1 Introduction

In this paper, we are interested to prove existence and regularity results for a class of nonlinear singular parabolic equations involving Hardy potential, as following model

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial u}{\partial t}-{\text {div}}(a(x,t,\nabla u))-\mu \frac{u^{p-1}}{|x|^{p}}=\frac{f}{u^{\gamma }} &{}{\text{ in }}&{}\,\, Q,\\ u=0 &{}\text{ on } &{}\,\, \Gamma ,\\ u(x,0)=u_{0}(x) &{}\text{ in } &{}\,\, \Omega , \end{array} \right. \end{aligned}$$
(1.1)

where \(\Omega \) is a bounded open subset of \({\mathbb {R}}^{N},\) \((N\ge 3),\) \(2\le p<N,\) \(\gamma ,\mu >0,\) \(Q=\Omega \times (0,T),\) \(\Gamma =\partial \Omega \times (0,T),\) with \(T>0,\) f is a nonnegative function belonging a suitable Lebesgue space, the initial datum \(u_{0}\in L^{\infty }(\Omega )\) and satisfies the following bound

$$\begin{aligned} \forall \, \omega \subset \subset \Omega ,\,\,\,\, \exists \, M_{\omega }>0\,\, :\,\,\, u_{0}\ge M_{\omega }\,\, \text{ in }\,\,\,\, \omega . \end{aligned}$$
(1.2)

Moreover, the function \(a: \Omega \times (0,T)\times {\mathbb {R}}^{N}\longrightarrow {\mathbb {R}}^{N}\) is a Caratheodory function satisfying the following conditions: there exist positive constants \(\alpha , \beta \) such that

$$\begin{aligned}&a(x,t,\xi )\cdot \xi \ge \alpha |\xi |^{p}, \end{aligned}$$
(1.3)
$$\begin{aligned}&|a(x,t,\xi )|\le \beta |\xi |^{p-1}, \end{aligned}$$
(1.4)
$$\begin{aligned}&[a(x,t,\xi )-a(x,t,\xi ^{\prime })]\cdot [\xi -\xi ^{\prime }]>0, \end{aligned}$$
(1.5)

for almost every \(x\in \Omega , t\in (0,T),\) for every \(\xi ,\xi ^{\prime }\in {\mathbb {R}}^{N},\) with \(\xi \ne \xi ^{\prime }.\)

Under assumptions (1.3), (1.4) and (1.5), the differential operator defined by

$$\begin{aligned} A(u)=-{\text {div}}(a(x,t,\nabla u)),\;\;\; u\in L^{p}(0,T; W_{0}^{1,p}(\Omega )) \end{aligned}$$

is coercive and monotone operator acting from the space \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) into its dual \(L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\Omega )).\) The simplest example is the one in which the operator A is the p-Laplacian: \(A(u)=-{\text {div}}(|\nabla u|^{p-2}\nabla u).\)

The interest in problem (1.1) (with \(p=2,\; \mu =0\) and smooth data) started in [18] in connection with the study of thermo-conductivity (\(u^{\gamma }\) represented the resistivity of the material), and later in the study of signal transmissions and in the theory of non-Newtonian pseudoplastic fluid [20, 23, 24].

From a purely mathematical point of view the literature is wide. In the case \(\mu =0\) and \(\gamma =0,\) the existence and regularity of problem (1.1) has been studied in [9, 10, 13, 21, 22, 29] under the different assumptions on the data. If \(\gamma =0, f=0\) and \(\mu >0\) the existence and nonexistence of solution of problem (1.1) depending the value of \(\mu \) has been studied by the authors in [19, 27]. When \(\gamma =0, f\ne 0\) and \(\mu >0,\) the authors in [5] has been studied the existence and summability of elliptic problem

$$\begin{aligned} \left\{ \begin{array}{lll} -\text {div(M(x)}\nabla \text {u)}+b|u|^{r-2}u=\mu \displaystyle \frac{u}{|x|^{2}}+f &{}\text{ in }&{}\,\, \Omega ,\\ u=0 &{}\text{ on } &{}\,\, \partial \Omega , \end{array} \right. \end{aligned}$$

where \(b>0, \mu>0, r>2^{*}\) and \(f\in L^{m}(\Omega ),\, m>1,\) M(x) is a matrix satisfies \(M(x)\xi \cdot \xi \ge \alpha |\xi |^{2}; |M(x)|\le \beta \) with \( \alpha ,\beta \ge 0\) for all \(\xi \in {\mathbb {R}}^{N}\) and almost every \(x\in \Omega .\) Baras in [8] studied the existence and nonexistence of problem

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial u}{\partial t}-\Delta u=v(x)u+f(x,t) &{}\text{ in }&{}\,\, Q,\\ u=0 &{}\text{ on } &{}\,\, \Gamma , \\ u(x,0)=u_{0}(x) &{}\text{ in } &{} \Omega , \end{array} \right. \end{aligned}$$

where \(v(x)=c/|x|^{2}, c>0, v\in L^{\infty }(\Omega \backslash B_{\epsilon })\) (where \(B_{\epsilon }=\{x: |x|<\epsilon \}),\) the function v is singular at the origin and \(u_{0},f\ge 0\) satisfies some conditions. In the same contexts Porzio [28] showed that the problem

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial u}{\partial t}-\text {div(a(x,t,u,}\nabla \text {u))}=\mu \frac{u}{|x|^{2}}+f &{}\text{ in }&{}\,\, Q,\\ u=0 &{}\text{ on } &{}\,\, \Gamma ,\\ u(x,0)=u_{0}(x) &{}\text{ in }&{}\,\, \Omega , \end{array} \right. \end{aligned}$$

admits a solution for \(0<\mu <\varrho _{1}\left( \frac{N-2}{2} \right) ^{2},\) where \(\varrho _{1}\) is the coercivity constant of \(a(x,t,u,\nabla u),\) \(f\in L^{r}(0,T; L^{q}(\Omega )),\) with \(r>1, q>1,\) and the summability of solution also obtained (See also [17, 26]). When \(\mu =0\) and \(\gamma >0,\) the problem of existence, regularity and uniqueness (sometimes partial uniqueness) results of (1.1) have been investigated in different contexts by several authors (see [11, 14,15,16, 25, 30, 31] and references therein). The authors in [11] proved the existence, regularity and uniqueness of solution to singular parabolic problem

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial u}{\partial t}-\text {div}(a(x,t,\nabla u))=\frac{f}{u^{\gamma }} &{}\text{ in }&{}\,\, Q,\\ u=0 &{}\text{ on } &{}\,\, \Gamma ,\\ u(x,0)=u_{0}(x) &{}\text{ in }&{}\,\, \Omega , \end{array} \right. \end{aligned}$$

where \(\gamma >0\) and \(0\le f\in L^{m}(Q),\, m\ge 1\) and \(u_{0}\in L^{\infty }(\Omega )\) satisfies

$$\begin{aligned} \forall \omega \subset \subset \Omega , \exists \, d_{\omega }>0: \; u_{0}\ge d_{\omega }. \end{aligned}$$

Finally in the elliptic framework when \(\mu>0, \gamma >0\) the author in [33] proved the existence of one positive solution to singular problem

$$\begin{aligned} \left\{ \begin{array}{lll} -\text {div}(M(x)\nabla u)-\mu \frac{u}{|x|^{2}}=\frac{f}{u^{\gamma }} &{}\text{ in }&{}\,\, \Omega ,\\ u> &{}\text{ in }&{}\,\, \Omega ,\\ u=0 &{}\text{ on } &{}\,\, \partial \Omega , \end{array} \right. \end{aligned}$$

where \(0\in \Omega , \gamma >0, 0\le f\in L^{m}(\Omega ),\, 1<m<\frac{N}{2}\) and \(0<\mu <\left( \frac{N-2}{2} \right) ^{2}.\) The stationary problem associated to problem (1.1) has been studied in [3]; the authors proved the existence and regularity (and partial uniqueness ) results of solution to singular problem

$$\begin{aligned} \left\{ \begin{array}{lll} -\Delta _{\text {p}}\text {u}=\mu \frac{u^{p-1}}{|x|^{p}}+\frac{f}{u^{\gamma }} &{}\text{ in }&{}\,\, \Omega ,\\ u=0 &{}\text{ on } &{}\,\, \partial \Omega , \end{array} \right. \end{aligned}$$

where \(0\in \Omega , \gamma >0, 0<\mu \le \left( \frac{N-p}{p} \right) ^{p}\) and \(0\le f\in L^{m}(\Omega ), m\ge 1.\) If \( \mu >\left( \frac{N-p}{p} \right) ^{p},\) then the problem has non solution (see [4]), and also the authors proved that if f is a singular measure with respect to the p-Capacity associated to \(W_{0}^{1,p}(\Omega )\) the problem has a non-negative solution in suitable sense.

The aim of this work is to analyze the interaction between the Hardy potential and the singular term \(u^{-\gamma }\) in order to get a solution for largest possible class of the datum f.

1.1 Preliminary and notations

The problem (1.1) is related to the following classical Hardy inequality (see [19])

$$\begin{aligned} C_{N,p}\int _{{\mathbb {R}}^{N}}\frac{|\psi |^{p}}{|x|^{p}}dx\le \int _{{\mathbb {R}}^{N}}|\nabla \psi |^{p}dx, \quad \text{ for } \text{ all }\; \psi \in W^{1,p}({\mathbb {R}}^{N}), \end{aligned}$$

where \(C_{N,p}=\left( \frac{N-p}{p} \right) ^{p}\) is optimal and is not attained.

Also we need to the Gagliardo–Nirenberg inequality that we used later in the proof of our results.

Lemma 1.1

[12, Proposition 3.1] Let v be a function in \(W_{0}^{1,h}(\Omega )\cap L^{\rho }(\Omega ),\) with \(h\ge 1, \rho \ge 1.\) Then there exist a positive constant \(C_{G}\) depending on \(N, h, \rho \) and \(\sigma \) such that

$$\begin{aligned} ||v||_{L^{\sigma }(\Omega )}\le C_{G}||\nabla v||_{(L^{h}(\Omega ))^{N}}^{\eta }||v||_{L^{\rho }(\Omega )}^{1-\eta }, \end{aligned}$$

for every \(\eta \) and \(\sigma \) satisfying

$$\begin{aligned} 0<\eta <1,\;\;\; \frac{1}{\sigma }=\eta \left( \frac{1}{h}-\frac{1}{N} \right) +\frac{1-\eta }{\rho }. \end{aligned}$$

An immediate consequence of the previous Lemma is the following embedding results

$$\begin{aligned} \iint _{Q}| v|^{\sigma }dxdt\le C_{G}||v||_{L^{\infty }(0,T; L^{\rho }(\Omega ))}^{\frac{\rho h}{N}}\iint _{Q}|\nabla v|^{h}dxdt, \end{aligned}$$

which holds for every function \(v\in L^{h}(0,T; W_{0}^{1,h}(\Omega ))\cap L^{\infty }(0,T; L^{\rho }(\Omega )),\) with \(h\ge 1, \rho \ge 1\) and \(\sigma =\frac{h(N+\rho )}{N}.\)

We denote by |E| measure of Lebesgue measurable subset E of \({\mathbb {R}}^{N}.\) For any \(q>1,\) \(q^{\prime }=\frac{q}{q-1}\) is the Hölder conjugate exponent of q,  while for any \(1\le p<N,\) \(p^{*}=\frac{Np}{N-p}\) is the Sobolev conjugate exponent of p. For fixed \(k>0\) we will make use of the truncation functions \(T_{k}\) and \(G_{k}\) defined as

$$\begin{aligned} T_{k}(s)=\max (-k,\min (s,k)), \end{aligned}$$

and

$$\begin{aligned} G_{k}(s)=s-T_{k}(s)=(|s|-k)^{+}sign(s), \end{aligned}$$

for every \(s\in {\mathbb {R}}.\) For the sake of simplicity we will often use the simplified notation

$$\begin{aligned} \iint _{Q}f(x,t)dxdt=\iint _{Q}f, \end{aligned}$$

when referring to integrals when no ambiguity to the variable of integration is possible. If not otherwise specified, we will denote by C several constants whose value many change from line to line and, some times in the same line. These values will only depend on the data ( for instance C can depend on \(N, p, C_{N,p},C_{G}, \alpha , \gamma , m, T, \Omega , Q)\) but they will never depend on the indexes of the sequences we will often introduce.

Definition 1.2

We will say that a function \(u\in L^{1}(0,T; W_{loc}^{1,1}(\Omega ))\) is a distributional solution of (1.1) if

$$\begin{aligned}&|\nabla u|^{p-1}\in L^{1}(0,T; L_{loc}^{1}(\Omega )),\;\;\; \frac{|u|^{p-1}}{|x|^{p}}\in L^{1}(0,T; L_{loc}^{1}(\Omega )) \end{aligned}$$
(1.6)
$$\begin{aligned}&u=0 \; \; \text{ on }\; \partial \Omega \times (0,T)\;\; \text{ in } \text{ weak } \text{ sense, } \end{aligned}$$
(1.7)

i.e., some positive power of u belongs to a Sobolev space \(L^{r}(0,T; W_{0}^{1,r}(\Omega )),\) \(r>1.\) Moreover, we require that

$$\begin{aligned} \forall \omega \subset \subset \Omega \;\; \exists c_{\omega }>0: \;\; u\ge c_{\omega }\;\; \text{ in }\;\; \omega \times (0,T), \end{aligned}$$
(1.8)

and that

$$\begin{aligned} \begin{aligned}&-\int _{\Omega }u_{0}(x)\varphi (x,0)-\iint _{Q}u\frac{\partial \varphi }{\partial t}+\iint _{Q}a(x,t,\nabla u)\nabla \varphi \\&\quad =\iint _{Q}\frac{u^{p-1}}{|x|^{p}}\varphi +\iint _{Q}\frac{f}{u^{\gamma }}\varphi , \end{aligned} \end{aligned}$$
(1.9)

for all \( \varphi \in C^{1}_{c}(\Omega \times [0,T)).\)

2 The approximation scheme

Let \(n\in {\mathbb {N}}\) and \(f_{n}(x,t)\) be defined by \(f_{n}(x,t)=\min (f(x,t), n);\) we will consider the following approximation of (1.1)

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial u_{n}}{\partial t}-{\text {div}}(a(x,t,\nabla u_{n}))-\mu \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}=\frac{f_{n}}{(|u_{n}|+\frac{1}{n})^{\gamma }} &{}{\text{ in }}&{}\,\, Q,\\ u_{n}=0 &{}\text{ on } &{}\,\, \Gamma ,\\ u_{n}(x,0)=u_{0}(x) &{}\text{ in } &{} \Omega . \end{array} \right. \end{aligned}$$
(2.1)

Lemma 2.1

The problem (2.1) has a nonnegative solution belonging to \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(Q)\) for all \(\mu <\alpha C_{N,p}\) and \(2\le p<N.\)

Proof

Let \(v\in L^{p}(Q)\) and we define \(S: L^{p}(Q)\longrightarrow L^{p}(Q)\) such that \(S(v)=w,\) with \(w\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap C([0,T]; L^{2}(\Omega ))\) the unique solution of problem

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial w}{\partial t}-{\text {div}}(a(x,t,\nabla w))-\mu \frac{w^{p-1}}{|x|^{p}+\frac{1}{n}}=\frac{f_{n}}{(|v|+\frac{1}{n})^{\gamma }} &{}{\text{ in }}&{}\,\, Q,\\ w=0 &{}\text{ on } &{}\,\, \Gamma ,\\ w(x,0)=u_{0}(x) &{}\text{ in } &{} \Omega . \end{array} \right. \end{aligned}$$

The existence of solution of above problem assured by [22]. Let us take w as a test function in the above problem, from (1.3), we have

$$\begin{aligned} \frac{1}{2}\int _{\Omega }w^{2}(x,t)+\alpha \iint _{Q}|\nabla w|^{p}-\mu \iint _{Q}\frac{w^{p}}{|x|^{p}}\le \iint _{Q}\frac{f_{n}w}{(|v|+\frac{1}{n})^{\gamma }}+\frac{1}{2}\int _{\Omega }u_{0}^{2}, \end{aligned}$$

since \(u_{0}\in L^{\infty }(\Omega )\) and by Hardy inequality implies

$$\begin{aligned} \frac{1}{2}\int _{\Omega }w^{2}(x,t)+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla w|^{p}\le \iint _{Q}\frac{f_{n}w}{(|v|+\frac{1}{n})^{\gamma }}+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}.\nonumber \\ \end{aligned}$$
(2.2)

Dropping the first non-negative term and thanks to Hölder’s inequality, we have

$$\begin{aligned} \left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla w|^{p}\le |Q|^{\frac{1}{p^{\prime }}}n^{\gamma +1}\left( \iint _{Q}|w|^{p}\right) ^{\frac{1}{p}}+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}. \end{aligned}$$

By application of Poincaré inequality in the right hand side, it hold that

$$\begin{aligned} ||\nabla w||_{L^{p}(Q)}^{p}\le \frac{|Q|^{p^{\prime }}n^{\gamma +1}C_{p}}{(\alpha -\frac{\mu }{C_{N,p}})}||\nabla w||_{L^{p}(Q)}+\frac{1}{2(\alpha -\frac{\mu }{C_{N,p}})}||u_{0}||_{L^{2}(\Omega )}^{2}, \end{aligned}$$
(2.3)

where \(C_{p}\) is the Poincaré constant. This implies that

$$\begin{aligned} ||w||_{L^{p}(Q)}\le R, \end{aligned}$$
(2.4)

for some constant R independent of v. So that the ball of radius R is invariant under S. Using Sobolev embedding Theorem, it is easy to prove that S is both continuous and compact on \(L^{p}(Q),\) so that by Shauder’s fixed point Theorem there exist \(u_{n}\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(Q)\) such that \(S(u_{n})=u_{n},\) for all \(n\in {\mathbb {N}}, \, 2\le p<N,\) i.e. \(u_{n}\) solves

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial u_{n}}{\partial t}-{\text {div}}(a(x,t,\nabla u_{n}))-\mu \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}=\frac{f_{n}}{(|u_{n}|+\frac{1}{n})^{\gamma }} &{}{\text{ in }}&{}\,\, Q,\\ u_{n}=0 &{}\text{ on } &{}\,\, \Gamma ,\\ u_{n}(x,0)=u_{0}(x) &{}\text{ in } &{} \Omega . \end{array} \right. \end{aligned}$$

Moreover, since \(\frac{f_{n}}{(|u_{n}|+\frac{1}{n})^{\gamma }}\ge 0,\) taking \(u_{n}^{-}=\min (u_{n},0)\) test function in (2.1) and using (1.3), then we have

$$\begin{aligned} \frac{1}{2}\int _{\Omega }|u_{n}^{-}|^{2}+\alpha \iint _{Q}|\nabla u_{n}^{-}|^{p}-\mu \iint _{Q}\frac{{u_{n}^{-}}^{p}}{|x|^{p}}\le 0, \end{aligned}$$

dropping the first nonnegative term and by Hardy inequality, we can get

$$\begin{aligned} (\alpha -\frac{\mu }{C_{N,p}})\iint _{Q}|\nabla u_{n}^{-}|^{p}\le 0, \end{aligned}$$

as \(\alpha -\frac{\mu }{C_{N,p}}>0,\) then we deduce that

$$\begin{aligned} \iint _{Q}|\nabla u_{n}^{-}|^{p}\le 0, \end{aligned}$$

that implies that \(u_{n}^{-}=0\) a.e and hence \(u_{n}\ge 0.\) a.e.. \(\square \)

Lemma 2.2

Let \(u_{n}\) be a solution of (2.1). Then

$$\begin{aligned} \forall \omega \subset \subset \Omega ,\; \exists \; c_{\omega }>0\;\; \text{(independent } \text{ of } \text{ n) }:\;\; u_{n}\ge c_{\omega } \;\text{ in }\;\; \omega \times [0,T],\, \forall n\in {\mathbb {N}}. \end{aligned}$$

Proof

Since \(u_{n}\) solution of (2.1), then

$$\begin{aligned} \frac{\partial u_{n}}{\partial t}-{\text {div}}(a(x,t, \nabla u_{n}))-\mu \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}=\frac{f_{n}}{(|u_{n}|+\frac{1}{n})^{\gamma }}, \end{aligned}$$

as \(\mu >0,\) then we obtain

$$\begin{aligned} \frac{\partial u_{n}}{\partial t}-{\text {div}}(a(x,t, \nabla u_{n}))\ge \frac{f_{n}}{(|u_{n}|+\frac{1}{n})^{\gamma }}, \end{aligned}$$

this implies that the sequence \(u_{n}\) is a sub-solution to problem

$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial v}{\partial t}-{\text {div}}(a(x,t,\nabla v))=\frac{f_{n}}{(|v|+\frac{1}{n})^{\gamma }} &{}{\text{ in }}&{}\,\, Q,\\ v=0 &{}\text{ on } &{}\,\, \Gamma ,\\ v(x,0)=u_{0}(x) &{}\text{ in } &{} \Omega . \end{array} \right. \end{aligned}$$

Thanks to Proposition 2.2 in [11], \(\exists \; c_{\omega }>0\) (independent of n) such that

$$\begin{aligned} v\ge c_{w}\;\; \text{ in }\;\; \omega \times (0,T),\; \forall n\in {\mathbb {N}},\; \forall \, \omega \subset \subset \Omega , \end{aligned}$$

since \(u_{n}\ge v,\) so

$$\begin{aligned} u_{n}\ge c_{\omega }\;\; \text{ in }\;\; \omega \times (0,T),\; \forall n\in {\mathbb {N}},\; \forall \, \omega \subset \subset \Omega . \end{aligned}$$

\(\square \)

3 A priori estimate and main results

Now, we prove some a priori estimates on the sequence of approximated solutions \(u_{n}.\)

Lemma 3.1

Assume that (1.3)–(1.5) hold true, \(f\in L^{\frac{p(N+2)}{p(N+2)-N(1-\gamma )}}(Q).\) If \(\gamma <1\) and \(\mu <\alpha C_{N,p},\) then the sequence \(u_{n}\) is uniformly bounded in \( L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega )).\)

Proof

Take \(u_{n}\chi _{(0,t)}\) as a test function in (2.1) (with \(0< t\le T\)), from (1.3) and \(f_{n}\le f\) we have

$$\begin{aligned}&\frac{1}{2}\int _{\Omega }u_{n}^{2}(x,t)+\alpha \int _{0}^{t}\int _{\Omega }|\nabla u_{n}|^{p}-\mu \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p}}{|x|^{p}}\\&\quad \le \int _{0}^{t}\int _{\Omega }f_{n}u_{n}^{1-\gamma }+\frac{1}{2}\int _{\Omega }u_{0}^{2}\le \iint _{Q}fu_{n}^{1-\gamma }+\frac{1}{2}\int _{\Omega }u_{0}^{2}, \end{aligned}$$

since \(u_{0}\in L^{\infty }(\Omega ),\) thanks to Hölder’s and Hardy inequalities imply that

$$\begin{aligned}&\displaystyle \frac{1}{2}\int _{\Omega }u_{n}^{2}(x,t)+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla u_{n}|^{p}\\&\quad \displaystyle \le ||f||_{L^{\frac{p(N+2)}{p(N+2)-N(1-\gamma )}}(Q)}\left( \iint _{Q}u_{n}^{\frac{p(N+2)}{N}}\right) ^{\frac{N(1-\gamma )}{p(N+2)}}+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}. \end{aligned}$$

Passing to the supremum for \(t\in [0,T]\)

$$\begin{aligned}&\displaystyle \frac{1}{2}||u_{n}||_{L^{\infty }(0,T; L^{2}(\Omega ))}^{2}+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla u_{n}|^{p}\\&\quad \displaystyle \le ||f||_{L^{\frac{p(N+2)}{p(N+2)-N(1-\gamma )}}(Q)}\left( \iint _{Q}u_{n}^{\frac{p(N+2)}{N}}\right) ^{\frac{N(1-\gamma )}{p(N+2)}}+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}. \end{aligned}$$

By Lemma 1.1, we can write

$$\begin{aligned} \displaystyle \iint _{Q}|u_{n}|^{\frac{p(N+2)}{N}}\le & {} C_{G} ||u_{n}||_{L^{\infty }(0,T; L^{2}(\Omega ))}^{\frac{2p}{N}} \displaystyle \iint _{Q}|\nabla u_{n}|^{p}\\\le & {} C\left( \displaystyle \iint _{Q}|u_{n}|^{\frac{p(N+2)}{N}}\right) ^{\frac{(p+N)(1-\gamma )}{p(N+2)}}+C(u_{0}), \end{aligned}$$

since \(0<\gamma <1\) then \(\frac{(p+N)(1-\gamma )}{p(N+2)}<1,\) this implies the sequence \(u_{n}\) is bounded in \(L^{\frac{p(N+2)}{N}}(Q),\) hence \(u_{n}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega ))\) with respect to n. \(\square \)

Lemma 3.2

Assume that (1.3)–(1.5) hold true, \(\gamma \ge 1,\) \(\mu <\alpha C_{N,p}\) and \(f\in L^{1}(Q),\) then

i):

If \(\gamma =1,\) then \(u_{n}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega )).\)

ii):

If \(\gamma >1,\) then \(u_{n}\) is bounded in \(L^{p}(0,T; W_{loc}^{1,p}(\Omega ))\) and \(T_{k}(u_{n})^{\frac{\gamma +p-1}{p}}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega )).\) Moreover if \( \alpha \left( \frac{p}{\gamma +p-1}\right) ^{p}-\frac{\mu }{C_{N,p}} >0,\) then \(u_{n}^{\frac{\gamma +p-1}{p}}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(u_{n}\) is bounded in \(L^{\infty }(0,T; L^{\gamma +1}(\Omega )).\)

Proof

First case: \(\gamma =1\)

Choosing \(u_{n}\chi _{(0,t)}\) as a test function in (2.1) (with \(0< t\le T\) ), by (1.3) and the fact that \(0\le \frac{u_{n}}{u_{n}+\frac{1}{n}}\le 1,\, f_{n}\le f,\) we have

$$\begin{aligned} \begin{aligned}&\displaystyle \frac{1}{2}\int _{\Omega }u_{n}^{2}(x,t)+\alpha \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla u_{n}|^{p}-\mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p}}{|x|^{p}}\\&\quad \le \displaystyle \int _{0}^{t}\int _{\Omega }f_{n}\frac{u_{n}}{u_{n}+\frac{1}{n}}+\frac{1}{2}\displaystyle \int _{\Omega }u_{0}^{2}\\&\quad \le \displaystyle \int _{0}^{t}\int _{\Omega }f+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}, \end{aligned} \end{aligned}$$

thanks to Hardy inequality, there result that

$$\begin{aligned} \frac{1}{2}\int _{\Omega }u_{n}^{2}(x,t)+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \int _{0}^{t}\int _{\Omega }|\nabla u_{n}|^{p}\le \int _{0}^{t}\int _{\Omega }f+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}. \end{aligned}$$

Passing to the supremum for \(t\in [0,T]\) and the fact that \(u_{0}\in L^{\infty }(\Omega ),\) we get

$$\begin{aligned} \frac{1}{2}||u_{n}||^{2}_{L^{\infty }(0,T; L^{2}(\Omega ))}+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla u_{n}|^{p}\le \iint _{Q}f+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}\le C, \end{aligned}$$

since \(\alpha -\frac{\mu }{C_{N,p}}>0,\) then the sequence \(u_{n}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and in \(L^{\infty }(0,T; L^{2}(\Omega ))\) with respect to n. Hence the proof of item i) is achieved.

Second case: \(\gamma >1\)

Now taking \(G_{k}(u_{n})\) as test function in (2.1), from (1.3) we arrive to

$$\begin{aligned}&\frac{1}{2}\int _{\Omega }|G_{k}(u_{n}(x,T))|^{2}+\alpha \iint _{Q}|\nabla G_{k}( u_{n})|^{p}-\mu \iint _{Q}\frac{u_{n}^{p-1}G_{k}(u_{n})}{|x|^{p}}\nonumber \\&\quad \le \iint _{Q}\frac{f_{n}G_{k}(u_{n})}{(u_{n}+\frac{1}{n})^{\gamma }}+\frac{1}{2}\int _{\Omega }|G_{k}(u_{0}(x))|^{2}, \end{aligned}$$
(3.1)

dropping the first nonnegative term and as \(G_{k}(u_{n})=0\) if \(u_{n}\le k\) and the fact that \(G_{k}(u_{0}(x))\le u_{0}(x),\) then

$$\begin{aligned}&\alpha \iint _{Q}|\nabla G_{k}(u_{n})|^{p}-\mu \iint _{Q}\frac{u_{n}^{p-1}G_{k}(u_{n})}{|x|^{p}}\nonumber \\&\quad \le \iint _{Q\cap \{u_{n}>k\}}\frac{f_{n}G_{k}(u_{n})}{(u_{n}+\frac{1}{n})^{\gamma }}+\frac{1}{2}\int _{\Omega }|u_{0}(x)|^{2} \nonumber \\&\quad \le \frac{1}{k^{\gamma -1}}\iint _{Q}f+\frac{1}{2}\int _{\Omega }|u_{0}(x)|^{2}\le \frac{1}{k^{\gamma -1}}\iint _{Q}f+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}. \end{aligned}$$
(3.2)

Notice that for all \(a,b\ge 0\) and for all \(\epsilon >0,\) we have

$$\begin{aligned} (a+b)^{r}\le (1+\epsilon )^{r-1}a^{r}+(1+\frac{1}{\epsilon })^{r-1}b^{r},\;\;\;\text{ if }\,\ r>1. \end{aligned}$$

For \(u_{n}>k,\) we have \(u_{n}^{p-1}G_{k}(u_{n})=(G_{k}(u_{n})+k)^{p-1}G_{k}(u_{n})\) and \(p\ge 2,\) then from the previous estimate we reach that

$$\begin{aligned} u_{n}^{p-1}G_{k}(u_{n})\le (1+\epsilon )^{p-2}(G_{k}(u_{n}))^{p}+(1+\frac{1}{\epsilon })^{p-2}k^{p-1}G_{k}(u_{n}). \end{aligned}$$
(3.3)

In view of (3.2) and (3.3), it follows that

$$\begin{aligned}&\alpha \iint _{Q}|\nabla G_{k}(u_{n})|^{p}-\mu (1+\epsilon )^{p-2}\iint _{Q}\frac{(G_{k}(u_{n}))^{p}}{|x|^{p}} \nonumber \\&\quad \le \mu (1+\frac{1}{\epsilon })^{p-2}k^{p-1}\iint _{Q}\frac{G_{k}(u_{n})}{|x|^{p}}+\frac{1}{k^{\gamma -1}}\iint _{Q}f+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}, \end{aligned}$$
(3.4)

as \(\mu <\alpha C_{N,p},\) choosing \(\epsilon \) small enough and by Hardy inequality, we get

$$\begin{aligned} C(\alpha , \epsilon , \mu , C_{N,p})\iint _{Q}|\nabla G_{k}(u_{n})|^{p}\le \mu k^{p-1}\iint _{Q}\frac{G_{k}(u_{n})}{|x|^{p}}+ C(k, f, ||u_{0}||_{L^{2}(\Omega )}).\nonumber \\ \end{aligned}$$
(3.5)

Applying Hölder, Young and Hardy inequalities we conclude that

$$\begin{aligned} \iint _{Q}|\nabla G_{k}(u_{n})|^{p}\le C(\alpha , \epsilon , \mu , k^{p-1}, C_{N,p,}, f,||u_{0}||_{L^{2}(\Omega )}). \end{aligned}$$
(3.6)

Testing now (2.1) by \((T_{k}(u_{n}))^{\gamma },\) so that, from (1.3) and (3.6)

$$\begin{aligned} \iint _{Q}T_{k}(u_{n})^{\gamma -1}|\nabla T_{k}(u_{n})|^{p}\le C(\alpha , k, \mu , f, ||u_{0}||_{L^{2}(\Omega )}). \end{aligned}$$
(3.7)

There hold

$$\begin{aligned} \frac{p^{p}}{(\gamma +p-1)^{p}}\iint _{Q}|\nabla T_{k}(u_{n})^{\frac{\gamma +p-1}{p}}|^{p}\le C(\alpha , k, \mu , f, ||u_{0}||_{L^{2}(\Omega )}), \end{aligned}$$

this implies that the sequence \(T_{k}(u_{n})^{\frac{\gamma +p-1}{p}}\) is bounden in \(L^{p}(0,T; W_{0}^{1,p}(\Omega )).\) By Lemma 2.2 and (3.6), yields that \(T_{k}(u_{n})\) is bounded in \(L^{p}(0,T; W_{loc}^{1,p}(\Omega )).\) Collecting the last affirmation with (3.6), assume that the sequence \(u_{n}\) is bounded in \(L^{p}(0,T; W_{loc}^{1,p}(\Omega )).\) Using \(u_{n}^{\gamma }\chi _{(0,t)}\) as test function in (2.1) (with \(0< t\le T\)), from (1.3), \(u_{0}\in L^{\infty }(\Omega )\) and applying Hardy inequality, we get

$$\begin{aligned}&\frac{1}{\gamma +1}\int _{\Omega }u_{n}^{\gamma +1}(x,t)+\left( \alpha \left( \frac{p}{\gamma +p-1}\right) ^{p}-\frac{\mu }{C_{N,p}}\right) \int _{0}^{t}\int _{\Omega }|\nabla u_{n}^{\frac{\gamma +p-1}{p}}|^{p}\\&\quad \le \iint _{Q}f_{n}+\frac{1}{\gamma +1}\int _{\Omega }|u_{0}(x)|^{\gamma +1}\le \iint _{Q}f+\frac{1}{\gamma +1}||u_{0}||_{L^{\infty }(\Omega )}^{\gamma +1}\le C, \end{aligned}$$

since \( \alpha \left( \frac{p}{\gamma +p-1}\right) ^{p}-\frac{\mu }{C_{N,p}}>0,\) passing to the supremum for \(t\in [0,T],\) we deduce that

$$\begin{aligned} \frac{1}{\gamma +1}||u_{n}||^{\gamma +1}_{L^{\infty }(0,T; L^{\gamma +1}(\Omega ))}+\left( \alpha \left( \frac{p}{\gamma +p-1}\right) ^{p}-\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla u_{n}^{\frac{\gamma +p-1}{p}}|^{p}\le C, \end{aligned}$$

this implies that \(u_{n}^{\frac{\gamma +p-1}{p}}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(u_{n}\) is bounded in \(L^{\infty }(0,T; L^{\gamma +1}(\Omega ))\) with respect to n. Since the proof of item ii) is achieved. \(\square \)

Theorem 3.3

Assume that (1.3)–(1.5) holds true. If \(\gamma<1, \mu <\alpha C_{N,p}\) and \(f\in L^{\frac{p(N+2)}{p(N+2)-N(1-\gamma )}}(Q).\) Then, there exists a solution u to problem (1.1) in the sense of Definition 1.2. Moreover \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega ))\) and \(\frac{\partial u}{\partial t}\in L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\Omega ))+ L^{1}(0,T; L_{loc}^{1}(\Omega )).\)

Remark 3.4

If \(\mu =0,\) then the result of Theorem 3.3 coincide with result of Theorem 1.3 in [11].

Theorem 3.5

Suppose that (1.3)–(1.5) holds true. If \(\gamma \ge 1, \, \mu <\alpha C_{N,p}\) and \(f\in L^{1}(Q).\) Then, there exists a solution u to problem (1.1) in the sense of Definition 1.2 with the following regularity:

  1. a)

    If \(\gamma =1,\) then \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega ))\) and \(\frac{\partial u}{\partial t}\in L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\Omega ))+ L^{1}(0,T; L_{loc}^{1}(\Omega )).\)

  2. b)

    If \(\gamma >1,\) then \(u\in L^{p}(0,T; W_{loc}^{1,p}(\Omega ))\) and \(T_{k}(u)^{\frac{p+\gamma -1}{p}}\in L^{p}(0,T; W_{0}^{1,p}(\Omega )).\) If \( \alpha \left( \frac{p}{p+\gamma -1}\right) ^{p}-\frac{\mu }{C_{N,p}} >0,\) then \(u^{\frac{p+\gamma -1}{p}}\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(u\in L^{\infty }(0,T; L^{\gamma +1}(\Omega ))\) and \(\frac{\partial u}{\partial t}\in L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\omega ))+ L^{1}(0,T; L^{1}(\omega ))\) for all \(\omega \subset \subset \Omega .\)

Remark 3.6

If \(\mu =0,\) then the result of Theorem 3.5 coincide with result of Theorem 1.3 in [11].

Before giving the proof of Theorems 3.3 and 3.5 , we need the following results:

Proposition 3.7

Under the assumptions of Lemmas 3.1 and 3.2 there exists \(u\in L^{p}(0,T; W_{loc}^{1,p}(\Omega ))\) such that, up to a subsequence, \(u_{n}\) converges to u a.e. on Q,  weakly in \(L^{p}(0,T; W_{loc}^{1,p}(\Omega ))\) and strongly in \(L^{1}(0,T; L^{1}_{loc}(\Omega )).\)

Proof

From Lemmas 3.1 and 3.2 we know that \(u_{n}\) is bounded in the space \(L^{p}(0,T; W_{loc}^{1,p}(\Omega )).\) The last affirmation and Lemma 2.2 imply the sequence \(\bigg \{\mu \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}+\frac{f_{n}}{(u_{n}+\frac{1}{n})^{ \gamma }}\bigg \}\) is bounded in \(L^{1}(0,T; L_{loc}^{1}(\Omega )).\) Hence, let \(\varphi \in C_{c}^{1}(\Omega )\) then one has that \(\{\frac{\partial (u_{n}\varphi )}{\partial t}\}\) is bounded in \(L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\Omega ))+L^{1}(Q),\) which is sufficient to apply [32, Corollary 4] in order to deduce that \(u_{n}\) converges to a function \(u\in L^{1}(0,T; L_{loc}^{1}(\Omega ))\) and \(u_{n}\) converges to u a.e. in Q. \(\square \)

In the following proposition, we are going to prove the almost everywhere convergence of the gradient of \(u_{n}.\)

Proposition 3.8

Let \(u_{n}\) be a solution of problem (2.1) and assume that \(f\in L^{\frac{p(N+2)}{p(N+2)-N(1-\gamma )}}(Q)\) if \(\gamma <1\) and \( f\in L^{1}(Q)\) if \(\gamma \ge 1\) respectively. Then the sequence \(T_{k}(u_{n})\) strongly converges to \(T_{k}(u)\) in \(L^{p}(0,T; W_{loc}^{1,p}(\Omega ))\) and so, in particular, \(\nabla u_{n}\) converges to \(\nabla u\) almost everywhere in Q.

Proof

Let \(n,m\in {\mathbb {N}}\) denote two value of the parameter describing the approximation. Since (2.1) is non-singular problem, we can take \(T_{2k}(u_{n}-u_{m})\varphi \in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(Q)\) as a test function in the difference of the approximating equations solved by \(u_{n}\) and \(u_{m},\) with \(\varphi \in C_{c}^{1}(\Omega )\) independent of \(t\in [0,T]\) and such that \(0\le \varphi \le 1\), obtaining

$$\begin{aligned} \begin{aligned}&\int _{0}^{T}\int _{\Omega }\frac{\partial (u_{n}-u_{m})}{\partial t}T_{2k}(u_{n}-u_{m})\varphi (x)\\&\qquad +\int _{0}^{T}\int _{\Omega }(a(x,t, \nabla u_{n})-a(x,t, \nabla u_{m}))\nabla (T_{2k}(u_{n}-u_{m})\varphi (x))\\&\quad =\int _{0}^{T}\int _{\Omega }\left( \frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}-\frac{f_{m}}{(u_{m}+\frac{1}{m})^{m}}\right) T_{2k}(u_{n}-u_{m})\varphi (x)\\&\qquad +\int _{0}^{T}\int _{\Omega }\mu \left[ \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}-\frac{u_{m}^{p-1}}{|x|^{p}+\frac{1}{m}}\right] T_{2k}(u_{n}-u_{m})\varphi (x). \end{aligned} \end{aligned}$$

Observe that

$$\begin{aligned} \int _{0}^{T}\int _{\Omega }\frac{\partial (u_{n}-u_{m})}{\partial t}T_{2k}(u_{n}-u_{m})\varphi (x)= & {} \int _{\Omega }\int _{0}^{T}\frac{d}{dt}(\theta _{2k}(u_{n}-u_{m}))\varphi (x) \nonumber \\= & {} \int _{\Omega }\theta _{2k}(u_{n}-u_{m})(T)\varphi (x), \end{aligned}$$
(3.8)

where \(\theta _{2k}(t)\) is the primitive of \(T_{2k}(t)\) which vanishes for \(t=0,\) and so we can drop the parabolic term (3.8) (since it is nonnegative) obtaining

$$\begin{aligned}&\int _{0}^{T}\int _{\Omega }(a(x,t, \nabla u_{n})-a(x,t, \nabla u_{m}))\nabla (T_{2k}(u_{n}-u_{m}))\varphi (x) \nonumber \\&\qquad +\int _{0}^{T}\int _{\Omega }(a(x,t, \nabla u_{n})-a(x,t, \nabla u_{m}))\nabla \varphi T_{2k}(u_{n}-u_{m}) \nonumber \\&\quad \le 2k\int _{Q\cap supp(\varphi )}\bigg | \frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}-\frac{f_{m}}{(u_{m}+\frac{1}{m})^{\gamma }}\bigg | \nonumber \\&\qquad +\int _{0}^{T}\int _{\Omega }\mu \left[ \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}-\frac{u_{m}^{p-1}}{|x|^{p}+\frac{1}{m}}\right] T_{2k}(u_{n}-u_{m})\varphi (x). \end{aligned}$$

We denote by

$$\begin{aligned} A_{k,n}=\{(x,t)\in Q: u_{n}\le k\}\,\,\,\, \text{ and }\,\,\,\, A_{k,n, m}=\{(x,t)\in Q: u_{n}\le k,\, u_{m}\le k\}, \end{aligned}$$

since \(A_{k,n, m}\subset \{(x,t)\in Q: |u_{n}-u_{m}|\le 2k \},\) we have

$$\begin{aligned}&\iint _{Q}(a(x,t,\nabla u_{n})-a(x,t,\nabla u_{m})\nabla (T_{2k}(u_{n}-u_{m}))\varphi \\&\quad =\iint _{\{(x,t)\in Q: |u_{n}-u_{m}|\le 2k\}}(a(x,t, \nabla u_{n})-a(x,t, \nabla u_{m}))\nabla (u_{n}- u_{m})\varphi \\&\quad \ge \iint _{A_{k,n,m}}(a(x,t,\nabla T_{k}(u_{n}))-a(x,t,\nabla T_{k}(u_{m})))(\nabla T_{k}(u_{n})-\nabla T_{k}(u_{m}))\varphi \\&\quad =\iint _{A_{k,n}}a(x,t,\nabla T_{k}(u_{n}))\nabla T_{k}(u_{n})\varphi -\iint _{A_{k,n,m}}a(x,t,\nabla T_{k}(u_{n}))\nabla T_{k}(u_{m})\varphi \\&\qquad -\iint _{A_{k,n,m}}a(x,t,\nabla T_{k}(u_{m}))\nabla T_{k}(u_{n})\varphi +\iint _{A_{k,m}}a(x,t,\nabla T_{k}(u_{m}))\nabla T_{k}(u_{m})\varphi . \end{aligned}$$

In conclusion, we found that

$$\begin{aligned}&\iint _{A_{k,n}}a(x,t,\nabla T_{k}(u_{n}))\nabla T_{k}(u_{n})\varphi -\iint _{A_{k,n,m}}a(x,t,\nabla T_{k}(u_{n}))\nabla T_{k}(u_{m})\varphi \nonumber \\&\qquad -\iint _{A_{k,n,m}}a(x,t,\nabla T_{k}(u_{m}))\nabla T_{k}(u_{n})\varphi +\iint _{A_{k,m}}a(x,t,\nabla T_{k}(u_{m}))\nabla T_{k}(u_{m})\varphi \nonumber \\&\quad \le 2k\int _{Q\cap supp(\varphi )}\bigg | \frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}-\frac{f_{m}}{(u_{m}+\frac{1}{m})^{\gamma }}\bigg | \nonumber \\&\qquad +\int _{0}^{T}\int _{\Omega }\mu \left[ \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}-\frac{u_{m}^{p-1}}{|x|^{p}+\frac{1}{m}}\right] T_{2k}(u_{n}-u_{m})\varphi (x) \nonumber \\&\qquad -\iint _{Q}(a(x,t,\nabla u_{n})-a(x,t,\nabla u_{m}))\nabla \varphi (x)T_{2k}(u_{n}-u_{m}). \end{aligned}$$
(3.9)

The right-hand side of the previous inequality is infinitesimal for \(n,m\rightarrow +\infty \) and we denote by r(nm) a quantity that goes to zero from \(n,m\rightarrow +\infty .\)

By using the same proof as Proposition 3.2 in [11], we have

$$\begin{aligned} \int _{Q\cap supp(\varphi )}\bigg | \frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}-\frac{f_{m}}{(u_{m}+\frac{1}{m})^{m}}\bigg |=r(n,m), \end{aligned}$$

and

$$\begin{aligned} \iint _{Q\cap supp(\varphi )}(a(x,t,\nabla u_{n})-a(x,t,\nabla u_{m}))\nabla \varphi (x)T_{2k}(u_{n}-u_{m})=r(n,m). \end{aligned}$$

Now, we prove

$$\begin{aligned} \int _{0}^{T}\int _{\Omega }\mu \left[ \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}-\frac{u_{m}^{p-1}}{|x|^{p}+\frac{1}{m}}\right] T_{2k}(u_{n}-u_{m})\varphi (x)=r(n,m). \end{aligned}$$
(3.10)

First of all we prove that

$$\begin{aligned} \frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}\, \text{ is } \text{ bounded } \text{ in }\, L^{{\bar{h}}}(0,T; L_{loc}^{{\bar{h}}}{\Omega }),\, \text{ for } \text{ every }\, 1<{\bar{h}}<\frac{pN}{p+(p-1)N}.\nonumber \\ \end{aligned}$$
(3.11)

Notice that it results \(1<\frac{pN}{p+(p-1)N}<p^{\prime }.\) As matter of fact, for every compact \(\omega \subset \Omega \) it results (thanks to Hardy inequality and Lemmas 3.1 and 3.2 )

$$\begin{aligned} \begin{aligned}&\int _{0}^{T}\int _{\omega }\bigg |\frac{u_{n}^{(p-1)}}{|x|^{p}+\frac{1}{n}}\bigg |^{{\bar{h}}}\le \int _{0}^{T}\int _{\omega }\frac{|u_{n}|^{{\bar{h}}(p-1)}}{|x|^{p{\bar{h}}}}=\int _{0}^{T}\int _{\omega }\frac{|u_{n}|^{{\bar{h}}(p-1)}}{|x|^{{\bar{h}}(p-1)}}\frac{1}{|x|^{{\bar{h}}}}\\&\quad \le \left( \int _{0}^{T}\int _{\omega } \frac{|u_{n}|^{p}}{|x|^{p}} \right) ^{\frac{{\bar{h}}(p-1)}{p}} \left( \int _{0}^{T}\int _{\omega }\frac{1}{|x|^{{\bar{h}}\left( \frac{p}{{\bar{h}}(p-1)} \right) ^{\prime }}} \right) ^{1-\frac{{\bar{h}}(p-1)}{p}} \le C, \end{aligned} \end{aligned}$$

where the last integral in the right-hand side is finite since it results

$$\begin{aligned} {\bar{h}}\left( \frac{p}{{\bar{h}}(p-1)}\right) ^{\prime }<N\Leftrightarrow {\bar{h}}<\frac{pN}{p+(p-1)N}. \end{aligned}$$

Hence, by (3.11) and the convergence a.e. of \(u_{n}\) to u in Q we deduce that

$$\begin{aligned} \bigg [\frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}-\frac{u_{m}^{p-1}}{|x|^{p}+\frac{1}{m}}\bigg ]\varphi (x)\rightharpoonup 0\,\, \text{ weakly } \text{ in }\, L^{{\bar{h}}}(Q). \end{aligned}$$

Notice that, thanks to the Lebesgue Theorem, it results

$$\begin{aligned} T_{2k}(u_{n}-u_{m})\rightarrow 0\,\, \text{ strongly } \text{ in }\,\, L^{s}(Q),\,\, \text{ for } \text{ every }\,\, 1<s<+\infty , \end{aligned}$$

and thus it convergences also in \(L^{{\bar{h}}^{\prime }}(Q)\) and (3.10) follows.

Then, the rest of the proof, we proceed as Proposition 3.2 in [11], we obtain up to subsequences, \(T_{k}(u_{n})\rightarrow T_{k}(u)\) in \(L^{p}(0,T; W_{loc}^{1,p}(\Omega )),\) and so \(\nabla u_{n}\rightarrow \nabla u\) a.e. in Q\(\square \)

Proof of Theorems 3.3 and 3.5

If \(\gamma <1,\) by Lemma 3.1, we have \(u_{n}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and in \(L^{\infty }(0,T; L^{2}(\Omega )).\) Then, by Lemma 2.2, Proposition 3.7 and Fatou’s Lemma \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega )),\) and moreover \(\frac{u^{p-1}}{|x|^{p}}, \frac{f}{u^{\gamma }}\in L^{1}(0,T; L^{1}_{loc}(\Omega ))\) since u satisfies (1.8), in particular

$$\begin{aligned} \displaystyle \frac{\partial u}{\partial t}\in L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\Omega ))+ L^{1}(0,T; L^{1}_{loc}(\Omega )). \end{aligned}$$

If \(\gamma =1,\) thanks to Lemma 3.2, we have \(u_{n}\) is bounded in

$$\begin{aligned} L^{p}(0,T; W_{0}^{1,p}(\Omega )) \text{ and } \text{ in } L^{\infty }(0,T; L^{2}(\Omega )), \end{aligned}$$

as before, we get \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(0,T; L^{2}(\Omega ))\) and u satisfies (1.8); Moreover \(\frac{\partial u}{\partial t}\in L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(\Omega ))+ L^{1}(0,T; L^{1}_{loc}(\Omega )).\)

In the case \(\gamma >1,\) in view of Lemma 3.2, we have that \(u_{n}^{\frac{p+\gamma -1}{p}}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega )),\) while \(u_{n}\) is bounded in

$$\begin{aligned} L^{p}(0,T; W_{loc}^{1,p}(\Omega )) \text{ and } \text{ in } L^{\infty }(0,T; L^{\gamma +1}(\Omega )). \end{aligned}$$

Then

$$\begin{aligned} u\in L^{p}(0,T; W_{loc}^{1,p}(\Omega )) \text{ and } u^{\frac{p+\gamma -1}{p}} \in L^{p}(0,T; W_{0}^{1,p}(\Omega )), \end{aligned}$$

in particular, \(u=0\) on \(\partial \Omega \times (0,T)\) in weak-sense and

$$\begin{aligned} \frac{\partial u}{\partial t}\in L^{p^{\prime }}(0,T; W^{-1,p^{\prime }}(w))+ L^{1}(0,T; L^{1}_{loc}(\Omega )), \text{ for } \text{ all } w\subset \subset \Omega . \end{aligned}$$

Using Lemma 2.2, Proposition 3.7 and Fatou’s Lemma deduce that u satisfies the condition (1.8). Now we fix \(\varphi \in C_{c}^{1}(\Omega \times [0,T)),\) by Lemma 3.1 and Lemma 3.2, we have the boundedness of the sequence \(u_{n}\) in the space \(L^{p}(0,T; W_{loc}^{1,p}(\Omega ))\) and from (1.4), implies that the sequence \(a(x,t,\nabla u_{n})\) is bounded in \(L^{p^{\prime }}(\omega \times (0,T))\) for all \(\omega \subset \subset \Omega .\) As \(supp(\varphi )\) is a compact subset of \(\Omega \times [0,T),\) then \(a(x,t,\nabla u_{n})\) is bounded in \(L^{p^{\prime }}(supp(\varphi ))\) and \(\frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}\) is bounded in \(L^{1}(supp(\varphi )).\) From Propositions 3.7 and 3.8 , we have \(u_{n}\rightarrow u\) a.e. in Q and \(\nabla u_{n}\rightarrow \nabla u\) a.e. in Q and by Vitali’s Theorem we obtain

$$\begin{aligned} \lim _{n\rightarrow +\infty }\iint _{Q}a(x,t, \nabla u_{n})\nabla \varphi =\iint _{Q}a(x,t, \nabla u)\nabla \varphi \,\,\,\,\;\; \forall \varphi \in C_{c}^{1}(\Omega \times [0,T)),\nonumber \\ \end{aligned}$$
(3.12)

and

$$\begin{aligned} \lim _{n\rightarrow +\infty }\iint _{Q}\frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}\varphi =\iint _{Q}\frac{u^{p-1}}{|x|^{p}}\varphi \,\,\,\,\;\; \forall \varphi \in C_{c}^{1}(\Omega \times [0,T)). \end{aligned}$$
(3.13)

Concerning the passage of limit of term in the right of the approximating problem (2.1), since \(supp(\varphi )\) is a compact subset of \(\Omega \times [0,T),\) thanks to Lemma 2.2, there exists a constant \(c_{supp(\varphi )}>0\) such that \(u_{n}\ge c_{supp(\varphi )},\) then

$$\begin{aligned} \left| \frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}\varphi \right| \le \frac{f}{c_{supp(\varphi )}^{\gamma }}||\varphi ||_{L^{\infty }(Q)}, \end{aligned}$$

for every \((x,t)\in supp(\varphi ),\) since it is a.e. convergent to \(\frac{f}{u^{\gamma }}\varphi \) for \(n\longrightarrow +\infty ,\) by Lebesgue Theorem, implies that

$$\begin{aligned} \lim _{n\rightarrow +\infty }\iint _{Q}\frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}\varphi =\iint _{Q}\frac{f}{u^{\gamma }}\varphi \,\,\,\,\;\; \forall \varphi \in C_{c}^{1}(\Omega \times [0,T)). \end{aligned}$$
(3.14)

By Proposition 3.7, we have

$$\begin{aligned} \lim _{n\rightarrow +\infty }\iint _{Q}u_{n}\frac{\partial \varphi }{\partial t}=\iint _{Q}u\frac{\partial \varphi }{\partial t}, \,\,\,\,\;\; \forall \varphi \in C_{c}^{1}(\Omega \times [0,T)). \end{aligned}$$
(3.15)

Take now \(\varphi \in C_{c}^{1}(\Omega \times [0,T))\) as a test function in problem (2.1), by the convergences results (3.12), (3.13), (3.14), (3.15) and letting \(n\longrightarrow +\infty ,\) we get

$$\begin{aligned} -\int _{\Omega }u_{0}(x)\varphi (x,0)-\iint _{Q}u\frac{\partial \varphi }{\partial t}+\iint _{Q}a(x,t, \nabla u)\nabla \varphi -\mu \iint _{Q}\frac{u^{p-1}}{|x|^{p}}\varphi =\iint _{Q}\frac{f}{u^{\gamma }}\varphi . \end{aligned}$$

\(\square \)

4 Regularity results

In this section we study the regularity of solutions of problem (1.1) depending on \(\mu , \gamma >0\) and the summability of f.

4.1 The case \(\gamma \ge 1\)

Theorem 4.1

Let \(\gamma \ge 1 \) and suppose that f belongs to \(L^{m}(Q)\) with \(1<m<\frac{N}{p}+1.\) If

$$\begin{aligned}&0< \mu <\alpha C_{N,p}\frac{(Np-N+p)(m-1)+N\gamma m}{N-pm+p}\times \\&\left( \frac{p(N-pm+p)}{N(p+\gamma -1)m-p(p-2)(m-1)}\right) ^{p}, \end{aligned}$$

then the solution u of (1.1) found in Theorem 3.5 satisfies the following summability \(u\in L^{\sigma }(Q),\) where \(\sigma =m\displaystyle \frac{N(p+\gamma -1)+p(\gamma +1)}{N-pm+p}.\)

Proof

Let now choosing \(u_{n}^{p\delta -p+1}\chi _{(0,t)}\) as test function in (2.1), \(\delta >\frac{p+\gamma -1}{p}\) and \(0<t<T,\) then we get

$$\begin{aligned}&\displaystyle \int _{0}^{t}\int _{\Omega }\frac{\partial u_{n}}{\partial t}u_{n}^{p\delta -p+1}+(p\delta -p+1)\displaystyle \int _{0}^{t}\int _{\Omega }u_{n}^{p\delta -p}a(x,t, \nabla u_{n}).\nabla u_{n}\\&\quad \le \mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p\delta }}{|x|^{p}}+\displaystyle \int _{0}^{t}\int _{\Omega }\frac{f_{n}}{(u_{n}+\frac{1}{n})^{\gamma }}u_{n}^{p\delta -p+1}, \end{aligned}$$

from (1.3), it follows that

$$\begin{aligned}&\frac{1}{p\delta -p+2}\int _{\Omega }u_{n}^{p\delta -p+2}(x,t)+\alpha (p\delta -p+1)\int _{0}^{t}\int _{\Omega }u_{n}^{p\delta -p}|\nabla u_{n}|^{p}\\&\quad \le \mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p\delta }}{|x|^{p}}+\int _{0}^{t}\int _{\Omega }f_{n}u_{n}^{p\delta -p+1-\gamma }+\frac{1}{p\delta -p+2}\int _{\Omega }u_{0}^{p\delta -p+2}. \end{aligned}$$

Thanks to \(u_{0}\in L^{\infty }(\Omega )\) and \(u_{n}^{p\delta -p}|\nabla u_{n}|^{p}=\frac{1}{\delta ^{p}}|\nabla u_{n}^{\delta }|^{p},\) the last inequality becomes

$$\begin{aligned}&\frac{1}{p\delta -p+2}\int _{\Omega }[u_{n}^{\delta }]^{\frac{p\delta -p+2}{\delta }}+\frac{\alpha (p\delta -p+1)}{\delta ^{p}}\int _{0}^{t}\int _{\Omega }|\nabla u_{n}^{\delta }|^{p}\\&\quad \le \mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{(u_{n}^{\delta })^{p}}{|x|^{p}}+\int _{0}^{t}\int _{\Omega }f_{n}u_{n}^{p\delta -p+1-\gamma }+\frac{1}{p\delta -p+2}||u_{0}||_{L^{\infty }(\Omega )}^{p\delta -p+2}, \end{aligned}$$

applying Hardy and Hölder’s inequalities, yields

$$\begin{aligned}&\frac{1}{p\delta -p+2}\displaystyle \int _{\Omega }[u_{n}^{\delta }]^{\frac{p\delta -p+2}{\delta }}+\left( \frac{\alpha (p\delta -p+1)}{\delta ^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla u_{n}^{\delta }|^{p}\\&\quad \le ||f||_{L^{m}(Q)}\left( \displaystyle \iint _{Q}u_{n}^{(p\delta -p+1-\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$

Passing to supremum for \(t\in (0,T)\) we have

$$\begin{aligned}&\frac{1}{p\delta -p+2}||u_{n}^{\delta }||_{L^{\infty }(0,T; L^{\frac{p\delta -p+2}{\delta }}(\Omega ))}^{\frac{p\delta -p+2}{\delta }}+ \left( \frac{\alpha (p\delta -p+1)}{\delta ^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \iint _{Q}|\nabla u_{n}^{\delta }|^{p} \nonumber \\&\quad \le ||f||_{L^{m}(Q)}\left( \displaystyle \iint _{Q}u_{n}^{(p\delta -p+1-\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.1)

Since \(u_{n}\in L^{\infty }(Q)\cap L^{p}(0,T; W_{0}^{1,p}(\Omega )),\) then in view to Lemma 1.1 and by (4.1), we get

$$\begin{aligned}&\iint _{Q}(u_{n}^{\delta })^{p\frac{N+\frac{p\delta -p+2}{\delta }}{N}}\le C_{G} ||u_{n}^{\delta }||_{L^{\infty }(0,T; L^{\frac{p\delta -p+2}{\delta }}(\Omega ))}^{\frac{p(p\delta -p+2)}{N\delta }}\iint _{Q}|\nabla u_{n}^{\delta }|^{p}\\&\quad \le C\left( \iint _{Q}u_{n}^{(p\delta -p+1-\gamma )m^{\prime }}\right) ^{(\frac{p}{N}+1)\frac{1}{m^{\prime }}}+C, \end{aligned}$$

hence

$$\begin{aligned} \iint _{Q}u_{n}^{\frac{p(N\delta +p\delta -p+2)}{N}} \le C\left( \iint _{Q}u_{n}^{(p\delta -p+1-\gamma )m^{\prime }}\right) ^{(\frac{p}{N}+1)\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.2)

Choosing now \(\delta \) such that

$$\begin{aligned} \sigma =\frac{p(N\delta +p\delta -p+2)}{N}=(p\delta -p+1-\gamma )m^{\prime }, \end{aligned}$$
(4.3)

this equivalent to

$$\begin{aligned} \delta =\frac{ Nm(p+\gamma -1)-p(p-2)(m-1)}{p(N-pm+p)},\;\; \sigma =m\frac{N(p+\gamma -1)+p(\gamma +1)}{N-pm+p}. \end{aligned}$$

Collecting (4.2) with (4.3), we conclude that

$$\begin{aligned} \iint _{Q}u_{n}^{\sigma }\le C\left( \iint _{Q}u_{n}^{\sigma }\right) ^{(\frac{p}{N}+1)\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.4)

By virtue of \(m<\frac{N}{p}+1,\) then \((\frac{p}{N}+1)\frac{1}{m^{\prime }}<1,\) since \(\delta >\frac{p+\gamma -1}{p}\) gives \(m>1\) and applying Young’s inequality implies that

$$\begin{aligned} \iint _{Q}u_{n}^{\sigma }\le C, \end{aligned}$$
(4.5)

this last estimate yields that the sequence \(u_{n}\) is bounded in \(L^{\sigma }(Q),\) and so \(u\in L^{\sigma }(Q).\)

\(\square \)

Theorem 4.2

Let \(\gamma \ge 1\) and \(f\in L^{m}(Q)\) with \(m\ge \frac{N}{p}+1.\) Then the solution of problem (1.1) found in Theorem (3.5) satisfies the following regularity:

If \(\lambda \ge \gamma \) and \(\frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}>0,\) then \(u^{\frac{\lambda +p-1}{p}}\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(u\in L^{\infty }(0,T; L^{\lambda +1}(\Omega )).\)

Proof

Choosing \(u_{n}^{\lambda }\chi _{(0,t)}\) with \(\lambda >0\) as test function in (2.1)

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}\int _{\Omega }u_{n}^{\lambda +1}(x,t)+\lambda \displaystyle \int _{0}^{t}\int _{\Omega } u_{n}^{\lambda -1}a(x,t,\nabla u_{n})\cdot \nabla u_{n}\\&\quad =\mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{\lambda +p-1}}{|x|^{p}}+\displaystyle \int _{0}^{t}\int _{\Omega }\frac{f_{n}u_{n}^{\lambda }}{(u_{n}+1)^{\gamma }}+\frac{1}{\lambda +1}\int _{\Omega }|u_{0}(x)|^{\lambda +1}. \end{aligned}$$

From (1.3) and the fact that \(\frac{1}{(u_{n}+1)^{\gamma }}\le \frac{1}{u_{n}^{\gamma }}, u_{0}\in L^{\infty }(\Omega )\) we have

$$\begin{aligned}&\frac{1}{\lambda +1}\displaystyle \int _{\Omega }u_{n}^{\lambda +1}(x,t)+\lambda \alpha \int _{0}^{t}\int _{\Omega }|\nabla u_{n}|^{p}u_{n}^{\lambda -1}\\&\quad \le \mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{\lambda +p-1}}{|x|^{p}}+\int _{0}^{t}\int _{\Omega }f_{n}u_{n}^{\lambda -\gamma }+\frac{|\Omega |}{\lambda +1}||u_{0}||_{L^{\infty }(\Omega )}^{\lambda +1}. \end{aligned}$$

By Hardy inequality the later inequality implies

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}\int _{\Omega }u_{n}^{\lambda +1}(x,t)+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}} \right) \int _{0}^{t}\int _{\Omega }|\nabla u_{n}^{\frac{\lambda +p-1}{p}}|^{p}\\&\quad \displaystyle \le \int _{0}^{t}\int _{\Omega }f_{n}u_{n}^{\lambda -\gamma }+C. \end{aligned}$$

Passing to supremum for \(t\in [0,T]\) we get

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}||u_{n}||_{L^{\infty }(0,T; L^{\lambda +1}(\Omega ))}^{\lambda +1}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}} \right) \iint _{Q}|\nabla u_{n}^{\frac{\lambda +p-1}{p}}|^{p}\\&\quad \displaystyle \le \iint _{Q}f_{n}u_{n}^{\lambda -\gamma }+C, \end{aligned}$$

applying Hölder inequality we conclude that

$$\begin{aligned}&\frac{1}{\lambda +1}||u_{n}||_{L^{\infty }(0,T; L^{\lambda +1}(\Omega ))}^{\lambda +1}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}} \right) \iint _{Q}|\nabla u_{n}^{\frac{\lambda +p-1}{p}}|^{p} \nonumber \\&\quad \le C\left( \iint _{Q}u_{n}^{(\lambda -\gamma )m^{\prime }} \right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.6)

Using Sobolev inequality and by the above estimate, we get

$$\begin{aligned} \left( \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)}{N-p}} \right) ^{\frac{p}{p^{*}}}\le C\iint _{Q}|\nabla u_{n}^{\frac{\lambda +p-1}{p}}|^{p}\le C\left( \iint _{Q}u_{n}^{(\lambda -\gamma )m^{\prime }} \right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$

By \(m\ge \frac{N}{p}+1\) we have \(m^{\prime }\le \frac{N+p}{N}\), then for all \(\lambda \ge \gamma ,\) we get \((\lambda -\gamma )m^{\prime }\le \frac{(\lambda -\gamma )(N+p)}{N} \le \frac{N(\lambda +p-1)}{N-p}\). Thus choosing \(\lambda \) such that \(\frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}>0.\) Using Hölder’s inequality in the later estimate, we have

$$\begin{aligned} \left( \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)}{N-p}} \right) ^{\frac{p}{p^{*}}}\le C\left( \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)}{N-p}}\right) ^{\frac{(N-p)(\lambda -\gamma )}{N(\lambda +p-1)}}+C. \end{aligned}$$
(4.7)

Since \(\frac{p}{p^{*}}=\frac{N-p}{N}> \frac{(N-p)(\lambda -\gamma )}{N(\lambda +p-1)},\) then by Young inequality we deduce that

$$\begin{aligned} \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)}{N-p}}\le C. \end{aligned}$$
(4.8)

By the fact that \((\lambda -\gamma )m^{\prime }<\frac{N(\lambda +p-1)}{N-p},\) (4.8) and using Hölder inequality in (4.6), we obtain

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}||u_{n}||^{\lambda +1}_{L^{\infty }(0,T; L^{\lambda +1}(\Omega ))}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}} \right) \displaystyle \iint _{Q}|\nabla u_{n}^{\frac{\lambda +p-1}{p}}|^{p} \\&\quad \le C\left( \displaystyle \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)}{N-p}}\right) ^{\frac{(N-p)(\lambda -\gamma )}{N(\lambda +p-1)}}+C\le C. \end{aligned}$$

Since \(\lambda \ge \gamma ,\) \(\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}} \right) >0\) and the later estimate we deduce that the sequence \(u_{n}^{\frac{\lambda +p-1}{p}}\) is uniformly bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(u_{n}\) is bounded \(L^{\infty }(0,T; L^{\lambda +1}(\Omega ))\) with respect to n for all \(\lambda \ge \gamma ,\) so \(u^{\frac{\lambda +p-1}{p}}\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(u\in L^{\infty }(0,T; L^{\lambda +1}(\Omega ))\) for all \(\lambda \ge \gamma .\) This completed the proof of Theorem 4.2. \(\square \)

4.2 The case \(\gamma <1\)

Theorem 4.3

Let \(\gamma <1,\) and suppose that \(f\in L^{m}(Q), m\ge 1\) and

$$\begin{aligned} 0\le & {} \mu <\alpha C_{N,p}\frac{(m-1)[N(p-1)+p]+Nm\gamma }{N-pm+p} \nonumber \\&\times \left( \frac{p(N-pm+p)}{(m-1)[(N-p)(p-1)+p]+N(m\gamma +p-1)}\right) ^{p}. \end{aligned}$$
(4.9)

Then

(i):

If \(\frac{p(N+2)}{p(N+2)-N(1-\gamma )}\le m<\frac{N}{p}+1,\) then the solution u of (1.1) found in Theorem 3.3, satisfies the following regularity \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\sigma }(Q),\) with \(\sigma =m\frac{N(p+\gamma -1)+p(\gamma +1)}{N-pm+p}.\)

(ii):

If \(1\le m<\frac{p(N+2)}{p(N+2)-N(1-\gamma )},\) then there exists a weak solution u of problem (1.1) such that \(u\in L^{q}(0,T; W_{0}^{1,q}(\Omega ))\cap L^{\sigma }(Q),\) with

$$\begin{aligned} q=m\frac{N(p+\gamma -1)+p(\gamma +1)}{N+2-m(1-\gamma )}\; \text{ and } \; \sigma =m\frac{N(p+\gamma -1)+p(\gamma +1)}{N-pm+p}. \end{aligned}$$
(iii):

If \(m\ge \frac{N}{p}+1\) and \(0< \mu <\alpha C_{N,p},\) then the solution u of (1.1) found in Theorem 3.3 satisfies the following regularity \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\infty }(Q).\)

Proof

Taking \(\varphi (u_{n})=((u_{n}+a)^{\lambda }-a^{\lambda })\chi _{(0,t)}\) as a test function in (2.1), \(0<a< \frac{1}{n}, \; \lambda >0\) and using the ellipticity condition (1.3) we have

$$\begin{aligned}&\int _{0}^{t}\int _{\Omega }\frac{\partial u_{n}}{\partial t}\varphi (u_{n})+\lambda \alpha \int _{0}^{t}\int _{\Omega }(u_{n}+a)^{\lambda -1}|\nabla u_{n}|^{p}\\&\quad \le \mu \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p-1}(u_{n}+a)^{\lambda }}{|x|^{p}}+\int _{0}^{t}\int _{\Omega }\frac{f_{n}|(u_{n}+a)^{\lambda }-a^{\lambda }|}{(u_{n}+\frac{1}{n})^{\gamma }}. \end{aligned}$$

By the fact that \(\frac{1}{(u_{n}+\frac{1}{n})^{\gamma }}\le \frac{1}{(u_{n}+a)^{\gamma }}\) and \(u_{n}^{p-1}(u_{n}+a)^{\lambda }\le (u_{n}+a)^{\lambda +p-1},\) we obtain

$$\begin{aligned}&\displaystyle \int _{\Omega }\Psi (u_{n}(x,t))+\lambda \alpha \displaystyle \int _{0}^{t}\int _{\Omega }(u_{n}+a)^{\lambda -1}|\nabla u_{n}|^{p}\\&\quad \le \mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{(u_{n}+a)^{\lambda +p-1}}{|x|^{p}}+\displaystyle \int _{0}^{t}\int _{\Omega }f_{n}(u_{n}+a)^{\lambda -\gamma }+\displaystyle \int _{\Omega }\Psi (u_{0}), \end{aligned}$$

where \(\Psi (s)=\displaystyle \int _{0}^{s}\varphi (\ell )d\ell .\) Since \((u_{n}+a)^{\lambda -1}|\nabla u_{n}|^{p}=\frac{p^{p}}{(\lambda +p-1)^{p}}|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p},\) then the last estimate becomes

$$\begin{aligned}&\int _{\Omega }\Psi (u_{n}(x,t))+\frac{\lambda \alpha p^{p}}{(\lambda +p-1)^{p}}\int _{0}^{t}\int _{\Omega }|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p} \nonumber \\&\quad \le \mu \int _{0}^{t}\int _{\Omega }\frac{((u_{n}+a)^{\frac{\lambda +p-1}{p}})^{p}}{|x|^{p}}+\int _{0}^{t}\int _{\Omega }f(u_{n}+a)^{\lambda -\gamma }+\int _{\Omega }\Psi (u_{0}). \end{aligned}$$
(4.10)

Since \(u_{0}\in L^{\infty }(\Omega ),\) applying Hölder and Hardy inequalities, we find that

$$\begin{aligned}&\displaystyle \int _{\Omega }\Psi (u_{n}(x,t))+\left( \frac{\lambda \alpha p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p}\\&\quad \le ||f||_{L^{m}(Q)}\left( \displaystyle \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$

If \(\lambda \ge 1,\) by definition of \(\varphi (u_{n})\) and \(\Psi (u_{n}),\) we reach that

$$\begin{aligned} \Psi (s)\ge \frac{|s|^{\lambda +1}}{\lambda +1}, \quad \;\; \forall s\in {\mathbb {R}}. \end{aligned}$$
(4.11)

Therefore we obtain that

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}\int _{\Omega }u_{n}^{\lambda +1}(x,t)+\left( \frac{\lambda \alpha p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p}\\&\quad \le ||f||_{L^{m}(Q)}\left( \displaystyle \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$

Observing that \(u_{n}^{\lambda +1}(x,t)=\left( u_{n}^{\frac{\lambda +p-1}{p}}(x,t)\right) ^{\frac{p(\lambda +1)}{\lambda +p-1}},\) then the last inequality becomes

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}\int _{\Omega }[u_{n}^{\frac{\lambda +p-1}{p}}]^{\frac{p(\lambda +1)}{\lambda +p-1}}+\left( \frac{\lambda \alpha p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p}\\\nonumber&\quad \le ||f||_{L^{m}(Q)}\left( \displaystyle \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$

Now passing to the supremum for \(t\in (0,T),\) we obtain

$$\begin{aligned}&||u_{n}^{\frac{\lambda +p-1}{p}}||^{\frac{p(\lambda +1)}{\lambda +p+1}}_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p+1}}(\Omega ))}+ \displaystyle \iint _{Q}|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p}\nonumber \\&\quad \le C\left( \displaystyle \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.12)

From (4.12) and applying Lemma 1.1, we have

$$\begin{aligned}&\displaystyle \iint _{Q}[u_{n}^{\frac{\lambda +p-1}{p}}]^{p\frac{N+\frac{p(\lambda +1)}{\lambda +p-1}}{N}}\le C_{G}||u_{n}^{\frac{\lambda +p-1}{p}}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega )}^{\frac{p}{N}\times \frac{p(\lambda +1)}{\lambda +p-1}}\displaystyle \iint _{Q}|\nabla u_{n}^{\frac{\lambda +p-1}{p}}|^{p}\\&\quad \le C\left( \displaystyle \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C, \end{aligned}$$

where \(C=C(\alpha , \lambda , m, p, \mu , C_{N,p}, C_{G}, ||u_{0}||_{L^{\infty }(\Omega )}).\) Thus we get

$$\begin{aligned} \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)+p(\lambda +1)}{N}}\le C\left( \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$

Letting \(a\rightarrow 0,\) we reach that

$$\begin{aligned} \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)+p(\lambda +1)}{N}}\le C\left( \iint _{Q}u_{n}^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C, \end{aligned}$$
(4.13)

choosing \(\lambda \) such that

$$\begin{aligned} \sigma =\frac{N(\lambda +p-1)+p(\lambda +1)}{N}=(\lambda -\gamma )m^{\prime }, \end{aligned}$$
(4.14)

this equivalent to

$$\begin{aligned} \lambda =\frac{(m-1)(N(p-1)+p)+Nm\gamma }{N-pm+p}\;\;\; \text{ and }\;\; \sigma =m\frac{N(p+\gamma -1)+p(\gamma +1)}{N-pm+p}. \end{aligned}$$

From (4.14), the estimate (4.13) becomes

$$\begin{aligned} \iint _{Q}u_{n}^{\sigma }\le C\left( \iint _{Q}u_{n}^{\sigma }\right) ^{(\frac{p}{N}+1)\frac{1}{m^{\prime }}}+C. \end{aligned}$$

The condition \(\frac{p(N+2)}{p(N+2)-N(1-\gamma )}\le m<\frac{N}{p}+1,\) ensure that \(\lambda \ge 1\) and \((\frac{p}{N}+1)\frac{1}{m^{\prime }}<1,\) and thanks to Young inequality we deduce that

$$\begin{aligned} \iint _{Q}u_{n}^{\sigma }\le C. \end{aligned}$$
(4.15)

From (4.9) and, by the fact that and \(|\nabla u_{n}|^{p}\le (u_{n}+a)^{\lambda -1}|\nabla u_{n}|^{p}\) \((a>0, \; \lambda \ge 1)\) going back to (4.12) and using (4.14), (4.15) yield that

$$\begin{aligned} \iint _{Q}|\nabla u_{n}|^{p}\le \iint _{Q}(u_{n}+a)^{\lambda -1}|\nabla u_{n}|^{p}\le C\left( \iint _{Q}u_{n}^{\sigma }\right) ^{(\frac{p}{N}+1)\frac{1}{m^{\prime }}}+C\le C.\nonumber \\ \end{aligned}$$
(4.16)

Then by estimates (4.15) and (4.16) we deduce that the sequence \(u_{n}\) is bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and in \(L^{\sigma }(Q)\) with respect to n,  and so \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega )\cap L^{\sigma }(Q).\) Hence the proof of item (i) is achieved.

Now we prove item (ii). Let now taking \(\gamma<\lambda <1\) and by definition of \(\varphi (u_{n})\) and \(\Psi (u_{n}),\) we can get

$$\begin{aligned} \Psi (s)\ge C|s|^{\lambda +1}-C \quad \;\;\; \forall s\in {\mathbb {R}}. \end{aligned}$$
(4.17)

From (4.17) and going back to (4.10), we have

$$\begin{aligned}&C\displaystyle \int _{\Omega }\Psi (u_{n}(x,t))+\alpha \lambda \displaystyle \int _{0}^{t}\int _{\Omega }(u_{n}+a)^{\lambda -1}|\nabla u_{n}|^{p}\\&\quad \le \mu \displaystyle \int _{0}^{t}\int _{\Omega }\frac{(u_{n}+a)^{\lambda +p-1}}{|x|^{p}}+\displaystyle \int _{0}^{t}\int _{\Omega }f_{n}(u_{n}+a)^{\lambda -\gamma }+\int _{\Omega }\Psi (u_{0})+C|\Omega |. \end{aligned}$$

We proceed as before, we obtain that

$$\begin{aligned}&C||u_{n}^{\frac{\lambda +p-1}{p}}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}} \nonumber \\&\qquad +\left( \frac{\lambda \alpha p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}} \right) \iint _{Q}|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p} \nonumber \\&\quad \le C\left( \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }} \right) ^{\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.18)

Thanks to Lemma 1.1 and repeat the above process, it hold that

$$\begin{aligned} \iint _{Q}u_{n}^{\frac{N(\lambda +p-1)+p(\lambda +1)}{N}}\le C\left( \iint _{Q}u_{n}^{(\lambda -\gamma )m^{\prime }} \right) ^{(\frac{p}{N}+1)\frac{1}{m^{\prime }}}+C. \end{aligned}$$
(4.19)

Let now choosing \(\lambda \) such that

$$\begin{aligned} \sigma =\frac{N(\lambda +p-1)+p(\lambda +1)}{N}=(\lambda -\gamma )m^{\prime }, \end{aligned}$$
(4.20)

this yields that

$$\begin{aligned} \sigma =m\frac{N(p+\gamma -1)+p(\gamma +1)}{N-pm+p} \;\; \text{ and }\;\; \lambda =\frac{(m-1)(N(p-1)+p)+Nm\gamma }{N-pm+p}. \end{aligned}$$

Since \(\lambda <1,\) then \(m<\frac{p(N+2)}{p(N+2)-N(1-\gamma )}<\frac{N}{p}+1,\) and \((\frac{p}{N}+1)\frac{1}{m^{\prime }}<1,\) from (4.19), (4.20) and thanks to Young inequality it hold that

$$\begin{aligned} \iint _{Q}u_{n}^{\sigma }\le C. \end{aligned}$$
(4.21)

By (4.9), then we have \(\frac{\lambda \alpha p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}>0.\) Let \(1<q<p,\) applying Hölder’s inequality and from (4.18), we get

$$\begin{aligned} \iint _{Q}|\nabla u_{n}|^{q}= & {} \iint _{Q}\frac{|\nabla u_{n}|^{q}}{(u_{n}+a)^{\frac{q(1-\lambda )}{p}}}(u_{n}+a)^{\frac{q(1-\lambda )}{p}} \nonumber \\\le & {} \left( \iint _{Q}\frac{|\nabla u_{n}|^{p}}{(u_{n}+a)^{1-\lambda }}\right) ^{\frac{q}{p}}\left( \iint _{Q}(u_{n}+a)^{\frac{q(1-\lambda )}{p-q}} \right) ^{\frac{p-q}{p}} \nonumber \\\le & {} \left[ C\left( \iint _{Q}(u_{n}+a)^{(\lambda -\gamma )m^{\prime }}\right) ^{\frac{1}{m^{\prime }}}+C\right] ^{\frac{q}{p}}\left( \iint _{Q}(u_{n}+a)^{\frac{q(1-\lambda )}{p-q}} \right) ^{\frac{p-q}{p}},\nonumber \\ \end{aligned}$$
(4.22)

we take q such that

$$\begin{aligned} \frac{q(1-\lambda )}{p-q}=(\lambda -\gamma )m^{\prime }, \end{aligned}$$
(4.23)

this equivalent to \(q=m\frac{N(p+\gamma -1)+p(\gamma +1)}{N+2- m(1-\gamma )}.\) Using (4.23) in (4.22) and letting \(a\rightarrow 0,\) we hold that

$$\begin{aligned} \iint _{Q}|\nabla u_{n}|^{q}\le \left( C\left( \iint _{Q}u_{n}^{\sigma }\right) ^{\frac{1}{m^{\prime }}}+C\right) ^{\frac{q}{p}}\left( \iint _{Q}u_{n}^{\sigma }\right) ^{\frac{p-q}{p}}. \end{aligned}$$

From (4.21) it follows that

$$\begin{aligned} \iint _{Q}|\nabla u_{n}|^{q}\le C. \end{aligned}$$
(4.24)

Therefore estimates (4.21) and (4.24) imply that the sequence \(u_{n}\) is bounded in \(L^{q}(0,T; W_{0}^{1,q}(\Omega ))\) and in \(L^{\sigma }(Q)\) with respect to n,  and so \(u\in L^{q}(0,T; W_{0}^{1,q}\) \((\Omega ))\cap L^{\sigma }(Q).\)

Now we give the proof of item (iii). Taking \(G_{k}(u_{n})\chi _{(0,t)}\) as a test function in (2.1) for \(t\in (0,T),\) we have

$$\begin{aligned}&\int _{0}^{t}\int _{\Omega }\frac{\partial u_{n}}{\partial t}G_{k}(u_{n})+\int _{0}^{t}\int _{\Omega }a(x,t,\nabla u_{n})\nabla G_{k}(u_{n}) \nonumber \\&\quad -\mu \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p-1}}{|x|^{p}+\frac{1}{n}}G_{k}(u_{n}) \le \int _{0}^{t}\int _{\Omega }\frac{f_{n}G_{k}(u_{n})}{(u_{n}+\frac{1}{n})^{\gamma }}. \end{aligned}$$
(4.25)

We observe that the function \(G_{k}(u_{n})\) is different from zero only on the set \(A_{k,n}=\{(x,t)\in Q: u_{n}(x,t)>k\},\) and that, on this set, we have \(u_{n}+\frac{1}{n}\ge k\ge 1.\) Note that

$$\begin{aligned}&\int _{0}^{t}\int _{\Omega }a(x,t,\nabla u_{n})\nabla G_{k}(u_{n})=\iint _{A_{k,n}}a(x,t,\nabla u_{n})\nabla u_{n}\\&\quad \ge \alpha \iint _{A_{k,n}}|\nabla u_{n}|^{p}=\alpha \int _{0}^{t}\int _{\Omega }|\nabla G_{k}(u_{n})|^{p} \end{aligned}$$

and

$$\begin{aligned} \displaystyle \int _{0}^{t}\int _{\Omega }\frac{\partial u_{n}}{\partial t}G_{k}(u_{n})= & {} \frac{1}{2}\iint _{A_{k,n}}\frac{\partial }{\partial t}(u_{n}-k)^{2}=\frac{1}{2}\iint _{A_{k,n}}\frac{\partial }{\partial t}\left( (u_{n}-k)^{+}\right) ^{2}\\= & {} \displaystyle \frac{1}{2}\int _{\Omega }G_{k}(u_{n}(x,t))^{2} -\frac{1}{2}\int _{\Omega }G_{k}^{2}(u_{0}), \end{aligned}$$

applying Hardy inequality and using the fact that \(G_{k}(u_{n})\le u_{n}\) in the set \(A_{k,n},\) we can write

$$\begin{aligned}&\displaystyle \int _{0}^{t}\int _{\Omega }\frac{u_{n}^{p-1}G_{k}(u_{n})}{|x|^{p}+\frac{1}{n}} =\iint _{A_{k,n}}\frac{u_{n}^{p-1}G_{k}(u_{n})}{|x|^{p}+\frac{1}{n}}\le \displaystyle \iint _{A_{k,n}}\frac{u_{n}^{p}}{|x|^{p}}\\&\quad \le \frac{1}{C_{N,p}}\iint _{A_{k,n}}|\nabla u_{n}|^{p}\displaystyle =\frac{1}{C_{N,p}}\iint _{A_{k,n}}|\nabla G_{k}(u_{n})|^{p}\le \frac{1}{C_{N,p}}\int _{0}^{t}\int _{\Omega }|\nabla G_{k}(u_{n})|^{p}. \end{aligned}$$

Inequality (4.25) becomes

$$\begin{aligned}&\displaystyle \frac{1}{2}\int _{\Omega }G_{k}^{2}(u_{n})+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \int _{0}^{t}\int _{\Omega }|\nabla G_{k}(u_{n})|^{p}\\&\quad \le \displaystyle \int _{0}^{t}\int _{\Omega }fG_{k}(u_{n})+\frac{1}{2}\int _{\Omega }G_{k}^{2}(u_{0}). \end{aligned}$$

Passing to the supremum in \(t\in (0,T),\) we get

$$\begin{aligned}&\displaystyle \frac{1}{2}||G_{k}(u_{n})||_{L^{\infty }(0,T; L^{2}(\Omega ))}^{2}+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla G_{k}(u_{n})|^{p}\\&\quad \le \displaystyle \iint _{Q}fG_{k}(u_{n})+\frac{1}{2}\int _{\Omega }G_{k}^{2}(u_{0}). \end{aligned}$$

From now on, we can follow the standard technique used for the non-singular case in [7], we deduce there exist a constant \(C_{\infty }\) independent of n such that

$$\begin{aligned} ||u_{n}||_{L^{\infty }(Q)}\le C_{\infty }. \end{aligned}$$
(4.26)

Now taking \(u_{n}\) as a test function in (2.1), by (1.3) and Hardy inequality, we have

$$\begin{aligned} \displaystyle \frac{1}{2}\int _{\Omega }u_{n}^{2}(x,T)+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla u_{n}|^{p}\le \displaystyle \iint _{Q}fu_{n}^{1-\gamma }+\frac{1}{2}\int _{\Omega }u_{0}^{2}. \end{aligned}$$

Since \(u_{0}\in L^{\infty }(\Omega )\) and by (4.26) and Hölder’s inequality,we have

$$\begin{aligned} \begin{aligned}&\displaystyle \frac{1}{2}\int _{\Omega }u_{n}^{2}(x,T)+\left( \alpha -\frac{\mu }{C_{N,p}}\right) \iint _{Q}|\nabla u_{n}|^{p}\\&\quad \le \displaystyle ||u_{n}||_{L^{\infty }(Q)}^{1-\gamma }\iint _{Q}f+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}\\&\quad \displaystyle \le ||u_{n}||_{L^{\infty }(Q)}^{1-\gamma }||f||_{L^{m}(Q)}|Q|^{1-\frac{1}{m}}+\frac{1}{2}||u_{0}||_{L^{2}(\Omega )}^{2}\le C. \end{aligned} \end{aligned}$$

As \(0\le \mu <\alpha C_{N,p},\) and by the last estimate, we obtain

$$\begin{aligned} \iint _{Q}|\nabla u_{n}|^{p}\le C, \end{aligned}$$
(4.27)

where C is a positive constant independent of n. Hence the proof of Theorem  4.3 is completed. \(\square \)

In the following Theorem we are interesting to prove regularity of u solution of (1.1) when the datum f belong to \(L^{r}(0,T; L^{q}(\Omega )),\) with \(r,q>1.\)

Theorem 4.4

Under the hypothesis (1.3)–(1.5), if \(0<\gamma <1\) and \(0\le \mu <\alpha M C_{N,p},\) with

$$\begin{aligned}&M=\frac{Nq(r(p+\gamma -1)-(p-2))-Nr+pq(r-1)}{Nr-pq(r-1)}\\&\quad \times \left( \frac{p[Nr-pq(r-1)]}{Nqr(p+\gamma -1)+(p-2)[N(r-q)-pq(r-1)]}\right) ^{p}, \end{aligned}$$

\(f\in L^{r}(0,T; L^{q}(\Omega ))\) with q and r be real numbers such that

$$\begin{aligned} r>1,\; q>1;\;\;\; p\le \frac{N}{q}+\frac{p}{r}\le \min \{\theta _{1}, \theta _{2}\}, \end{aligned}$$

where

$$\begin{aligned} \theta _{1}=\frac{N}{r}+p \,\;\; \text{ and }\;\;\; \theta _{2}=\frac{N}{r}\left( 1-\frac{p}{2}\right) +\frac{Np+2p+N(\gamma -1)}{2}. \end{aligned}$$

Then there exists a weak solution \(u\in L^{p}(0,T; W_{0}^{1,p}(\Omega ))\cap L^{\delta }(Q)\) to problem (1.1) with

$$\begin{aligned} \delta = \frac{qr(N+p)(\gamma +1)+N(p-2)(pr-q+r)}{Nr-pq(r-1)}. \end{aligned}$$

Remark 4.5

If \(\gamma , \mu \rightarrow 0,\) then the result of Theorem 4.4 coincides with classical regularity results for parabolic problems with coercivity (see [10, Theorem 1.1]).

Proof

Let now testing (1.3) by \(\varphi (u_{n})=((u_{n}+a)^{\lambda }-a^{\lambda })\chi _{(0,t)},\) \(0<a<\frac{1}{n},\;\; \lambda >0\) and repeating the same passage of proof of item (i) of Theorem 4.3 in order to arrive to the following inequality

$$\begin{aligned}&\displaystyle \frac{1}{\lambda +1}\int _{\Omega }u_{n}^{\lambda +1}(x,t)+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \int _{0}^{t}\int _{\Omega }|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p}\\&\quad \le \displaystyle \int _{0}^{t}\int _{\Omega }f(u_{n}+a)^{\lambda -\gamma }+C. \end{aligned}$$

Passing to supremum for \(t\in [0,T],\) we obtain

$$\begin{aligned}&c_{0}||u_{n}||^{\lambda +1}_{L^{\infty }(0,T; L^{\lambda +1}(\Omega ))}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \iint _{Q}|\nabla (u_{n}+a)^{\frac{\lambda +p-1}{p}}|^{p} \nonumber \\&\quad \quad \quad \quad \quad \quad \le \displaystyle \iint _{Q}f(u_{n}+a)^{\lambda -\gamma }+C. \end{aligned}$$
(4.28)

Setting \(v_{n}=u_{n}^{\frac{\lambda +p-1}{p}}\) and \(I= \displaystyle \iint _{Q}f(u_{n}+a)^{\lambda -\gamma }\), formula (4.28) can be rewritten as

$$\begin{aligned} c_{0}||v_{n}||^{\frac{p(\lambda +1)}{\lambda +p-1}}_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) \displaystyle \iint _{Q}|\nabla v_{n}|^{p}\le I+C.\nonumber \\ \end{aligned}$$
(4.29)

Using Hölder’s inequality twice, for all \(q>1\) and \(r>1\) we get

$$\begin{aligned} I\le & {} \displaystyle \int _{0}^{T}\left( \int _{\Omega }f^{q} \right) ^{\frac{1}{q}} \left( \int _{\Omega }v_{n}^{\frac{p(\lambda -\gamma )}{\lambda +p-1}\frac{q}{q-1}} \right) ^{\frac{q-1}{q}}\nonumber \\\le & {} ||f||_{L^{r}(0,T; L^{q}(\Omega ))}\left[ \int _{0}^{T}\left( \int _{\Omega }v_{n}^{\frac{p(\lambda -\gamma )}{\lambda +p-1}\frac{q}{q-1}} \right) ^{\frac{q-1}{q}\frac{r}{r-1}}\right] ^{\frac{r-1}{r}}\nonumber \\= & {} C_{f}\left[ \int _{0}^{T}||v_{n}||_{L^{\frac{p(\lambda -\gamma )q}{(\lambda +p-1)(q-1)}}(\Omega )} ^{\frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}\right] ^{\frac{r-1}{r}}. \end{aligned}$$
(4.30)

Let us define \(\eta \in (0,1)\) such that

$$\begin{aligned} \frac{(\lambda +p-1)(q-1)}{p(\lambda -\gamma )q}=\eta \left( \frac{1}{p}-\frac{1}{N}\right) +(1-\eta )\frac{\lambda +p-1}{p(\lambda +1)}. \end{aligned}$$
(4.31)

Thus, by the Lemma 1.1, applied to

$$\begin{aligned} \sigma =\frac{p(\lambda -\gamma )q}{(\lambda +p-1)(q-1)}\;\; \text{ and }\;\;\; \rho =\frac{p(\lambda +1)}{\lambda +p-1}, \end{aligned}$$
(4.32)

we have

$$\begin{aligned} ||v_{n}||_{L^{\frac{p(\lambda -\gamma )q}{(\lambda +p-1)(q-1)}}(\Omega )}^{\frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}\le C_{G}||v_{n}||_{L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega )}^{(1-\eta )\frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}||\nabla v_{n}||_{L^{p}(\Omega )}^{\eta \frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}. \end{aligned}$$
(4.33)

Integrating on time we obtain

$$\begin{aligned}&\left[ \int _{0}^{T} ||v_{n}||_{L^{\frac{p(\lambda -\gamma )q}{(\lambda +p-1)(q-1)}}(\Omega )}^{\frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}} \right] ^{\frac{r-1}{r}} \nonumber \\&\quad \le ||v_{n}||^{(1-\eta )\frac{p(\lambda -\gamma )}{(\lambda +p-1)}}_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}\left[ \int _{0}^{T}||\nabla v_{n}||_{L^{p}(\Omega )}^{\eta \frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}\right] ^{\frac{r-1}{r}}. \end{aligned}$$
(4.34)

If \(\eta <1,\) applying the Young inequality with exponents

$$\begin{aligned} \frac{\lambda +1}{(1-\eta )(\lambda -\gamma )}\;\;\; \text{ and }\;\;\;\; \frac{\lambda +1}{1+\gamma +\eta (\lambda -\gamma )}, \end{aligned}$$

we deduce

$$\begin{aligned}&\left[ \int _{0}^{T}||v_{n}||_{L^{\frac{p(\lambda -\gamma )q}{(\lambda +p-1)(q-1)}}(\Omega )}^{\frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}\right] ^{\frac{r-1}{r}} \nonumber \\&\quad \le \epsilon ||v_{n}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}}+C_{\epsilon }\left[ \int _{0}^{T}||\nabla v_{n}||_{L^{p}(\Omega )}^{\eta \frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}\right] ^{\frac{r-1}{r}\frac{\lambda +1}{1+\gamma +\eta (\lambda -\gamma )}}. \end{aligned}$$
(4.35)

Letting \(\epsilon =\frac{c_{0}}{2C_{f}}\) and collecting (4.29), (4.30) and (4.35), we have

$$\begin{aligned}&c_{0}||v_{n}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) ||\nabla v_{n}||_{L^{p}(Q)}^{p} \nonumber \\&\quad \le \frac{c_{0}}{2}||v_{n}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}} \nonumber \\&\qquad +C_{f}C_{\epsilon }\left[ \int _{0}^{T}||\nabla v_{n}||_{L^{p}(\Omega )}^{\eta \frac{p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}}\right] ^{\frac{r-1}{r}\frac{\lambda +1}{1+\gamma +\eta (\lambda -\gamma )}}+c_{1}. \end{aligned}$$
(4.36)

Now we choose \(\lambda \) satisfying

$$\begin{aligned} \frac{\eta p(\lambda -\gamma )r}{(\lambda +p-1)(r-1)}=p, \end{aligned}$$
(4.37)

such that \(\lambda>\gamma>0,\; r>1\) and \(0\le \mu <\frac{\alpha \lambda p^{p}C_{N,p}}{(\lambda +p-1)^{p}}.\) From (4.37), it hold that

$$\begin{aligned} \begin{aligned}&\frac{c_{0}}{2}||v_{n}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) ||\nabla v_{n}||_{L^{p}(Q)}^{p}\\&\quad \le C_{f}C_{\epsilon }||\nabla v_{n}||_{L^{p}(Q)}^{\frac{p(r-1)}{r}\frac{\lambda +1}{1+\gamma +\eta (\lambda -\gamma )}}+c_{1}. \end{aligned} \end{aligned}$$
(4.38)

Since, from (4.37)

$$\begin{aligned} r\eta (\lambda -\gamma )=(\lambda +p-1)(r-1) \end{aligned}$$

we have

$$\begin{aligned}&\beta =\frac{r-1}{r}\times \frac{\lambda +1}{1+\gamma +\eta (\lambda -\gamma )}\\&\quad =\frac{(r-1)(\lambda +1)}{r(1+\gamma )+r\eta (\lambda -\gamma )}=\frac{(r-1)(\lambda +1)}{r(1+\gamma )+(\lambda +p-1)(r-1)}\\&\quad =\frac{(r-1)(\lambda +1)}{(r-1)(\lambda +1)+r(1+\gamma )+(r-1)(p-2)}<1, \end{aligned}$$

and so

$$\begin{aligned}&\frac{c_{0}}{2}||v_{n}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}}+\left( \frac{\alpha \lambda p^{p}}{(\lambda +p-1)^{p}}-\frac{\mu }{C_{N,p}}\right) ||\nabla v_{n}||_{L^{p}(Q)}^{p} \nonumber \\&\qquad \le C_{f}C_{\epsilon }||\nabla v_{n}||_{L^{p}(Q)}^{p\beta }+c_{1}, \end{aligned}$$
(4.39)

with \(\beta <1.\) If \(\eta =1,\) choosing \(\lambda \) as in (4.37), (4.35) becomes (4.39) with \(\beta =\frac{r-1}{r}<1.\) Thus from (4.39) immediately follows

$$\begin{aligned} ||v_{n}||_{L^{\infty }(0,T; L^{\frac{p(\lambda +1)}{\lambda +p-1}}(\Omega ))}^{\frac{p(\lambda +1)}{\lambda +p-1}}+||\nabla v_{n}||_{L^{p}(Q)}^{p}\le c_{2}. \end{aligned}$$
(4.40)

Thanks to Lemma 1.1, we obtain

$$\begin{aligned} \Vert v_{n}\Vert _{L^{\sigma }(Q)}\le c_{3}, \end{aligned}$$

where \(\sigma = p\frac{N+\frac{p(\lambda +1)}{\lambda +p-1}}{N}.\) Recalling the definition of \(v_{n}\) we thus have proved that

$$\begin{aligned} ||u_{n}||_{L^{\delta }(Q)}\le c_{3}, \end{aligned}$$
(4.41)

where \(c_{3}\) is a positive constant independent of n,  and

$$\begin{aligned} \delta =\sigma \frac{\lambda +p-1}{p}=\frac{N(\lambda +p-1)+p(\lambda +1)}{N}. \end{aligned}$$
(4.42)

From (4.31) and (4.37), we deduce that

$$\begin{aligned} \lambda +1=\frac{Nq[r(p+\gamma -1)-(p-2)]}{Nr-pq(r-1)}, \end{aligned}$$
(4.43)

which implies, by (4.43)

$$\begin{aligned} \delta =\frac{qr(N+p)(\gamma +1)+N(p-2)(qr-q+r)}{Nr-pq(r-1)}. \end{aligned}$$

we now have to check that \(\lambda \ge 1\) and that \(\eta ,\) defined in (4.31), belong to (0, 1). After easy calculations, we obtain that \(\lambda \ge 1\) if and only if

$$\begin{aligned} p<\frac{N}{q}+\frac{p}{r}\le \frac{N}{r}\left( 1-\frac{p}{2}\right) +\frac{Np+2p+N(\gamma -1)}{2} \end{aligned}$$

while the condition \(\eta \le 1\) hold is satisfied and only if

$$\begin{aligned} \frac{N}{q}+\frac{p}{r}< \frac{N}{r}+p. \end{aligned}$$

The condition \(\eta \ge 0\) is automatically satisfied if \(\lambda \ge 1.\)

It remains to prove the estimate in \(L^{p}(0,T; W_{0}^{1,p}(\Omega )).\) By (4.28), (4.30), (4.40) and \(\lambda \ge 1,\) we obtain

$$\begin{aligned} \iint _{Q}|\nabla u_{n}|^{p}\le \iint _{Q}|\nabla u_{n}|^{p}(u_{n}+a)^{\lambda -1}\le c_{2}, \end{aligned}$$
(4.44)

then the sequence \(u_{n}\) bounded in \(L^{p}(0,T; W_{0}^{1,p}(\Omega )),\) and so \(u\in L^{p}(0,T; W_{0}^{1,p}\)

\((\Omega )).\) The estimates (4.41) and (4.44) completed the proof of Theorem 4.4. \(\square \)