Skip to main content

Periosteum Derived Cells in Skeletal Tissue Regeneration

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 235 Accesses

Abstract

The field of skeletal tissue engineering has in recent years been transformed by the identification of specific skeletal progenitor cell populations and their role in bone fracture healing. Specifically, progenitor cells residing within the periosteum have been shown to be crucial for bone regeneration. Importantly, this is not a phenomenon performed by one common progenitor cell, instead, distinct skeletal progenitor cell populations have been identified within the periosteum, shown to also contribute to different aspects of tissue repair. These findings represent major steps in the field of regenerative medicine, since there is currently no reliable treatment for patients with a failing endogenous repair system. Therefore, insights regarding the specific cell populations and factors that steer their homing and differentiation in vivo can aid in the development of optimized and personalized engineered treatment strategies. In this chapter, we highlight the crucial role of periosteum-derived cells in bone development, homeostasis, and repair. We next provide an overview of the periosteum-residing skeletal progenitor cells identified so far and their role in bone regeneration. Subsequently, we discuss the required steps to isolate and expand periosteal cells in vitro, and the current state of the art in the use of periosteum-derived cells for bone formation and regeneration following the intramembranous, endochondral, or osteochondral tissue repair route. Finally, we present an overview of periosteal cells in the preclinical and clinical setting and discuss their future potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agata H, Asahina I, Yamazaki Y, Uchida M, Shinohara Y, Honda MJ, Kagami H, Ueda M (2007) Effective bone engineering with periosteum-derived cells. J Dent Res 86:79–83

    Article  Google Scholar 

  • Aleman J, Skardal A (2019) A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol Bioeng 116:936–944

    Article  Google Scholar 

  • Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35:1003–1012

    Article  Google Scholar 

  • Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA (2016) NAP-2 secreted by human NK cells can stimulate mesenchymal stem/stromal cell recruitment. Stem Cell Rep 6:466–473

    Article  Google Scholar 

  • Ambrosi TH, Longaker MT, Chan CKF (2019) A revised perspective of skeletal stem cell biology. Front Cell Dev Biol 7:189

    Article  Google Scholar 

  • Archer CW, Dowthwaite GP, Francis-West P (2003) Development of synovial joints. Birth Defects Res C Embryo Today 69:144–155

    Article  Google Scholar 

  • Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schafer R, Sella S, Rodeghiero F (2016) Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 7:93

    Article  Google Scholar 

  • Baker M (2016) Reproducibility: respect your cells! Nature 537:433–435

    Article  Google Scholar 

  • Bakker AD, Schrooten J, van Cleynenbreugel T, Vanlauwe J, Luyten J, Schepers E, Dubruel P, Schacht E, Lammens J, Luyten FP (2008) Quantitative screening of engineered implants in a long bone defect model in rabbits. Tissue Eng Part C Methods 14:251–260

    Article  Google Scholar 

  • Barak MM, Lieberman DE, Hublin JJ (2013) Of mice, rats and men: trabecular bone architecture in mammals scales to body mass with negative allometry. J Struct Biol 183:123–131

    Article  Google Scholar 

  • Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M et al (2019) A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177:1915–1932 e1916

    Article  Google Scholar 

  • Ben Azouna N, Jenhani F, Regaya Z, Berraeis L, Ben Othman T, Ducrocq E, Domenech J (2012) Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther 3:6

    Article  Google Scholar 

  • Berninger MT, Wexel G, Rummeny EJ, Imhoff AB, Anton M, Henning TD, Vogt S (2013) Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp JoVE 75:e4423

    Google Scholar 

  • Bianco P, Robey PG (2015) Skeletal stem cells. Development 142:1023–1027

    Article  Google Scholar 

  • Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42

    Article  Google Scholar 

  • Bjurholm A, Kreicbergs A, Terenius L, Goldstein M, Schultzberg M (1988) Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 25:119–125

    Article  Google Scholar 

  • Blaszczyk B, Kaspera W, Ficek K, Kajor M, Binkowski M, Stodolak-Zych E, Grajoszek A, Stojko J, Bursig H, Ladzinski P (2018) Effects of polylactide copolymer implants and platelet-rich plasma on bone regeneration within a large calvarial defect in sheep. Biomed Res Int 2018:4120471

    Article  Google Scholar 

  • Bocker W, Docheva D, Prall WC, Egea V, Pappou E, Rossmann O, Popov C, Mutschler W, Ries C, Schieker M (2008) IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med 86:1183–1192

    Article  Google Scholar 

  • Bolander J, Ji W, Geris L, Bloemen V, Chai YC, Schrooten J, Luyten FP (2016) The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells. Eur Cell Mater 31:11–25

    Article  Google Scholar 

  • Bolander J, Ji W, Leijten J, Teixeira LM, Bloemen V, Lambrechts D, Chaklader M, Luyten FP (2017) Healing of a large Long-bone defect through serum-free in vitro priming of human periosteum-derived cells. Stem Cell Rep 8:758–772

    Article  Google Scholar 

  • Bolander J, Herpelinck T, Chaklader M, Gklava C, Geris L, Luyten FP (2019) Single-cell characterization and metabolic profiling of in vitro cultured human skeletal progenitors with enhanced in vivo bone forming capacity. Stem Cells Transl Med 9(3):389–402

    Google Scholar 

  • Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H (2011) Platelets at work in primary hemostasis. Blood Rev 25:155–167

    Article  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  Google Scholar 

  • Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, Herrero-Beaumont G (2006) Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skelet Radiol 35:34–41

    Article  Google Scholar 

  • Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T et al (2015) Identification and specification of the mouse skeletal stem cell. Cell 160:285–298

    Article  Google Scholar 

  • Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M et al (2018) Identification of the human skeletal stem cell. Cell 175:43–56 e21

    Article  Google Scholar 

  • Clinicaltrials.gov (2019) Periosteum in clinical trials. Access date 16 Dec 2019. https://clinicaltrials.gov/ct2/results?cond=periosteum&term=&cntry=&state=&city=&dist=

  • Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res Off J Am Soc Bone Miner Res 24:274–282

    Article  Google Scholar 

  • Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, Huard J (2010) Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg 125:1685–1692

    Article  Google Scholar 

  • Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, Taylor R, Brew BJ (2011) Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One 6:e14698

    Article  Google Scholar 

  • Davies DV (1963) The anatomy and physiology of joints. Physiotherapy 49:3–7

    Google Scholar 

  • Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M et al (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562:133–139

    Article  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H (1992) Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 275:280–286

    Google Scholar 

  • Dorronsoro A, Ferrin I, Salcedo JM, Jakobsson E, Fernandez-Rueda J, Lang V, Sepulveda P, Fechter K, Pennington D, Trigueros C (2014) Human mesenchymal stromal cells modulate T-cell responses through TNF-alpha-mediated activation of NF-kappaB. Eur J Immunol 44:480–488

    Article  Google Scholar 

  • Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, Lataillade JJ (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236

    Article  Google Scholar 

  • Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9:773

    Article  Google Scholar 

  • Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skelet Radiol 39:319–323

    Article  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res (355 Suppl):S7–S21. https://doi.org/10.1097/00003086-199810001-00003

  • Eyckmans J, Roberts SJ, Schrooten J, Luyten FP (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling. J Cell Mol Med 14:1845–1856

    Article  Google Scholar 

  • Eyckmans J, Roberts SJ, Bolander J, Schrooten J, Chen CS, Luyten FP (2013) Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials 34:4612–4621

    Article  Google Scholar 

  • Fazzina R, Iudicone P, Fioravanti D, Bonanno G, Totta P, Zizzari IG, Pierelli L (2016) Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues. Stem Cell Res Ther 7:122

    Article  Google Scholar 

  • Fitzsimmons JS, Sanyal A, Gonzalez C, Fukumoto T, Clemens VR, O’Driscoll SW, Reinholz GG (2004) Serum-free media for periosteal chondrogenesis in vitro. J Orthop Res 22:716–725

    Article  Google Scholar 

  • Gupta P, Hall GN, Geris L, Luyten FP, Papantoniou I (2019) Human platelet lysate improves bone forming potential of human progenitor cells expanded in microcarrier-based dynamic culture. Stem Cells Transl Med 8:810–821

    Google Scholar 

  • Hayashi O, Katsube Y, Hirose M, Ohgushi H, Ito H (2008) Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 82:238–247

    Article  Google Scholar 

  • He A, Liu L, Luo X, Liu Y, Liu Y, Liu F, Wang X, Zhang Z, Zhang W, Liu W et al (2017a) Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep 7:40489

    Article  Google Scholar 

  • He X, Bougioukli S, Ortega B, Arevalo E, Lieberman JR, McMahon AP (2017b) Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone. Bone 103:12–19

    Article  Google Scholar 

  • Heathman TR, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10:49–64

    Article  Google Scholar 

  • Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB (2010) Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng Part B Rev 16:263–271

    Article  Google Scholar 

  • Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C (2018) Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180:143–162

    Article  Google Scholar 

  • Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12:3265–3283

    Article  Google Scholar 

  • International Stem Cell Initiative C, Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J, Christie M, Ford A, Fox V, Gokhale PJ et al (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46:247–258

    Article  Google Scholar 

  • Ionescu A, Kozhemyakina E, Nicolae C, Kaestner KH, Olsen BR, Lassar AB (2012) FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program. Dev Cell 22:927–939

    Article  Google Scholar 

  • Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, Sanchez-Cabo F, Mendez-Ferrer S (2014) The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. elife 3:e03696

    Article  Google Scholar 

  • Ishikawa M, Ito H, Kitaori T, Murata K, Shibuya H, Furu M, Yoshitomi H, Fujii T, Yamamoto K, Matsuda S (2014) MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing. PLoS One 9:e104954

    Article  Google Scholar 

  • Ito Y, Ochi M, Adachi N, Sugawara K, Yanada S, Ikada Y, Ronakorn P (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy 21:1155–1163

    Article  Google Scholar 

  • Ji W, Wang H, van den Beucken JJ, Yang F, Walboomers XF, Leeuwenburgh S, Jansen JA (2012) Local delivery of small and large biomolecules in craniomaxillofacial bone. Adv Drug Deliv Rev 64:1152–1164

    Article  Google Scholar 

  • Jonsdottir-Buch SM, Lieder R, Sigurjonsson OE (2013) Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS One 8:e68984

    Article  Google Scholar 

  • Jung S, Panchalingam KM, Rosenberg L, Behie LA (2012) Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int 2012:123030

    Article  Google Scholar 

  • Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823

    Article  Google Scholar 

  • Knothe Tate ML, Chang H, Moore SR, Knothe UR (2011) Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model. PLoS One 6:e28702

    Article  Google Scholar 

  • Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  Google Scholar 

  • Kudva AK, Luyten FP, Patterson J (2018) RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells. J Biomed Mater Res A 106:33–42

    Article  Google Scholar 

  • Kudva AK, Dikina AD, Luyten FP, Alsberg E, Patterson J (2019) Gelatin microspheres releasing transforming growth factor drive in vitro chondrogenesis of human periosteum derived cells in micromass culture. Acta Biomater 90:287–299

    Article  Google Scholar 

  • Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

    Article  Google Scholar 

  • Lambrechts T, Papantoniou I, Rice B, Schrooten J, Luyten FP, Aerts JM (2016) Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy 18:1219–1233

    Article  Google Scholar 

  • Lammens J, Bauduin G, Driesen R, Moens P, Stuyck J, De Smet L, Fabry G (1998) Treatment of nonunion of the humerus using the Ilizarov external fixator. Clin Orthop Relat Res 353:223–230

    Google Scholar 

  • Lammens J, Marechal M, Geris L, Van der Aa J, Van Hauwermeiren H, Luyten FP, Delport H (2017) Warning about the use of critical-size defects for the translational study of bone repair: analysis of a sheep Tibial model. Tissue Eng Part C Methods 23:694–699

    Article  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  Google Scholar 

  • Lehmann W, Edgar CM, Wang K, Cho TJ, Barnes GL, Kakar S, Graves DT, Rueger JM, Gerstenfeld LC, Einhorn TA (2005) Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 36:300–310

    Article  Google Scholar 

  • Lenas P, Moos M, Luyten FP (2009a) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng Part B Rev 15:381–394

    Article  Google Scholar 

  • Lenas P, Moos M, Luyten FP (2009b) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng Part B Rev 15:395–422

    Article  Google Scholar 

  • Li W, Kohara H, Uchida Y, James JM, Soneji K, Cronshaw DG, Zou YR, Nagasawa T, Mukouyama YS (2013) Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev Cell 24:359–371

    Article  Google Scholar 

  • Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW (2019) Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest 129:5137–5150

    Article  Google Scholar 

  • Luyten FP, Roberts SJ (2018) Close to the bone – in search of the skeletal stem cell. Nat Rev Rheumatol 14:687–688

    Article  Google Scholar 

  • Ma J, Both SK, Yang F, Cui FZ, Pan J, Meijer GJ, Jansen JA, van den Beucken JJ (2014) Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med 3:98–107

    Article  Google Scholar 

  • Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344

    Article  Google Scholar 

  • Manabe N, Kawaguchi H, Chikuda H, Miyaura C, Inada M, Nagai R, Nabeshima Y, Nakamura K, Sinclair AM, Scheuermann RH et al (2001) Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol 167:2625–2631

    Article  Google Scholar 

  • Mapara M, Thomas BS, Bhat KM (2012) Rabbit as an animal model for experimental research. Dent Res J 9:111–118

    Article  Google Scholar 

  • Marecic O, Tevlin R, McArdle A, Seo EY, Wearda T, Duldulao C, Walmsley GG, Nguyen A, Weissman IL, Chan CK et al (2015) Identification and characterization of an injury-induced skeletal progenitor. Proc Natl Acad Sci U S A 112:9920–9925

    Article  Google Scholar 

  • Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41:27–37; table of contents

    Article  Google Scholar 

  • Matthyssen S, Ni Dhubhghaill S, Van Gerwen V, Zakaria N (2017) Xeno-free cultivation of mesenchymal stem cells from the corneal Stroma. Invest Ophthalmol Vis Sci 58:2659–2665

    Article  Google Scholar 

  • McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg (Br) 60-B:150–162

    Article  Google Scholar 

  • Mendes LF, Katagiri H, Tam WL, Chai YC, Geris L, Roberts SJ, Luyten FP (2018) Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res Ther 9:42

    Article  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  Google Scholar 

  • Mendez-Ferrer S, Scadden DT, Sanchez-Aguilera A (2015) Bone marrow stem cells: current and emerging concepts. Ann N Y Acad Sci 1335:32–44

    Article  Google Scholar 

  • Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563:254–258

    Article  Google Scholar 

  • Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T, Hirohata K (1990) The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg (Br) 72:822–829

    Article  Google Scholar 

  • Moore SR, Milz S, Knothe Tate ML (2014) Periosteal thickness and cellularity in mid-diaphyseal cross-sections from human femora and tibiae of aged donors. J Anat 224:142–149

    Article  Google Scholar 

  • Moreira CA, Dempster DW, Baron R (2000) Anatomy and ultrastructure of bone - Histogenesis, growth and remodeling. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas G, Koch C, Kopp P et al (eds) Endotext [Internet]. South Dartmouth (MA)

    Google Scholar 

  • Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  Google Scholar 

  • Newton PT, Li L, Zhou B, Schweingruber C, Hovorakova M, Xie M, Sun X, Sandhow L, Artemov AV, Ivashkin E et al (2019) A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 567:234–238

    Article  Google Scholar 

  • Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I (2020) Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo Long bone healing. Adv Sci n/a:1902295

    Google Scholar 

  • Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM (2014) Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell 29:330–339

    Article  Google Scholar 

  • Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B et al (2019) Identification of functionally distinct Mx1+alphaSMA+ periosteal skeletal stem cells. Cell Stem Cell 25:784–796 e785

    Article  Google Scholar 

  • Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. CIBA Found Symp 136:42–60

    Google Scholar 

  • Pineault KM, Song JY, Kozloff KM, Lucas D, Wellik DM (2019) Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat Commun 10:3168

    Article  Google Scholar 

  • Pobloth AM, Duda GN, Giesecke MT, Dienelt A, Schwabe P (2015) High-dose recombinant human bone morphogenetic protein-2 impacts histological and biomechanical properties of a cervical spine fusion segment: results from a sheep model. J Tissue Eng Regen Med 11(5):1514–1523

    Google Scholar 

  • Reinisch A, Bartmann C, Rohde E, Schallmoser K, Bjelic-Radisic V, Lanzer G, Linkesch W, Strunk D (2007) Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med 2:371–382

    Article  Google Scholar 

  • Rhinelander FW, Baragry R (1962) Microangiography in bone healing. I. Undisplaced closed fractures. J Bone Joint Surg Am 44-A:1273–1298

    Article  Google Scholar 

  • Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten FP (2011) The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32:4393–4405

    Article  Google Scholar 

  • Robey P (2017) “Mesenchymal stem cells”: fact or fiction, and implications in their therapeutic use. F1000Res 6:F1000 Faculty Rev-524

    Google Scholar 

  • Ryan JM (1979) Effect of different fetal bovine serum concentrations on the replicative life span of cultured chick cells. In Vitro 15:895–899

    Article  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  Google Scholar 

  • Sadtler K, Wolf MT, Ganguly S, Moad CA, Chung L, Majumdar S, Housseau F, Pardoll DM, Elisseeff JH (2019) Divergent immune responses to synthetic and biological scaffolds. Biomaterials 192:405–415

    Article  Google Scholar 

  • Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12:203–221

    Article  Google Scholar 

  • Salazar VS, Capelo LP, Cantu C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L et al (2019) Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. elife 8:e42386

    Google Scholar 

  • Salvade A, Della Mina P, Gaddi D, Gatto F, Villa A, Bigoni M, Perseghin P, Serafini M, Zatti G, Biondi A et al (2010) Characterization of platelet lysate cultured mesenchymal stromal cells and their potential use in tissue-engineered osteogenic devices for the treatment of bone defects. Tissue Eng Part C Methods 16:201–214

    Article  Google Scholar 

  • Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K (2017) The haematoma and its role in bone healing. J Exp Orthop 4:5

    Article  Google Scholar 

  • Schinhan M, Gruber M, Vavken P, Dorotka R, Samouh L, Chiari C, Gruebl-Barabas R, Nehrer S (2012) Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 30:214–220

    Article  Google Scholar 

  • Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  Google Scholar 

  • Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366

    Article  Google Scholar 

  • Shi Y, He G, Lee WC, McKenzie JA, Silva MJ, Long F (2017) Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 8:2043

    Article  Google Scholar 

  • Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547

    Article  Google Scholar 

  • Song MK, Lee ZH, Kim HH (2015) Adseverin mediates RANKL-induced osteoclastogenesis by regulating NFATc1. Exp Mol Med 47:e199

    Article  Google Scholar 

  • Stockmann P, Park J, von Wilmowsky C, Nkenke E, Felszeghy E, Dehner JF, Schmitt C, Tudor C, Schlegel KA (2012) Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells – a comparison of different tissue sources. J Craniomaxillofac Surg 40:310–320

    Article  Google Scholar 

  • Struillou X, Boutigny H, Soueidan A, Layrolle P (2010) Experimental animal models in periodontology: a review. Open Dent J 4:37–47

    Article  Google Scholar 

  • Strunk D, Lozano M, Marks DC, Loh YS, Gstraunthaler G, Schennach H, Rohde E, Laner-Plamberger S, Oller M, Nystedt J et al (2018) International forum on GMP-grade human platelet lysate for cell propagation: summary. Vox Sang 113:80–87

    Article  Google Scholar 

  • Stuart RC, Hehir D (1992) Comparative efficacy of cimetidine, famotidine, ranitidine, and mylanta in postoperative stress ulcers. Gastroenterology 102:1091

    Article  Google Scholar 

  • Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29:E8

    Article  Google Scholar 

  • Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science 161:54–56

    Article  Google Scholar 

  • Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38:1424–1429

    Article  Google Scholar 

  • van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G (2012) Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 30:2460–2471

    Article  Google Scholar 

  • van Griensven M (2015) Preclinical testing of drug delivery systems to bone. Adv Drug Deliv Rev

    Google Scholar 

  • Vashishth D (2008) Small animal bone biomechanics. Bone 43:794–797

    Article  Google Scholar 

  • Verbeeck L, Geris L, Tylzanowski P, Luyten FP (2019) Uncoupling of in-vitro identity of embryonic limb derived skeletal progenitors and their in-vivo bone forming potential. Sci Rep 9:5782

    Article  Google Scholar 

  • Via AG, Frizziero A, Oliva F (2012) Biological properties of mesenchymal stem cells from different sources. Muscle Ligaments Tendons J 2:154–162

    Google Scholar 

  • Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206

    Article  Google Scholar 

  • Wang X, Mabrey JD, Agrawal CM (1998) An interspecies comparison of bone fracture properties. Biomed Mater Eng 8:1–9

    Google Scholar 

  • Wehrhan F, Amann K, Molenberg A, Lutz R, Neukam FW, Schlegel KA (2013) Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes - the osteopromotive principle revisited. Clin Oral Implants Res 24:910–920

    Article  Google Scholar 

  • Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y et al (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160:269–284

    Article  Google Scholar 

  • Xian CJ, Zhou FH, McCarty RC, Foster BK (2004) Intramembranous ossification mechanism for bone bridge formation at the growth plate cartilage injury site. J Orthop Res 22:417–426

    Article  Google Scholar 

  • Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, Ning C (2008) Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596

    Article  Google Scholar 

  • Yamashita A, Morioka M, Kishi H, Kimura T, Yahara Y, Okada M, Fujita K, Sawai H, Ikegawa S, Tsumaki N (2014) Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513:507–511

    Article  Google Scholar 

  • Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, Matsuda S, Tsumaki N (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep 4:404–418

    Article  Google Scholar 

  • Ye L, Mishina Y, Chen D, Huang H, Dallas SL, Dallas MR, Sivakumar P, Kunieda T, Tsutsui TW, Boskey A et al (2005) Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280:6197–6203

    Article  Google Scholar 

  • Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  Google Scholar 

  • Yu N, Plachokova A, Yang F, Walboomers X, Jansen J (2013) Engineering of dental tissues: scaffolds and preclinical models. In: Stem cells in craniofacial development, regeneration and repair. Wiley-Blackwell Press

    Google Scholar 

  • Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank P. Luyten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bolander, J., Herpelinck, T., Luyten, F.P. (2020). Periosteum Derived Cells in Skeletal Tissue Regeneration. In: Gimble, J., Marolt Presen, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics