Skip to main content

The Kidney in Metabolic Syndrome

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Increasing epidemiologic evidence shows that obesity and metabolic syndrome (MS) are associated with increased risk of developing chronic kidney disease (CKD). Recent advances in the pathophysiology of obesity-related kidney disease indicate that hemodynamic factors, chronic inflammation, and abnormal lipid metabolism contribute to kidney injury. However, all components of MS, hypertension, atherogenic dyslipidemia, and type 2 diabetes mellitus (T2DM) may induce kidney damage. Children with severe obesity have increased prevalence of early kidney abnormalities, including hyperfiltration, albuminuria, and elevated early urinary biomarkers of kidney injury. Treatment of obesity through lifestyle modification is the mainstream of management of MS. If successful, it is typically associated with the reduction of all other MS cardiometabolic risk components. Pharmacological treatment with angiotensin converting enzyme inhibitors and bariatric surgery in case of severe obesity could provide long-term benefit by slowing the progression to CKD. Novel renoprotective agents, such as GLP-1 analogues and SGLT2 inhibitors need to be evaluated for clinical use in children and adolescents with MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO (WHO). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight:assessed. October 20, 2020.

  2. Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med. 2015;373(14):1307–17.

    Article  PubMed  Google Scholar 

  3. Kivimäki M, Kuosma E, Ferrie JE, Luukkonen R, Nyberg ST, Alfredsson L, et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health. 2017;2(6):e277–e85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics 2017;140(2):e20171603, e1–e12.

    Google Scholar 

  5. Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172(21):1644–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nehus E, Mitsnefes M. Childhood Obesity and the metabolic syndrome. Pediatr Clin N Am. 2019;66(1):31–43.

    Article  Google Scholar 

  7. Ford ES, Li C. Defining the metabolic syndrome in children and adolescents: will the real definition please stand up? J Pediatr. 2008;152(2):160–4.

    Article  PubMed  Google Scholar 

  8. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatr Diabetes. 2007;8(5):299–306.

    Article  PubMed  Google Scholar 

  9. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.

    Google Scholar 

  10. Yun HR, Kim H, Park JT, Chang TI, Yoo TH, Kang SW, et al. Obesity, metabolic abnormality, and Progression of CKD. Am J Kidney Dis. 2018;72(3):400–10.

    Article  CAS  PubMed  Google Scholar 

  11. D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–71.

    Article  PubMed  Google Scholar 

  12. Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G. Mechanisms of obesity-induced hypertension. Hypertens Res. 2010;33(5):386–93.

    Article  PubMed  Google Scholar 

  13. Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4(8):444–52.

    Article  CAS  PubMed  Google Scholar 

  14. De Cosmo S, Menzaghi C, Prudente S, Trischitta V. Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. Nephrol Dial Transplant. 2013;28(1):29–36.

    Article  PubMed  Google Scholar 

  15. Praga M, Hernández E, Morales E, Campos AP, Valero MA, Martínez MA, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2001;16(9):1790–8.

    Article  CAS  PubMed  Google Scholar 

  16. Serra A, Romero R, Lopez D, Navarro M, Esteve A, Perez N, et al. Renal injury in the extremely obese patients with normal renal function. Kidney Int. 2008;73(8):947–55.

    Article  CAS  PubMed  Google Scholar 

  17. Weinberg JM. Lipotoxicity. Kidney Int. 2006;70(9):1560–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498–509.

    Article  CAS  PubMed  Google Scholar 

  19. Silverwood RJ, Pierce M, Thomas C, Hardy R, Ferro C, Sattar N, et al. Association between younger age when first overweight and increased risk for CKD. J Am Soc Nephrol JASN. 2013;24(5):813–21.

    Article  PubMed  Google Scholar 

  20. Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. The number of metabolic syndrome components is a good risk indicator for both early- and late-stage kidney damage. Nutr Metabol cardiovasc Dis NMCD. 2014;24(3):277–85.

    Article  CAS  Google Scholar 

  21. Pacifico L, Bonci E, Andreoli GM, Di Martino M, Gallozzi A, De Luca E, et al. The impact of nonalcoholic fatty liver disease on renal function in children with overweight/obesity. Int J Mol Sci. 2016;17, 1218. https://doi.org/10.3390/ijms17081218

  22. Savino A, Pelliccia P, Giannini C, de Giorgis T, Cataldo I, Chiarelli F, et al. Implications for kidney disease in obese children and adolescents. Pediatr Nephrol (Berlin, Germany). 2011;26(5):749–58.

    Article  Google Scholar 

  23. Franchini S, Savino A, Marcovecchio ML, Tumini S, Chiarelli F, Mohn A. The effect of obesity and type 1 diabetes on renal function in children and adolescents. Pediatr Diabetes. 2015;16(6):427–33.

    Article  CAS  PubMed  Google Scholar 

  24. Lee AM, Charlton JR, Carmody JB, Gurka MJ, DeBoer MD. Metabolic risk factors in nondiabetic adolescents with glomerular hyperfiltration. Nephrol Dial Transplant. 2017;32(9):1517–24.

    CAS  PubMed  Google Scholar 

  25. Stern-Zimmer M, Calderon-Margalit R, Skorecki K, Vivante A. Childhood risk factors for adulthood chronic kidney disease. Pediatr Nephrol (Berlin, Germany) 2021;36(6):1387–1396.

    Google Scholar 

  26. Duzova A, Yalçinkaya F, Baskin E, Bakkaloglu A, Soylemezoglu O. Prevalence of hypertension and decreased glomerular filtration rate in obese children: results of a population-based field study. Nephrol Dial Transplant. 2013;28(Suppl 4):iv166–71.

    Article  PubMed  Google Scholar 

  27. Rashidbeygi E, Safabakhsh M, Delshad Aghdam S, Mohammed SH, Alizadeh S. Metabolic syndrome and its components are related to a higher risk for albuminuria and proteinuria: evidence from a meta-analysis on 10,603,067 subjects from 57 studies. Diabetes Metab Syndr. 2019;13(1):830–43.

    Article  PubMed  Google Scholar 

  28. Nguyen S, McCulloch C, Brakeman P, Portale A, Hsu CY. Being overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics. 2008;121(1):37–45.

    Article  PubMed  Google Scholar 

  29. Radhakishun NN, van Vliet M, von Rosenstiel IA, Beijnen JH, Diamant M. Limited value of routine microalbuminuria assessment in multi-ethnic obese children. Pediatr Nephrol (Berlin, Germany). 2013;28(7):1145–9.

    Article  Google Scholar 

  30. Sanad M, Gharib A. Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol (Berlin, Germany). 2011;26(12):2193–9.

    Article  Google Scholar 

  31. Csernus K, Lanyi E, Erhardt E, Molnar D. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr. 2005;164(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  32. Lurbe E, Torro MI, Alvarez J, Aguilar F, Fernandez-Formoso JA, Redon J. Prevalence and factors related to urinary albumin excretion in obese youths. J Hypertens. 2013;31(11):2230–6. discussion 6

    Article  CAS  PubMed  Google Scholar 

  33. Leiba A, Twig G, Vivante A, Skorecki K, Golan E, Derazne E, et al. Prehypertension among 2.19 million adolescents and future risk for end-stage renal disease. J Hypertens. 2017;35(6):1290–6.

    Article  CAS  PubMed  Google Scholar 

  34. Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. J Am Soc Nephrol JASN. 2006;17(6):1695–702.

    Article  CAS  PubMed  Google Scholar 

  35. Shavit L, Ferraro PM, Johri N, Robertson W, Walsh SB, Moochhala S, et al. Effect of being overweight on urinary metabolic risk factors for kidney stone formation. Nephrol Dial Transplant. 2015;30(4):607–13.

    Article  CAS  PubMed  Google Scholar 

  36. Cambareri GM, Giel DW, Bayne AP, Corbett S, Schurtz E, Kovacevic L, et al. Do overweight and obese pediatric stone formers have differences in metabolic abnormalities compared with Normal-weight stone formers? Urology. 2017;101:26–30.

    Article  PubMed  Google Scholar 

  37. Luyckx VA, Brenner BM. Birth weight, malnutrition and kidney-associated outcomes – a global concern. Nat Rev Nephrol. 2015;11(3):135–49.

    Article  PubMed  Google Scholar 

  38. Abitbol CL, Chandar J, Rodríguez MM, Berho M, Seeherunvong W, Freundlich M, et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr Nephrol (Berlin, Germany). 2009;24(7):1363–70.

    Article  Google Scholar 

  39. González E, Gutiérrez E, Morales E, Hernández E, Andres A, Bello I, et al. Factors influencing the progression of renal damage in patients with unilateral renal agenesis and remnant kidney. Kidney Int. 2005;68(1):263–70.

    Article  PubMed  Google Scholar 

  40. Lalan S, Jiang S, Ng DK, Kupferman F, Warady BA, Furth S, et al. Cardiometabolic risk factors, metabolic syndrome, and chronic kidney disease progression in children. J Pediatr. 2018;202:163–70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sgambat K, Clauss S, Moudgil A. Cardiovascular effects of metabolic syndrome after transplantation: convergence of obesity and transplant-related factors. Clin Kidney J. 2018;11(1):136–46.

    Article  CAS  PubMed  Google Scholar 

  42. Tainio J, Qvist E, Holtta T, Pakarinen M, Jahnukainen T, Jalanko H. Metabolic risk factors and long-term graft function after paediatric renal transplantation. Transplant Int. 2014;27(6):583–92.

    Article  CAS  Google Scholar 

  43. Hocker B, Weber LT, Feneberg R, Drube J, John U, Fehrenbach H, et al. Prospective, randomized trial on late steroid withdrawal in pediatric renal transplant recipients under cyclosporine microemulsion and mycophenolate mofetil. Transplantation. 2009;87(6):934–41.

    Article  PubMed  Google Scholar 

  44. Blöte R, Memaran N, Borchert-Mörlins B, Thurn-Valsassina D, Goldschmidt I, Beier R, et al. Greater susceptibility for metabolic syndrome in pediatric solid organ and stem cell transplant recipients. Transplantation. 2019;103(11):2423–33.

    Article  PubMed  Google Scholar 

  45. Maduram A, John E, Hidalgo G, Bottke R, Fornell L, Oberholzer J, et al. Metabolic syndrome in pediatric renal transplant recipients: comparing early discontinuation of steroids vs. steroid group. Pediatr Transplant. 2010;14(3):351–7.

    Article  PubMed  Google Scholar 

  46. Stabouli S, Printza N, Dotis J, Gkogka C, Kollios K, Kotsis V, et al. Long-term changes in blood pressure after pediatric kidney transplantation. Am J Hypertens. 2016;29(7):860–5.

    Article  PubMed  Google Scholar 

  47. Mitsnefes MM, Khoury PR, McEnery PT. Early posttransplantation hypertension and poor long-term renal allograft survival in pediatric patients. J Pediatr. 2003;143(1):98–103.

    Article  PubMed  Google Scholar 

  48. Ladhani M, Lade S, Alexander SI, Baur LA, Clayton PA, McDonald S, et al. Obesity in pediatric kidney transplant recipients and the risks of acute rejection, graft loss and death. Pediatr Nephrol (Berlin, Germany). 2017;32(8):1443–50.

    Article  Google Scholar 

  49. Winnicki E, Dharmar M, Tancredi DJ, Nguyen S, Butani L. Effect of BMI on allograft function and survival in pediatric renal transplant recipients. Pediatr Nephrol (Berlin, Germany). 2018;33(8):1429–35.

    Article  Google Scholar 

  50. Dick AAS, Hansen RN, Montenovo MI, Healey PJ, Smith JM. Body mass index as a predictor of outcomes among pediatric kidney transplant recipient. Pediatric Transplantation. 2017;21:e12992 https://doi.org/10.1111/petr.12992

  51. Hanevold CD, Ho PL, Talley L, Mitsnefes MM. Obesity and renal transplant outcome: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics. 2005;115(2):352–6.

    Article  PubMed  Google Scholar 

  52. Kaur K, Jun D, Grodstein E, Singer P, Castellanos L, Teperman L, et al. Outcomes of underweight, overweight, and obese pediatric kidney transplant recipients. Pediatr Nephrol (Berlin, Germany). 2018;33(12):2353–62.

    Article  Google Scholar 

  53. Mitsnefes MM, Khoury P, McEnery PT. Body mass index and allograft function in pediatric renal transplantation. Pediatr Nephrol. 2002;17(7):535–9.

    Article  PubMed  Google Scholar 

  54. Roberts MJ, Mitsnefes MM, McCulloch CE, Greenbaum LA, Grimes BA, Ku E. Association between BMI changes and mortality risk in children with end-stage renal disease. Pediatr Nephrol (Berlin, Germany). 2019;34(9):1557–63.

    Article  Google Scholar 

  55. Ashoor IF, Mansfield SA, O’Shaughnessy MM, Parekh RS, Zee J, Vasylyeva TL, et al. Prevalence of cardiovascular disease risk factors in childhood glomerular diseases. J Am Heart Assoc. 2019;8(14):e012143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson AC, Schneider MF, Cox C, Greenbaum LA, Saland J, White CT, et al. Prevalence and correlates of multiple cardiovascular risk factors in children with chronic kidney disease. Clin J Am Soc Nephrol CJASN. 2011;6(12):2759–65.

    Article  CAS  PubMed  Google Scholar 

  57. Zheng X, Chen Q, Chen L. Obesity is associated with Henoch-Schönlein Purpura nephritis and development of end-stage renal disease in children. Ren Fail. 2019;41(1):1016–20.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Berthoux F, Mariat C, Maillard N. Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol Dial Transplant. 2013;28(Suppl 4):iv160–6.

    Article  CAS  PubMed  Google Scholar 

  59. Group SS. SEARCH for diabetes in youth: a multicenter study of the prevalence, incidence and classification of diabetes mellitus in youth. Control Clin Trials. 2004;25(5):458–71.

    Article  Google Scholar 

  60. Group TS, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366(24):2247–56.

    Article  Google Scholar 

  61. Group TS. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41.

    Article  Google Scholar 

  62. Kahkoska AR, Isom S, Divers J, Mayer-Davis EJ, Dolan L, Shah AS, et al. The early natural history of albuminuria in young adults with youth-onset type 1 and type 2 diabetes. J Diabetes Complicat. 2018;32(12):1160–8.

    Article  Google Scholar 

  63. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R Jr, Dolan L, Imperatore G, et al. Association of Type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017;317(8):825–35.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pavkov ME, Bennett PH, Knowler WC, Krakoff J, Sievers ML, Nelson RG. Effect of youth-onset type 2 diabetes mellitus on incidence of end-stage renal disease and mortality in young and middle-aged Pima Indians. JAMA. 2006;296(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  65. Dart AB, Sellers EA, Martens PJ, Rigatto C, Brownell MD, Dean HJ. High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care. 2012;35(6):1265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schwimmer JB, Pardee PE, Lavine JE, Blumkin AK, Cook S. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation. 2008;118(3):277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Speliotes EK, Massaro JM, Hoffmann U, Vasan RS, Meigs JB, Sahani DV, et al. Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: the Framingham Heart Study. Hepatology (Baltimore MD). 2010;51(6):1979–87.

    Article  CAS  Google Scholar 

  68. Musso G, Gambino R, Tabibian JH, Ekstedt M, Kechagias S, Hamaguchi M, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11(7):e1001680.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chinnadurai R, Ritchie J, Green D, Kalra PA. Non-alcoholic fatty liver disease and clinical outcomes in chronic kidney disease. Nephrol Dial Transplant. 2019;34(3):449–57.

    Article  CAS  PubMed  Google Scholar 

  70. Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71(6):851–65.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Soltani Z, Rasheed K, Kapusta DR, Reisin E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013;15(3):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loeffler LF, Navas-Acien A, Brady TM, Miller ER 3rd, Fadrowski JJ. Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999–2006. Hypertension. 2012;59(4):811–7.

    Article  CAS  PubMed  Google Scholar 

  73. Shatat IF, Abdallah RT, Sas DJ, Hailpern SM. Serum uric acid in U.S. adolescents: distribution and relationship to demographic characteristics and cardiovascular risk factors. Pediatr Res. 2012;72(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  74. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noone DG, Marks SD. Hyperuricemia is associated with hypertension, obesity, and albuminuria in children with chronic kidney disease. J Pediatr. 2013;162(1):128–32.

    Article  CAS  PubMed  Google Scholar 

  76. Di Bonito P, Valerio G, Licenziati MR, Miraglia Del Giudice E, Baroni MG, Morandi A, et al. High uric acid, reduced glomerular filtration rate and non-alcoholic fatty liver in young people with obesity. J Endocrinol Investig. 2020;43(4):461–8.

    Article  Google Scholar 

  77. Bostan Gayret Ö, Taşdemir M, Erol M, Tekin Nacaroğlu H, Zengi O, Yiğit Ö. Are there any new reliable markers to detect renal injury in obese children? Ren Fail. 2018;40(1):416–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiao N, Jenkins TM, Nehus E, Inge TH, Michalsky MP, Harmon CM, et al. Kidney function in severely obese adolescents undergoing bariatric surgery. Obesity (Silver Spring, MD). 2014;22(11):2319–25.

    Article  CAS  Google Scholar 

  79. Davis S, Nehus E, Inge T, Zhang W, Setchell K, Mitsnefes M. Effect of bariatric surgery on urinary sphingolipids in adolescents with severe obesity. Surg Obes Relat Dis. 2018;14(4):446–51.

    Article  PubMed  Google Scholar 

  80. Palatini P, Benetti E, Fania C, Malipiero G, Saladini F. Rectangular cuffs may overestimate blood pressure in individuals with large conical arms. J Hypertens. 2012;30(3):530–6.

    Article  CAS  PubMed  Google Scholar 

  81. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920.

    Article  CAS  PubMed  Google Scholar 

  82. American Diabetes Association. 16. Diabetes Advocacy: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S182–s3.

    Article  Google Scholar 

  83. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, et al. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014;63(5):1116–35.

    Article  CAS  PubMed  Google Scholar 

  84. Reinehr T, Lass N, Toschke C, Rothermel J, Lanzinger S, Holl RW. Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J Clin Endocrinol Metab. 2016;101(8):3171–9.

    Article  CAS  PubMed  Google Scholar 

  85. WHO (WHO). Sodium intake for adults and children. https://www.who.int/nutrition/publications/guidelines/sodium_intake_printversion.pdf:assessed. October 25, 2020.

  86. Ma Y, He FJ, MacGregor GA. High salt intake: independent risk factor for obesity? Hypertension (Dallas, Tex: 1979). 2015;66(4):843–9.

    Article  CAS  Google Scholar 

  87. McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015;(2):Cd010070.

    Google Scholar 

  88. Paula Bricarello L, Poltronieri F, Fernandes R, Retondario A, de Moraes Trindade EBS, de Vasconcelos FAG. Effects of the dietary approach to stop hypertension (DASH) diet on blood pressure, overweight and obesity in adolescents: a systematic review. Clin Nutr ESPEN. 2018;28:1–11.

    Article  PubMed  Google Scholar 

  89. Jhee JH, Kee YK, Park S, Kim H, Park JT, Han SH, et al. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: a community-based prospective cohort study. Nephrol Dial Transplant. 2020;35(1):98–106.

    CAS  PubMed  Google Scholar 

  90. Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B, et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2009;119(4):628–47.

    Article  PubMed  Google Scholar 

  91. Kotsis V, Jordan J, Micic D, Finer N, Leitner DR, Toplak H, et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, diabetes and the high-risk patient and European Association for the Study of Obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens. 2018;36(7):1427–40.

    Article  CAS  PubMed  Google Scholar 

  92. Wanner C, Tonelli M. KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014;85(6):1303–9.

    Article  CAS  PubMed  Google Scholar 

  93. Dekkers CCJ, Gansevoort RT. Sodium-glucose cotransporter 2 inhibitors: extending the indication to non-diabetic kidney disease? Nephrol Dial Transplant. 2020;35(Suppl 1):i33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Afshinnia F, Wilt TJ, Duval S, Esmaeili A, Ibrahim HN. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol Dial Transplant. 2010;25(4):1173–83.

    Article  PubMed  Google Scholar 

  95. Ahn SM. Current issues in bariatric surgery for adolescents with severe obesity: durability, complications, and timing of intervention. J Obes Metab Syndr. 2020;29(1):4–11.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nehus E, Khoury J, Inge T, Xiao N, Jenkins T, Moxey-Mims M, et al. Kidney outcomes 3 years after bariatric surgery in severely obese adolescents. Kidney Int (in press). 2017;91(2):451–458.

    Google Scholar 

  97. Bjornstad P, Hughan K, Kelsey MM, Shah AS, Lynch J, Nehus E, et al. Effect of surgical versus medical therapy on diabetic kidney disease over 5 years in severely obese adolescents with type 2 diabetes. Diabetes Care. 2020;43(1):187–95.

    Article  PubMed  Google Scholar 

  98. Bjornstad P, Nehus E, Jenkins T, Mitsnefes M, Moxey-Mims M, Dixon JB, et al. Five-year kidney outcomes of bariatric surgery differ in severely obese adolescents and adults with and without type 2 diabetes. Kidney Int. 2020;97(5):995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mitsnefes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stabouli, S., Mitsnefes, M. (2021). The Kidney in Metabolic Syndrome. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics