Skip to main content

Diagnostic Applications of Nuclear Medicine: Tumors of the Liver and Biliary Tract

Nuclear Oncology

Abstract

In liver and biliary tumors, modern imaging techniques play an important role in therapeutic decision-making. Whether the decision involves determining if the tumor is resectable or how it is responding to treatment, nuclear imaging has the potential to facilitate the decision-making process. Here we cover various studies that investigate the comparative effectiveness of cross-sectional morphologic imaging alone and in combination with functional nuclear medicine imaging. Specifically, we discuss the role of nuclear imaging in the diagnosis, characterization, and treatment of patients with primary and secondary liver or biliary tract malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[18F]FDG:

2-deoxy-2-[18F]fluoro-D-glucose

ACS:

American Cancer Society

AFP:

Alpha Fetoprotein

AI:

Arterial infusion

CA:

Cancer antigen

CA 19–9:

Carbohydrate antigen 19–9, a tumor-associated marker

CEA:

Carcinoembryonic antigen, a tumor-associated marker

CRC:

Colorectal cancer

CT:

X-ray computed tomography

DOTA:

2-(4-Isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

DOTANOC:

DOTA-1-Nal3-octreotide

DOTATATE:

DOTA-Tyr3-octreotate

DOTATOC:

DOTA-octreotide

FOLFOX:

Chemotherapy regimen based on FOL– Folinic acid F – Fluorouracil OX – Oxaliplatin

GBC:

Gallbladder cancer

HCC:

Hepatocellular carcinoma

HPB:

Hepatopancreaticobiliary

IgG4 :

Immunoglobulin G4

MIBG:

Metaiodobenzylguanidine

MRCP:

Magnetic Resonance Cholangiopancreatography

MRI:

Magnetic Resonance Imaging

NCCN:

National Comprehensive Cancer Network

NETs:

Neuroendocrine Tumors

OS:

Overall survival

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

PSC:

Primary sclerosing cholangitis

PTCS:

Percutaneous transhepatic

SRS:

Somatostatin receptor scintigraphy

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

TACE:

Transcatheter arterial chemoembolization

References

  1. Bipat S, van Leeuwen MS, Comans EF, Pijl ME, Bossuyt PM, Zwinderman AH, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis – meta-analysis. Radiology. 2005;237(1):123–31.

    Article  PubMed  Google Scholar 

  2. Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257(3):674–84.

    Article  PubMed  Google Scholar 

  3. Kuehl H, Rosenbaum-Krumme S, Veit-Haibach P, Stergar H, Forsting M, Bockisch A, et al. Impact of whole-body imaging on treatment decision to radio-frequency ablation in patients with malignant liver tumors: comparison of [18F]fluorodeoxyglucose-PET/computed tomography, PET and computed tomography. Nucl Med Commun. 2008;29(7):599–606.

    Article  PubMed  Google Scholar 

  4. Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 2004;240(6):1027–34; discussion 35-6.

    Google Scholar 

  5. Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 2004;240(6):1027–34; discussion 35-6.

    Google Scholar 

  6. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996;14(3):700–8.

    Article  CAS  PubMed  Google Scholar 

  7. Xia Q, Liu J, Wu C, Song S, Tong L, Huang G, et al. Prognostic significance of 18FDG PET/CT in colorectal cancer patients with liver metastases: a meta-analysis. Cancer Imaging. 2015;15:19.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lubezky N, Metser U, Geva R, Nakache R, Shmueli E, Klausner JM, et al. The role and limitations of 18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy: comparison with operative and pathological findings. J Gastrointest Surg. 2007;11(4):472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wolfort RM, Papillion PW, Turnage RH, Lillien DL, Ramaswamy MR, Zibari GB. Role of FDG-PET in the evaluation and staging of hepatocellular carcinoma with comparison of tumor size, AFP level, and histologic grade. Int Surg. 2010;95(1):67–75.

    CAS  PubMed  Google Scholar 

  10. Chikamoto A, Tsuji T, Takamori H, Kanemitsu K, Uozumi H, Yamashita Y, et al. The diagnostic efficacy of FDG-PET in the local recurrence of hilar bile duct cancer. J Hepato-Biliary-Pancreat Surg. 2006;13(5):403–8.

    Article  Google Scholar 

  11. Han AR, Gwak GY, Choi MS, Lee JH, Koh KC, Paik SW, et al. The clinical value of 18F-FDG PET/CT for investigating unexplained serum AFP elevation following interventional therapy for hepatocellular carcinom. Hepato-Gastroenterology. 2009;56(93):1111–6.

    PubMed  Google Scholar 

  12. Lu YY, Chen JH, Chien CR, Chen WT, Tsai SC, Lin WY, et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Color Dis. 2013;28(8):1039–47.

    Article  Google Scholar 

  13. Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem. 2001;47(4):624–30.

    CAS  PubMed  Google Scholar 

  14. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am 2011;40(1):1–18, vii.

    Google Scholar 

  15. Saxena A, Chua TC, Sarkar A, Chu F, Liauw W, Zhao J, et al. Progression and survival results after radical hepatic metastasectomy of indolent advanced neuroendocrine neoplasms (NENs) supports an aggressive surgical approach. Surgery. 2011;149(2):209–20.

    Article  PubMed  Google Scholar 

  16. Pape UF, Berndt U, Muller-Nordhorn J, Bohmig M, Roll S, Koch M, et al. Prognostic factors of long-term outcome in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2008;15(4):1083–97.

    Article  PubMed  Google Scholar 

  17. Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51(5):704–12.

    Article  PubMed  Google Scholar 

  18. Bodei L KM, Modlin I, Paganelli G. Nuclear medicine in the diagnosis and therapy of neuroendocrine tumors. In: Akotlun C GS, editor. Nuclear oncology. Wolters Kluwer health, Alphen aan den Rijn, The Netherlands; 2013.

    Google Scholar 

  19. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  20. Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999;83(1):18–29.

    Article  CAS  PubMed  Google Scholar 

  21. Rocken C, Carl-McGrath S. Pathology and pathogenesis of hepatocellular carcinoma. Dig Dis. 2001;19(4):269–78.

    Article  CAS  PubMed  Google Scholar 

  22. Esteves FP, Schuster DM, Halkar RK. Gastrointestinal tract malignancies and positron emission tomography: an overview. Semin Nucl Med. 2006;36(2):169–81.

    Article  PubMed  Google Scholar 

  23. Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999;30(6):1434–40.

    Article  CAS  PubMed  Google Scholar 

  24. Jonas S, Bechstein WO, Steinmuller T, Herrmann M, Radke C, Berg T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology. 2001;33(5):1080–6.

    Article  CAS  PubMed  Google Scholar 

  25. Cormier JN, Thomas KT, Chari RS, Pinson CW. Management of hepatocellular carcinoma. J Gastrointest Surg. 2006;10(5):761–80.

    Article  PubMed  Google Scholar 

  26. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  Google Scholar 

  27. Okazumi S, Isono K, Enomoto K, Kikuchi T, Ozaki M, Yamamoto H, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med. 1992;33(3):333–9.

    CAS  PubMed  Google Scholar 

  28. Schroder O, Trojan J, Zeuzem S, Baum RP. Limited value of fluorine-18-fluorodeoxyglucose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitis C virus infection. Nuklearmedizin. 1998;37(8):279–85.

    CAS  PubMed  Google Scholar 

  29. Delbeke D, Martin WH. PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med. 2004;34(3):209–23.

    Article  PubMed  Google Scholar 

  30. Trojan J, Schroeder O, Raedle J, Baum RP, Herrmann G, Jacobi V, et al. Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol. 1999;94(11):3314–9.

    Article  CAS  PubMed  Google Scholar 

  31. Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32(5):792–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jeng LB, Changlai SP, Shen YY, Lin CC, Tsai CH, Kao CH. Limited value of 18F-2-deoxyglucose positron emission tomography to detect hepatocellular carcinoma in hepatitis B virus carriers. Hepato-Gastroenterology. 2003;50(54):2154–6.

    PubMed  Google Scholar 

  33. Higashi T, Saga T, Nakamoto Y, Ishimori T, Fujimoto K, Doi R, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) – usefulness and limitations in “clinical reality”. Ann Nucl Med. 2003;17(4):261–79.

    Article  PubMed  Google Scholar 

  34. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med. 1995;36(10):1811–7.

    CAS  PubMed  Google Scholar 

  35. Caraco C, Aloj L, Chen LY, Chou JY, Eckelman WC. Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system. J Biol Chem. 2000;275(24):18489–94.

    Article  CAS  PubMed  Google Scholar 

  36. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res. 2007;13(2 Pt 1):427–33.

    Article  CAS  PubMed  Google Scholar 

  37. Wudel LJ, Jr., Delbeke D, Morris D, Rice M, Washington MK, Shyr Y, et al. The role of [18F]fluorodeoxyglucose positron emission tomography imaging in the evaluation of hepatocellular carcinoma. Am Surg 2003;69(2):117–24; discussion 24-6.

    Google Scholar 

  38. Lin WY, Tsai SC, Hung GU. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun. 2005;26(4):315–21.

    Article  PubMed  Google Scholar 

  39. Torizuka T, Tamaki N, Inokuma T, Magata Y, Yonekura Y, Tanaka A, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med. 1994;35(12):1965–9.

    CAS  PubMed  Google Scholar 

  40. Shiomi S, Nishiguchi S, Ishizu H, Iwata Y, Sasaki N, Tamori A, et al. Usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose for predicting outcome in patients with hepatocellular carcinoma. Am J Gastroenterol. 2001;96(6):1877–80.

    Article  CAS  PubMed  Google Scholar 

  41. Sugiyama M, Sakahara H, Torizuka T, Kanno T, Nakamura F, Futatsubashi M, et al. 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol. 2004;39(10):961–8.

    Article  CAS  PubMed  Google Scholar 

  42. Yoon KT, Kim JK, Kim DY, Ahn SH, Lee JD, Yun M, et al. Role of 18F-fluorodeoxyglucose positron emission tomography in detecting extrahepatic metastasis in pretreatment staging of hepatocellular carcinoma. Oncology. 2007;72(Suppl 1):104–10.

    Article  PubMed  Google Scholar 

  43. Kawaoka T, Aikata H, Takaki S, Uka K, Azakami T, Saneto H, et al. FDG positron emission tomography/computed tomography for the detection of extrahepatic metastases from hepatocellular carcinoma. Hepatol Res. 2009;39(2):134–42.

    Article  PubMed  Google Scholar 

  44. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983–95.

    CAS  PubMed  Google Scholar 

  45. Specht L. 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas. Semin Radiat Oncol. 2007;17(3):190–7.

    Article  PubMed  Google Scholar 

  46. Higashi T, Hatano E, Ikai I, Nishii R, Nakamoto Y, Ishizu K, et al. FDG PET as a prognostic predictor in the early post-therapeutic evaluation for unresectable hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2010;37(3):468–82.

    Article  PubMed  Google Scholar 

  47. Shiomi S, Nishiguchi S, Ishizu H, Iwata Y, Sasaki N, Tamori A, et al. Usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose for predicting outcome in patients with hepatocellular carcinoma. Am J Gastroenterol. 2001;96(6):1877–80.

    Article  CAS  PubMed  Google Scholar 

  48. Dierckx R, Maes A, Peeters M, Van De Wiele C. FDG PET for monitoring response to local and locoregional therapy in HCC and liver metastases. Q J Nucl Med Mol Imaging. 2009;53(3):336–42.

    CAS  PubMed  Google Scholar 

  49. Kim YK, Lee KW, Cho SY, Han SS, Kim SH, Kim SK, et al. Usefulness 18F-FDG positron emission tomography/computed tomography for detecting recurrence of hepatocellular carcinoma in posttransplant patients. Liver Transpl. 2010;16(6):767–72.

    Article  PubMed  Google Scholar 

  50. Yun M, Bang SH, Kim JW, Park JY, Kim KS, Lee JD. The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med. 2009;50(8):1222–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44(2):213–21.

    PubMed  Google Scholar 

  52. Park JW, Kim JH, Kim SK, Kang KW, Park KW, Choi JI, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49(12):1912–21.

    Article  PubMed  Google Scholar 

  53. Sham JG, Kievit FM, Grierson JR, Miyaoka RS, Yeh MM, Zhang M, et al. Glypican-3-targeted 89Zr PET imaging of hepatocellular carcinoma. J Nucl Med. 2014;55(5):799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Talbot JN, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F, et al. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med. 2010;51(11):1699–706.

    Article  PubMed  Google Scholar 

  55. Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg 1996;224(4):463–73; discussion 73-5.

    Google Scholar 

  56. Malhi H, Gores GJ. Cholangiocarcinoma: modern advances in understanding a deadly old disease. J Hepatol. 2006;45(6):856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato T, Tsukamoto E, Kuge Y, Katoh C, Nambu T, Nobuta A, et al. Clinical role of 18F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur J Nucl Med Mol Imaging. 2002;29(8):1047–54.

    Article  CAS  PubMed  Google Scholar 

  58. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1998. CA Cancer J Clin. 1998;48(1):6–29.

    Article  CAS  PubMed  Google Scholar 

  59. Bergquist A, Ekbom A, Olsson R, Kornfeldt D, Loof L, Danielsson A, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol. 2002;36(3):321–7.

    Article  PubMed  Google Scholar 

  60. Holzinger F, Z’Graggen K, Buchler MW. Mechanisms of biliary carcinogenesis: a pathogenetic multi-stage cascade towards cholangiocarcinoma. Ann Oncol. 1999;10(Suppl 4):122–6.

    Article  PubMed  Google Scholar 

  61. Washburn WK, Lewis WD, Jenkins RL. Aggressive surgical resection for cholangiocarcinoma. Arch Surg. 1995;130(3):270–6.

    Article  CAS  PubMed  Google Scholar 

  62. Kubicka S, Rudolph KL, Tietze MK, Lorenz M, Manns M. Phase II study of systemic gemcitabine chemotherapy for advanced unresectable hepatobiliary carcinomas. Hepato-Gastroenterology. 2001;48(39):783–9.

    CAS  PubMed  Google Scholar 

  63. Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS, Delbeke D. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg. 2004;8(1):90–7.

    Article  PubMed  Google Scholar 

  64. Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45(1):43–50.

    Article  PubMed  Google Scholar 

  65. Kim JY, Kim MH, Lee TY, Hwang CY, Kim JS, Yun SC, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103(5):1145–51.

    Article  PubMed  Google Scholar 

  66. Corvera CU, Blumgart LH, Akhurst T, DeMatteo RP, D’Angelica M, Fong Y, et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg. 2008;206(1):57–65.

    Article  PubMed  Google Scholar 

  67. Breitenstein S, Apestegui C, Clavien PA. Positron emission tomography (PET) for cholangiocarcinoma. HPB (Oxford). 2008;10(2):120–1.

    Article  CAS  Google Scholar 

  68. Kitajima K, Murakami K, Kanegae K, Tamaki N, Kaneta T, Fukuda H, et al. Clinical impact of whole body FDG-PET for recurrent biliary cancer: a multicenter study. Ann Nucl Med. 2009;23(8):709–15.

    Article  PubMed  Google Scholar 

  69. Furukawa H, Ikuma H, Asakura-Yokoe K, Uesaka K. Preoperative staging of biliary carcinoma using 18F-fluorodeoxyglucose PET: prospective comparison with PET+CT, MDCT and histopathology. Eur Radiol. 2008;18(12):2841–7.

    Article  PubMed  Google Scholar 

  70. Kitamura K, Hatano E, Higashi T, Seo S, Nakamoto Y, Narita M, et al. Prognostic value of 18F-fluorodeoxyglucose positron emission tomography in patients with extrahepatic bile duct cancer. J Hepatobiliary Pancreat Sci. 2011;18(1):39–46.

    Article  PubMed  Google Scholar 

  71. Butte JM, Redondo F, Waugh E, Meneses M, Pruzzo R, Parada H, et al. The role of PET-CT in patients with incidental gallbladder cancer. HPB (Oxford). 2009;11(7):585–91.

    Article  Google Scholar 

  72. Shukla PJ, Barreto SG, Arya S, Shrikhande SV, Hawaldar R, Purandare N, et al. Does PET-CT scan have a role prior to radical re-resection for incidental gallbladder cancer? HPB (Oxford). 2008;10(6):439–45.

    Article  Google Scholar 

  73. Leung U, Pandit-Taskar N, Corvera CU, D’Angelica MI, Allen PJ, Kingham TP, et al. Impact of pre-operative positron emission tomography in gallbladder cancer. HPB (Oxford). 2014;16(11):1023–30.

    Article  Google Scholar 

  74. Kumar R, Sharma P, Kumari A, Halanaik D, Malhotra A. Role of 18F-FDG PET/CT in detecting recurrent gallbladder carcinoma. Clin Nucl Med. 2012;37(5):431–5.

    Article  PubMed  Google Scholar 

  75. Sacks A, Peller PJ, Surasi DS, Chatburn L, Mercier G, Subramaniam RM. Value of PET/CT in the Management of Liver Metastases, Part 1. Am J Roentgenol. 2011;197(2):W256–W9.

    Article  Google Scholar 

  76. Agarwal A, Marcus C, Xiao J, Nene P, Kachnic LA, Subramaniam RM. FDG PET/CT in the Management of Colorectal and Anal Cancers. Am J Roentgenol. 2014;203(5):1109–19.

    Article  Google Scholar 

  77. Takei T, Boni G, Tamaki N, Saito H, Strauss HW. Tumors of the liver and biliary tract. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology: pathophysiology and clinical applications. New York: Springer; 2012. p. 451–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuman Fong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Raoof, M., Larson, S.M., Fong, Y. (2016). Diagnostic Applications of Nuclear Medicine: Tumors of the Liver and Biliary Tract. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Tumors of the Liver and Biliary Tract
    Published:
    11 June 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_16-3

  2. Diagnostic Applications of Nuclear Medicine: Tumors of the Liver and Biliary Tract
    Published:
    19 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_16-2

  3. Original

    Diagnostic Applications of Nuclear Medicine: Tumors of the Liver and Biliary Tract
    Published:
    16 January 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_16-1