3.8), we have

∫

QT

|∇w|pdxdt ≤ C1

α
nγ+1(1 + n)θ |QT | 1

p′
(∫

QT

|w|pdxdt

) 1
p

Poincaré inequality imply

‖w‖Lp(QT ) ≤ C(n, |QT |), (3.9)

for some constant C(n, |QT |) independent of v and w (possible depending on n). Let B

is a ball of Lp(QT ) of radius C(n, |QT |) is invariant for the map P . Now, we prove that
the map P is continuous in B . Let {vh}n be a bounded sequence in B . By (3.9) there exist
a subsequence of {vh}n still denoted by {vh}n, and a measurable function v belonging to
Lp(QT ), such that

vh → v strongly in Lp(QT ). (3.10)

Let us choose wh as a test function in the weak formulation of the problem solved by wh,
(3.8) implies that

∫ T

0
‖∇wh‖p

Lp(�)dt ≤ C4

∫ T

0

(∫

�

|wh|pdx

) 1
p

dt. (3.11)

Since the ball of Lp(QT ) is invariant for P , we have wh belong to B and so, from the in-
equality (3.11), we obtain that wh is bounded in Lp(0, T ;W 1,p

0 (�)). The growth assumption
(1.4), implies

∫

QT

|b(x, t,wh,∇wh)|p′
dxdt ≤

∫

QT

[|a(x, t)| + |wh|p−1 + |∇wh|p−1
] p

p−1 dxdt

≤ ‖k‖p′
Lp′

(QT )
+ ‖wh‖p

Lp(QT ) + ‖wh‖p

Lp(0,T ;W1,p
0 (�))

< +∞.
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Using the previous inequality with (3.5), and the fact that gn(v)fn ∈ L1(QT ) we have ∂wh

∂t
is

bounded in Lp′
(0, T ;W−1,p′

0 (�)) + L1(QT ). As a result of the Corollary 4 in [34], we can
conclude that wh is relatively strongly compact in L1(QT ). Thus, there exists a subsequence
of wh still denoted by wh, and a measurable function w belonging to L1(QT ) such that

wh → w a.e in L1(QT ). (3.12)

By (3.9), (3.12) and Lebesgue Theorem we have that wh converges strongly to w in Lp(QT ),
and so P is compact.

Now we prove that P is continuous. Let wh = P (vh), (3.10) implies that vh → v a.e in
QT , hence gn(vh)fn converges to gn(v)fn a.e in QT and by the dominated convergence the-
orem one has that gn(vh)fn converge strongly to gn(v)fn in Lp(QT ). Hence, by uniqueness,
one deduce that wh = P (vh) converges to w = P (v) in Lp(QT ). This gives the continu-
ity of S. Using Schauder’s fixed point theorem for every fixed n, we have there exist un

in Lp(0, T ;W 1,p

0 (�)) ∩ C([0, T ];L2(�)) and ∂un

∂t
∈ Lp′

(0, T ;W−1,p′
0 (�)) + L1(QT ), such

that un = P (un).
Choosing ϕ = −u−

n = −unχ{un≤0}, where χ{un≤0} denotes the characteristic function
of {(x, t) ∈ QT : un(x, t) ≤ 0} as a test function in (3.1). Using (1.2), and recalling that
gn(un)fn is nonnegative, we obtain

− 1

2

∫

�

|u−
n |2dx − α

(1 + n)θ

∫

QT

|∇u−
n |pdxdt ≥ −

∫

QT

gn(un)fnu
−
n dxdt ≥ 0,

dropping the term − 1
2

∫

�
|u−

n |2dx, we have

−
∫

QT

|∇u−
n |pdxdt ≥ 0,

so that ‖u−
n ‖

Lp(0,T ;W1,p
0 (�))

= 0, thus un ≥ 0 almost everywhere in QT . �

4 A Priori Estimates

We shall denote by Ci, i = 1, ...,N various constants depending only on the structure of p,
θ , γ , T , |�|. Let un ∈ Lp(0, T ;W 1,p

0 (�))∩C([0, T ];L2(�)) be a solution to problem (3.1).
In this section, we prove some uniform estimates for the sequence {un}n and

{
∂un

∂t

}

n
.

Lemma 4.1 Assume that (1.2)-(1.6), p − 2 ≤ γ < 1 hold true. Let f ∈ Lm(QT ) with m >
N
p

+ 1. Then, the sequence {un}n is bounded in L∞(QT ) ∩ Lp(0, T ;W 1,p

0 (�)) and
{

∂un

∂t

}

n

is bounded in Lp′
(0, T ;W−1,p′

(�)) + Lm(QT ).

Proof For every τ ∈ (0, T ], we take ϕ(un) = [(1+un)
p−1 −1]G′

k(un)χ(0,τ ) as a test function
in (3.4), we use the assumption (1.2), and the fact that

�(un) =
∫ un

0

(
(1 + y)p−1 − 1

)
G′

k(y)dy ≥ 1

p
Gk(un)

pG′
k(un),
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we obtain
∫

�

�(un)dx + α(p − 1)

∫ τ

0

∫

�

|∇un|p
(1 + un)θ

(1 + un)
p−2G′

k(un)dxdt

≤
∫ τ

0

∫

�

fngn(un)[(1 + un)
p−1 − 1]G′

k(un)dxdt.

By (3.3), (1.9), (1 + un)
p−1 − 1 ≤ (1 + un)

p−1 and the fact that

∫

QT ∩{un=0}
fngn(un)[(1 + un)

p−1 − 1]G′
k(un)dxdt

≤
∫

QT

fn lim
z→0

g(z)[(1 + 0)p−1 − 1]G′
k(0)dxdt = 0,

we have
∫

�

�(un)dx + α(p − 1)

∫ τ

0

∫

�

|∇un|p
(1 + un)θ

(1 + un)
p−2G′

k(un)dxdt

≤
∫

QT ∩{un>0}
fn

(1 + un)
p−1

u
γ
n

G′
k(un)dxdt

+
∫

QT ∩{un=0}
fngn(un)[(1 + un)

p−1 − 1]G′
k(un)dxdt

≤
∫ T

0

∫

�

fn(1 + un)
p−1−γ G′

k(un)dxdt.

Using Hölder’s inequality on the right-hand side of the previous inequality, (3.2) and the
fact that 1 + un ≤ 2(k + Gk(un)) as k ≥ 1, one has

∫

Ek,n(τ )

Gk(un(τ ))pdx +
∫ τ

0

∫

Ek,n(t)

|∇un|p
(1 + un)θ−p+2

dxdt

≤ C1‖f ‖Lm(QT )

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(p−1−γ )m′

dxdt

) 1
m′

,

where Ek,n(t) = {x ∈ � : un(x, t) > k}, t ∈ (0, T ). Hence

‖Gk(un)‖p

L∞(0,T ;Lp(Ek,n)) +
∫ T

0

∫

Ek,n(t)

|∇un|p
(1 + un)θ−p+2

dxdt

≤ C1‖f ‖Lm(QT )

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(p−1−γ )m′

dxdt

) 1
m′

. (4.1)

The proof is divided into two cases.
Case 1: Suppose that

p − 2 < θ < p − 1 + p

N
+ γ (1 + p

N
).
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For all 1 ≤ p − 1 < σ < p, Writing
∫

QT

|∇Gk(un)|σ dxdt =
∫

QT

|∇un|σ
(1 + un)

(θ−p+2)σ
p

(1 + un)
(θ−p+2)σ

p dxdt.

Using (3.2), (4.1) and Hölder’s inequality, we have
∫

QT

|∇Gk(un)|σ dxdt

≤
(∫ T

0

∫

Ek,n(t)

|∇Gk(un)|p
(1 + un)θ−p+2

dxdt

) σ
p

×
(∫ T

0

∫

Ek,n(t)

(1 + un)
(θ−p+2)σ

p−σ dxdt

) p−σ
p

≤ C2

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
m′(p−1−γ )dxdt

) σ
pm′

×
(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(θ−p+2)σ

p−σ dxdt

) p−σ
p

. (4.2)

Choosing σ = 2pN−2N+p2−Nθ

N+p
, this choice of σ , implies that p − 1 < σ < p and 0 <

(θ−p+2)σ

p−σ
= (N+p)σ

N
. By (4.2), we deduce that

∫

QT

|∇Gk(un)|σ dxdt

≤ C2

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
m′(p−1−γ )dxdt

) σ
pm′

×
(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(N+p)σ

N dxdt

) p−σ
p

. (4.3)

From Lemma 1.2 (here v = Gk(un), κ = σ , � = p), (4.1) and (4.3), we obtain

∫ T

0

∫

Ek,n(t)

Gk(un)
(N+p)σ

N dxdt

≤
(
‖Gk(un)‖p

L∞(0,T ;Lp(Ek,n))

) σ
N

∫ T

0

∫

Ek,n(t)

|∇Gk(un)|σ dxdt

≤ C2

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
m′(p−1−γ )dxdt

) (N+p)σ

pNm′

×
(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(N+p)σ

N dxdt

) p−σ
p

. (4.4)
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Since

m >
N

p
+ 1, and σ > p − 1 > p − 1 − γ, (4.5)

then we have σ(N+p)

m′N(p−1−γ )
> 1. Thus, using Hölder’s inequality, we have

∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(p−1−γ )m′

dxdt

≤
(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
σ(N+p)

N dxdt

) (p−1−γ )m′N
(N+p)σ

×
(∫ T

0
|Ek,n(t)| dt

)1− (p−1−γ )m′N
(N+p)σ

. (4.6)

We denote by

�n(k) =
∫ T

0
|Ek,n(t)|dt, Gnk =

∫ T

0

∫

Ek,n(t)

Gk(un)
(N+p)σ

N dxdt.

From (4.6) and (4.4), we can write for all k ≥ 1

Gnk ≤ C3G
2p−1−σ−γ

p

nk �n(k)
(N+p)σ

pNm′ − p−1−γ
p

+ C3k
(N+p)σ

N

(
2p−1−σ−γ

p

)

�n(k)
(N+p)σ

pNm′ + p−σ
p , (4.7)

(4.5) implies that 2p−1−σ−γ

p
< 1, then, by Young’s inequality for all ε > 0,

G
2p−1−σ−γ

p

nk �n(k)
(N+p)σ

pNm′ − p−1−γ
p ≤ C(ε)�n(k)

(
(N+p)σ

Nm′ −(p−1−γ )
)

1
σ+1−p+γ

+ εGnk. (4.8)

Taking ε = 1
2C3

in (4.8) and applying (4.7) to (4.8), we get

Gnk ≤ C4�n(k)
(N+p)σ−Nm′(p−1−γ )

Nm′(σ+1−p+γ )

+ C4k
(N+p)σ

N

(
2p−1−σ−γ

p

)

�n(k)
(N+p)σ+Nm′(p−σ)

pNm′ . (4.9)

The assumption m > N
p

+ 1 implies

(N + p)σ − Nm′(p − 1 − γ )

Nm′(σ + 1 − p + γ )
>

(N + p)σ + Nm′(p − σ)

pNm′ > 1.

We note that |�n(k)| ≤ T |�|, k ≥ 1, and so

Gnk ≤ C5k
σ(N+p)

N

(
2p−1−σ−γ

p

)

�n(k)
(N+p)σ+Nm′(p−σ)

pNm′ . (4.10)
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Since Gk(un) > h− k on Eh,n(t) if h > k and Eh,n(t) ⊂ Ek,n(t). By virtue of 2p−1−σ−γ

p
< 1,

(4.10) can be written as

�n(h) ≤ C5k
σ(N+p)

N

(
2p−1−σ−γ

p

)

�n(k)
(N+p)σ

pNm′ + p−σ
p

(h − k)
σ(N+p)

N

, ∀h > k ≥ 1. (4.11)

Lemma 1.1 applied to

ρ = 2p − 1 − σ − γ

p
, ν = (N + p)σ

N
, and ϑ = (N + p)σ

pNm′ + p − σ

p
,

we have, there exists a positive constant l such that �n(l) = 0. By the fact that |�n(k)| ≤
T |�| (see the proof of Lemma A.1 of [6]), there exists a positive constant d0 independent of
n such that l ≤ d0, so that

�n(d0) = 0. (4.12)

Therefore, from (4.12), it follows that the sequence {un}n is bounded in L∞(QT ).
Case 2: Suppose that 0 ≤ θ ≤ p − 2. By (4.1), we can write

∫

QT

|∇Gk(un)|pdxdt ≤
∫ T

0

∫

En,k(t)

|∇un|p(1 + un)
p−2−θdxdt

≤ C6

(∫ T

0

∫

En,k(t)

(k + Gk(un))
(p−1−γ )m′

dxdt

) 1
m′

.

From Lemma 1.2 (here v = Gk(un), κ = � = p), the previous inequality and (4.1) gives

∫ T

0

∫

Ek,n(t)

Gk(un)
(N+p)p

N dxdt

≤
(
‖Gk(un)‖p

L∞(0,T ;Lp(Ek,n))

) p
N

∫ T

0

∫

Ek,n(t)

|∇Gk(un)|pdxdt

≤ C7

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
m′(p−1−γ )dxdt

) (N+p)

Nm′
.

By Hölder’s inequality with exponent (N+p)p

Nm′(p−1−γ )
> 1 (since m > N

p
+ 1), we have

∫ T

0

∫

Ek,n(t)

Gk(un)
(N+p)p

N dxdt

≤ C8

(∫ T

0

∫

Ek,n(t)

(k + Gk(un))
(N+p)p

N dxdt

) p−1−γ
p

�n(k)
p+N

Nm′ − p−1−γ
p .

Therefore, (4.11) holds true for σ = p

�n(h) ≤ C9k
(N+p)p

N
· p−1−γ

p �n(k)
(N+p)

Nm′

(h − k)
(N+p)p

N

, ∀h > k ≥ 1.
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Using that p−1−γ

p
∈ (0,1) (since p − 2 ≤ γ < 1) and that (N+p)

Nm′ > 1, thus un is bounded in
L∞(QT ).

Now, choosing un as a test function for problem (3.4). Using (1.2) and (1.6), we obtain

1

2

∫

�

un(T )2dx + α

∫

QT

|∇un|p
(1 + un)θ

dxdt ≤
∫

QT

fnu
1−γ
n dxdt. (4.13)

Dropping the non-negative term, by Hölder’s inequality on the right-hand side of the in-
equality (4.13), and the boundedness of the sequence {un}n in L∞(QT ), we obtain

∫

QT

|∇un|p
(1 + un)θ

dxdt ≤ ‖f ‖Lm(QT )|QT | 1
m′ ‖u1−γ

n ‖L∞(QT )

≤ C10‖f ‖Lm(QT ). (4.14)

Therefore, from (4.14) and since the sequence {un}n is bounded in L∞(QT ), we get

∫

QT

|∇un|pdxdt =
∫

QT

|∇un|p
(1 + un)θ

(1 + un)
θdxdt

≤ (
1 + ‖un‖L∞(QT )

)θ

∫

QT

|∇un|p
(1 + un)θ

dxdt

≤ C11.

Consequently the sequence {un}n is bounded in Lp(0, T ;W 1,p

0 (�)). By (3.1), (3.2) and the
boundedness of the sequence {un}n in Lp(0, T ;W 1,p

0 (�)), we obtain the sequence
{

∂un

∂t

}

n
is

bounded in Lp′
(0, T ;W−1,p′

(�)) + Lm(QT ). �

Lemma 4.2 Let m = N
p

+ 1 and let (1.2)-(1.6) hold. Then, the sequence {un}n is bounded in

Lp(0, T ;W 1,p

0 (�)) ∩ Lr(QT ) for every r ∈ [p,+∞).

Proof For τ ∈ (0, T ], if we take ϕ(un) = (1 + un)
(p−1)μ − 1 as a test function in (3.4), with

μ ≥ 1 + θ

p − 1
. (4.15)

By assumptions (1.2), (1.6), we obtain

∫

�

�(un(x, τ ))dx + (p − 1)μα

∫ τ

0

∫

�

|∇un|p
(1 + un)θ

(1 + un)
(p−1)μ−1dxdt

≤
∫ τ

0

∫

�

fnu
(p−1)μ−γ
n dxdt, (4.16)

where

�(s) =
∫ ζ

0
ϕ(y)dy ≥ ζ (p−1)μ+1

(p − 1)μ + 1
∀ζ > 0, μ > 1. (4.17)
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Thus, (4.16), (4.17), (3.2), and Hölder’s inequality on the last integral, we get

1

(p − 1)μ + 1

∫

�

un(x, τ )(p−1)μ+1dx

+ (p − 1)μα

∫ τ

0

∫

�

|∇un|p(1 + un)
(p−1)μ−1−θdxdt

≤ ‖f ‖Lm(QT )

(∫

QT

u((p−1)μ−γ )m′
n dxdt

) 1
m′

. (4.18)

The condition (4.15) implies that (p − 1)μ + p − 1 − θ ≥ p, so (4.18) and (3.2) yield

ess sup
t∈[0,T ]

∫

�

[
un(x, τ )

(p−1)μ+p−1−θ
p

] p((p−1)μ+1)
(p−1)μ+p−1−θ

dx

+
∫

QT

∣
∣
∣
∣∇u

(p−1)μ+p−1−θ
p

n

∣
∣
∣
∣

p

dxdt

≤ C12

(∫

QT

u((p−1)μ−γ )m′
n dxdt

) 1
m′

+ C12. (4.19)

Thus, by the Gagliardo-Nirenberg inequality (1.7), where

v(x, t) = un(x, t)
(p−1)μ+p−1−θ

p , � = p((p − 1)μ + 1)

(p − 1)μ + p − 1 − θ
, κ = p,

we have

∫

QT

[

u
(p−1)μ+p−1−θ

p
n

]p
N+ p((p−1)μ+1)

(p−1)μ+p−1−θ
N

dxdt

≤ M2

(

ess sup
0≤t≤T

∫

�

[
un(x, t)

(p−1)μ+p−1−θ
p

] p((p−1)μ+1)
(p−1)μ+p−1−θ

dx

) p
N

×
∫

QT

∣
∣
∣
∣∇u

(p−1)μ+p−1−θ
p

n

∣
∣
∣
∣

p

dxdt. (4.20)

By (4.19)-(4.20) and taking

s = p((p − 1)μ + 1) + N((p − 1)μ + p − 1 − θ)

N
,

we obtain

∫

QT

us
ndxdt ≤ C13

(∫

QT

u((p−1)μ−γ )m′
n dxdt

)N+p

Nm′
+ C13. (4.21)

Since N+p

Nm′ = 1 and by (1.3), we obtain

((p − 1)μ − γ )m′ = ((p − 1)μ − γ )
N + p

N
< s. (4.22)
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From (4.22), Hölder’s inequality and Young’s inequality with ε > 0, we deduce that

∫

QT

u
((p−1)μ−γ )(N+p)

N
n dxdt ≤ C14

(∫

QT

us
ndxdt

) ((p−1)μ−γ )(N+p)
sN

≤ ε

∫

QT

|un|sdxdt + c(ε). (4.23)

By (4.21), (4.23) and letting ε = 1
2C13

, we get

∫

QT

|un|sdxdt ≤ C15. (4.24)

On the other hand, since

μ ≥ 1 + θ

p − 1
≥ N(θ + 1) − p

(p − 1)(p + N)
,

and

s ≥ p ⇔ μ ≥ N(θ + 1) − p

(p − 1)(p + N)
,

therefore, from (4.24) with r = s, it follows that the sequence {un}n is bounded in Lr(QT ).
Inequalities (4.18), (4.23), and the boundedness of the sequence {un}n in Lr(QT ), imply
then

∫

QT

|∇un|pdxdt ≤
∫

QT

|∇un|p(1 + un)
(p−1)μ−1−θdxdt ≤ C16. (4.25)

Thus from (4.25) immediately follows the boundedness of the sequence {un}n in Lp(0, T ;
W

1,p

0 (�)). �

Lemma 4.3 Let f ∈ Lm(QT ), with m satisfies (2.2), and (1.2)-(1.6) hold. Then, the sequence
{un}n is bounded in Lδ(QT ) ∩ Lp(0, T ;W 1,p

0 (�)), where δ as in (2.3).

Proof We put

((p − 1)μ − γ )m′ = p((p − 1)μ + 1) + N((p − 1)μ + p − 1 − θ)

N
, (4.26)

in the proof of Lemma 4.2. By (2.2) and (4.26) we get

μ = (m − 1)(p + N(p − 1 − θ)) + γmN

(p − 1)(N + p − pm)
≥ 1 + θ

p − 1
.

Consequently

δ = ((p − 1)μ − γ )
m

m − 1
= m(p + N(p − 1 − θ) + γ (N + p))

N + p − pm
. (4.27)
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Note that N+p

Nm′ < 1. The Young’s inequality gives

(∫

QT

u((p−1)μ−γ )m′
n dxdt

)N+p

Nm′
≤ ε

∫

QT

u((p−1)μ−γ )m′
n dxdt + c(ε). (4.28)

Taking (4.28) in (4.21) and letting ε = 1
2C13

, by (4.26) and (4.27), we deduce that the se-

quence {un}n is bounded in Lδ(QT ). The rest of the proof is the same way in proof of
Lemma 4.2. �

Lemma 4.4 Let f belongs to Lm(QT ), with m satisfies (2.4), and (1.2)-(1.6) hold. Then, the
sequence {un}n is bounded in Lδ(QT ) ∩ Lq(0, T ;W 1,q

0 (�)), where δ and q are defined in
Theorem 2.5.

Proof Suppose that

0 < μ <
1 + θ

p − 1
.

Let ϕ and � as in (4.17). Choosing ϕ(un(x, t))χ(0,τ )(t) as a test function in (3.4). Using the
fact that

�(ζ) ≥ cζμ(p−1)+1 − c ∀s ∈R+,

we have

ess sup
0≤t≤τ

∫

�

un(x, τ )(p−1)μ+1dx +
∫

QT

|∇un|p
(1 + un)θ+1−(p−1)μ

dxdt

≤ C17

(∫

QT

u((p−1)μ−γ )m′
n dxdt

) 1
m′

+ C17. (4.29)

Using Hölder’s inequality with the exponents p

q
and (4.29), we obtain

∫

QT

|∇un|qdxdt ≤
(∫

QT

|∇un|p
(1 + un)θ+1−(p−1)μ

dxdt

) q
p

×
(∫

QT

(1 + un)
(θ+1−(p−1)μ)q

p−q dxdt

) p−q
p

≤ C18

((∫

QT

u((p−1)μ−γ )m′
n dxdt

) 1
m′

+ 1

) q
p

×
(∫

QT

u
(θ+1−(p−1)μ)q

p−q
n dxdt + 1

) p−q
p

. (4.30)

Now we take μ, such that

μ = (θ + 1)q + γm′(p − q)

(p − 1)((p − q)m′ + q)
<

1 + θ

p − 1
,
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hence

((p − 1)μ − γ )m′ = (θ + 1 − (p − 1)μ)q

p − q
. (4.31)

Then, by the inequality (4.30), we get

∫

QT

|∇un|qdxdt ≤ C19

(∫

QT

u((p−1)μ−γ )m′dxdt
n

) q

pm′ + p−q
p

+ C19. (4.32)

Applying Lemma 1.2 (here v(x, t) = un(x, t), � = (p − 1)μ + 1, κ = q) and from (4.29),
(4.32), we have

∫

QT

u
(N+(p−1)μ+1)q

N
n dxdt

≤
(

ess sup
0≤t≤T

∫

�

un(x, t)(p−1)μ+1dx

) q
N

∫

QT

|∇un|qdxdt

≤ C20

(∫

QT

u((p−1)μ−γ )m′
n dxdt

) q(N+p)

pNm′ + p−q
p

+ C20. (4.33)

Set

((p − 1)μ − γ )
m

m − 1
= (N + (p − 1)μ + 1)q

N
,

then, by (4.31) we obtain

μ = (m − 1)(p + N(p − 1 − θ)) + mγN

(p − 1)(N + p − pm)
, (4.34)

and

q = m[N(p − θ − 1) + p + γ (N + p)]
N + 1 − (θ + 1)(m − 1) + mγ

. (4.35)

By (4.34), (4.35) and (4.33), we have (p − 1)μm′ = δ and

∫

QT

uδ
ndxdt ≤ C20

(∫

QT

uδ
ndxdt

) q(N+p)

pNm′ + p−q
p

+ C20. (4.36)

Since q(N+p)

pNm′ + p−q

p
< 1, then from (4.36), we deduce that the sequence {un}n is bounded

in Lδ(QT ). Going back to (4.32) and (4.35), this in turn implies that the sequence {un}n is
bounded in Lq(0, T ;W 1,q

0 (�)). �

5 Proof of Main Results

5.1 Proof of Theorem 2.2

In virtue of Lemma 4.1, we have the sequence {un}n is bounded in L∞(QT ) ∩ Lp(0, T ;
W

1,p

0 (�)). Then, there exists a function u ∈ L∞(QT ) ∩ Lp(0, T ;W 1,p

0 (�)), such that, up to
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subsequence,

un ⇀ u weakly in Lp(0, T ;W 1,p

0 (�),

un ⇀ u weakly∗in L∞(QT ) for σ ∗(L∞(QT ),L1(QT )).

In view of Lemma 4.1, we have that the sequence
{

∂un

∂t

}

n
is bounded in L1(QT ) ∩

Lp′
(0, T ;W−1,p′

0 (�)). So, using compactness results (corollary 4 of [34]) we obtain {un}n

is relatively compact in L1(QT ). This implies that

un → u strongly in L1(QT ), and a.e. in QT . (5.1)

To carry on the proof, we need the following Lemma.

Lemma 5.1 [23] For all k > 0, there exists a function θk such that for all ε > 0, we have

lim sup
n

∫

{|un−uk |≤ε}
a(x, t, Tn(un),∇un)(∇un − ∇uk)dxdt ≤ θk(ε),

with lim θk(ε) = 0, uk = φk(u).

By Lemma 5.1, we can adopt the approach of [22, 26], we deduce that there exists a
subsequence, still denoted by {un}n, such that

∇un → ∇u almost everywhere in QT . (5.2)

From (5.1), (5.2) and the fact that b is Carathéodory function, we obtain

b(x, t, un,∇un) → b(x, t, u,∇u) almost everywhere in QT . (5.3)

By (5.3), and Vitali’s theorem, one has

a(x, t, un,∇un) → a(x, t, u,∇u) strongly in Lp′
(QT ). (5.4)

We begin by proving an important lemma useful to prove of Theorem 2.2-2.5.

Lemma 5.2 Let un be a weak solution of (3.1). Then

lim
n→+∞

∫

QT

gn(un)fnψdxdt =
∫

QT

g(u)f ψdxdt, (5.5)

for all ψ ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ).

Proof Let ψ ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ) as a test function in (3.1), we obtain

∫

Q

∂un

∂t
ψdxdt +

∫

QT

b(x, t, Tn(un),∇un).∇ψdxdt

=
∫

QT

gn(un)fnψdxdt. (5.6)
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If g(0) < +∞, we obtain (5.5) hold true. Suppose that g(0) = limz→0 g(z). Let ψ be a non-
negative function in L∞(QT )∩Lp(0, T ;W 1,p

0 (�)) as a test function in the weak formulation
(5.6), using (1.4) and Young’s inequality, we obtain

∫

QT

gn(un)fnψdxdt ≤ 1

p

∫

QT

|un|pdxdt + 1

p′

∫

QT

∣
∣
∣
∣
∂ψ

∂t

∣
∣
∣
∣

p′

dxdt

+ 1

p

∫

QT

|∇ψ |pdxdt

+ 1

p′

∫

QT

(
a(x, t) + |Tn(un)|p−1 + |∇un|p−1

)p′
dxdt

≤ C

(

‖un‖Lp(QT ) +
∥
∥
∥
∥
∂ψ

∂t

∥
∥
∥
∥

Lp′
(QT )

+ ‖k‖
Lp′

(QT )

)

+ C
(
‖un‖Lp(0,T ;W1,p

0 (�)
+ ‖ψ‖

Lp(0,T ;W1,p
0 (�)

)

≤ C. (5.7)

Therefore (5.7) implies that {fngn(un)}n is bounded in L1(QT ). Passing to the limit as n →
+∞ in (5.5), Fatou’s lemma implies

∫

QT

fg(u)ψdxdt ≤ C ∀n, (5.8)

then we have

∫

{u=0}
lim
z→0

g(z)f ϕ dxdt < +∞,

so that, f ϕ = 0 a.e. on {u = 0} for all nonnegative ϕ ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ).
Yielding

f = 0 a.e. on {u = 0}. (5.9)

For every fixed λ > 0, we can write

∫

QT

fngn(un)ψdxdt =
∫

QT ∩{un>λ}
fngn(un)ψdxdt

+
∫

QT ∩{un≤λ}
fngn(un)ψdxdt

= I1
n,λ + I2

n,λ. (5.10)

For I1
n,λ, we have

0 ≤ gn(un)fnχ{un>λ}ϕ ≤ sup
z∈[λ,+∞)

[g(z)]f ϕ ∈ L1(QT ). (5.11)
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Using Lebesgue’s dominated convergence theorem and that the sequence
{
χ{un>λ}

}

n
con-

verges to χ{u≥λ} a.e. in QT , we get

lim
n→∞I1

n,λ =
∫

QT ∩{u≥λ}
g(u)f ψdxdt.

Since g(u)f ϕ ∈ L1(QT ), Lebesgue’s theorem, with respect to λ, imply that

lim
λ→0+ lim

n→∞I1
n,λ =

∫

QT ∩{u≥0}
g(u)f ψdxdt =

∫

QT

g(u)f ψdxdt.

By (5.9), it follows that

lim
λ→0+ lim

n→∞I1
n,λ =

∫

QT ∩{u>0}
g(u)f ψdxdt =

∫

QT

g(u)f ψdxdt. (5.12)

Now in order to get rid of I2
n,λ. We take �λ(un)ψ as test function in (3.1), where �λ is

defined in (1.8), we obtain

∫

QT

∂un

∂t
�λ(un)ψdxdt +

∫

QT

b(x, t, Tn(un),∇un)∇(�λ(un)ψ)dxdt

=
∫

QT

fngn(un)�λ(un)ψdxdt. (5.13)

Using integration by parties and definition of �λ, we have

∫

QT

∂un

∂t
�λ(un)ψdxdt = −

∫

QT

�(un)
∂ψ

∂t
dxdt, (5.14)

where

�(ζ) =
∫ ζ

0
�λ(y)dy.

Using (1.2), �′
λ(un) = − 1

λ
and the fact that

∇(�λ(un)ψ) = �λ(un)∇ψ − 1

λ
(un)ψ∇un,

we get

∫

QT

b(x, t, Tn(un),∇un)∇(�λ(un)ψ)dxdt

≤
∫

QT

b(x, t, Tn(un),∇un)�λ(un).∇ψdxdt. (5.15)
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On the other hand
∫

QT

fngn(un)�λ(un)ψdxdt =
∫

QT ∩{un≤λ}
fngn(un)�λ(un)ψdxdt

+
∫

QT ∩{λ<un<2λ}
fngn(un)�λ(un)ψdxdt

≤
∫

QT ∩{un≤λ}
fngn(un)�λ(un)ψdxdt. (5.16)

Combining (5.13)-(5.15) and (5.16), we obtain
∫

QT ∩{un≤λ}
fngn(un)�λ(un)ψdxdt ≤

∫

QT

b(x, t, Tn(un),∇un)�λ(un).∇ψdxdt

−
∫

QT

�(un)
∂ψ

∂t
dxdt.

Using that �λ is bounded and � is continue we deduce that as n tends to infinity

�(un)
∂ψ

∂t
→ �(u)

∂ψ

∂t
strongly in L1(QT ),

and

b(x, t, Tn(un),∇un)�λ(un) ⇀ b(x, t, u,∇u)�λ(u) weakly in Lp′
(QT ).

This implies that

lim sup
n→+∞

∫

QT ∩{un≤λ}
fngn(un)�λ(un)ψdxdt

≤ −
∫

{u=0}
�(u)

∂ψ

∂t
dxdt +

∫

{u=0}
b(x, t, u,∇u)�λ(u).∇ψdxdt,

then

lim
λ→0

lim
n→∞I2

n,λ = 0. (5.17)

By (5.12) and (5.17) we deduce that, for all nonnegative ψ ∈ Lp(0, T ;W 1,p

0 (�))∩L∞(QT )

lim
n→∞

∫

QT

fngn(un)ψdxdt =
∫

QT

fg(u)ψdxdt. (5.18)

Moreover, by decomposing any ψ = ψ+ − ψ− with ψ+ = max{ψ,0} and ψ− =
−min{ϕ,0}, we deduce that (5.18) holds for every ψ ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ).
This concludes (5.5).

Let n → +∞ in (5.6), by (5.1), (5.4) and (5.5) we get
∫

QT

∂u

∂t
ψdxdt +

∫

QT

b(x, t, u,∇u).∇ψdxdt =
∫

QT

g(u)f ψdxdt, (5.19)

for every ψ ∈ Lp(0, T ;W 1,p

0 (�)) ∩ L∞(QT ). �
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5.2 Proof of the Theorem 2.5

From Lemma 4.4, we have the sequence {un}n is bounded in Lq(0, T ;W 1,q

0 (�)) ∩ Lδ(QT )

and
{

∂un

∂t

}

n
is bounded in Lq ′

(0, T ;W−1,q ′
(�)) + Lm(QT ). Thus, the sequence

{
∂un

∂t

}

n
is

bounded in L1(0, T ,W−1,ε(�)) for every ε < min
{

N
N−1 , q ′}. So, by corollary 4 of [34], we

get the sequence {un}n is relatively compact in L1(QT ). This implies that we can extract a
subsequence (denote again by {un}n) such that the sequence {un}n converges to u strongly
in L1(QT ). From (5.1), (5.2), we obtain

b(x, t, un,∇un) → b(x, t, u,∇u) a.e. in QT . (5.20)

Using Lemma 4.4, (5.20), q

p−1 > 1 and Vitali’s theorem, one has

b(x, t, un,∇un) → b(x, t, u,∇u) strongly in L
q

p−1 (QT ).

Thus, it is possible to pass to the limit in (5.6) as n → +∞, obtaining (5.19).
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