Skip to main content

Diagnostic Applications of Nuclear Medicine: Colorectal Cancer

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

Colorectal cancer (CRC) is the fourth most frequent cancer worldwide and the most frequently diagnosed cancer in Europe. Although its incidence is increasing, mortality has decreased in the more developed countries, principally due to the improvement of treatment options and to prevention screening allowing earlier diagnosis. In the decision-making process of patients with CRC, a multidisciplinary board of specialists must be involved in which the nuclear medicine physician plays an important role. [18F]FDG PET/CT is the most widely used diagnostic nuclear medicine technique in oncology, and its usefulness has been proven also in the management of patients with CRC. According to the most recent guidelines, the role of [18F]FDG PET/CT is recognized as appropriate in restaging patients with suspected recurrence of CRC, in patients with elevated serum tumor markers such as CEA and a negative or inconclusive standard-diagnostic workup, or for presurgical evaluation of patients with recurrent disease and potentially resectable metastatic lesions. [18F]FDG PET/CT in CRC holds promise for systematic follow-up and for evaluation of response to therapy, especially in the evaluation of chemoradiation therapy in metastatic cancer (late and early response) or of local treatment efficacy with, e.g., radiofrequency ablation of liver metastases. The aim of this chapter is to review the available scientific evidence on the role of nuclear medicine imaging in CRC patients, with special emphasis on the guidelines and recommendations of the main international scientific associations regarding this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AJCC:

American Joint Committee on Cancer

CEA:

Carcinoembryonic antigen

ceCT:

Contrast-enhanced computed tomography

CI:

Confidence interval

CMR:

Complete metabolic response

CRC:

Colorectal cancer

CT:

Computed tomography

CTV:

Clinical tumor volume

[18F]FDG:

2-deoxy-2-18F-fluoro-D-glucose

IBD:

Inflammatory bowel disease

MRI:

Magnetic resonance imaging

PERCIST:

Positron emission tomography response criteria in solid tumors

PET:

Positron emission tomography

PREDIST:

PET residual disease in solid tumor

SUV:

Standardized uptake value

99mTc-HDP:

99mTc-hydroxyethylenediphosphonate

TNM:

Tumor-staging system based on status of the tumor (T), lymph node metastasis (N), and distant metastasis (M)

TRG:

Tumor regression grade

UICC:

International Union Against Cancer (Union Internationale Contre le Cancer)

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  3. Shike M, Winawer SJ, Greenwald PH, et al. Primary prevention of colorectal cancer. The WHO Collaborating Centre for the Prevention of Colorectal Cancer. Bull World Health Organ. 1990;68:377–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.

    Article  PubMed  Google Scholar 

  5. American Cancer Society. Cancer facts and figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  6. Fretwell V, Ang C, Tweedle E, et al. The impact of lymph node yield on Duke’s B and C colorectal cancer survival. Colorectal Dis. 2010;12:995–1000.

    Article  CAS  PubMed  Google Scholar 

  7. Compton C, Fenoglio-Preiser CM, Pettigrew N, et al. American Joint Committee on Cancer prognostic factors consensus conference: colorectal working group. Cancer. 2000;88:1739–57.

    Article  CAS  PubMed  Google Scholar 

  8. Chang GJ, Rodriguez-Bigas MA, Skibber JM, et al. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 2007;99:433–41.

    Article  PubMed  Google Scholar 

  9. Moerkerk P, Arends JW, van Driel M, et al. Type and number of Ki-ras point mutations relate to stage of human colorectal cancer. Cancer Res. 1994;54:3376–8.

    CAS  PubMed  Google Scholar 

  10. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. 1995;55:1407–12.

    CAS  PubMed  Google Scholar 

  11. Nemunaitis J, Cox J, Meyer W, et al. Irinotecan hydrochloride (CPT-11) resistance identified by K-ras mutation in patients with progressive colon cancer after treatment with 5-fluorouracil (5-FU). Am J Clin Oncol. 1997;20:527–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mohd Y, Balasubramanian B, Meyyazhagan A, et al. Extricating the association between the prognostic factors of colorectal cancer. J Gastrointest Cancer. 2021 52(3):1022–1028.

    Google Scholar 

  13. Weiser MR. AJCC 8th edition: colorectal cancer. Ann Surg Oncol. 2018;25:1454–5.

    Article  PubMed  Google Scholar 

  14. Arnoletti JP, Bland KI. Neoadjuvant and adjuvant therapy for rectal cancer. Surg Oncol Clin N Am. 2006;15:147–57.

    Article  PubMed  Google Scholar 

  15. Glynne-Jones R, Grainger J, Harrison M, et al. Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: should we be more cautious? Br J Cancer. 2006;94:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huguier M, Houry S, Barrier A. Local recurrence of cancer of the rectum. Am J Surg. 2001;182:437–9.

    Article  CAS  PubMed  Google Scholar 

  17. Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”. Eur J Nucl Med. 2001;28:1707–23.

    Article  CAS  PubMed  Google Scholar 

  18. Jerusalem G, Hustinx R, Beguin Y, et al. PET scan imaging in oncology. Eur J Cancer. 2003;39:1525–34.

    Article  CAS  PubMed  Google Scholar 

  19. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.

    Article  PubMed  Google Scholar 

  20. International Atomic Energy Agency. Appropriate use of FDG-PET for the management of cancer patients. Vienna: International Atomic Energy Agency; 2010. p. 75. (IAEA Human Health Series, ISSN 2075–3772; no. 9).

    Google Scholar 

  21. Glynne-Jones R, Wyrwicz L, Tiret E, et al. ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv263.

    Article  CAS  PubMed  Google Scholar 

  22. Van de Velde CJ, Boelens PG, Borras JM, et al. EURECCA colorectal: multidisciplinary management: European Consensus Conference Colon & Rectum. Eur J Cancer. 2014;50:1.e1–1.e34.

    Article  Google Scholar 

  23. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.

    Article  CAS  PubMed  Google Scholar 

  24. Kantorova I, Lipska L, Belohlavek O, et al. Routine 18F-FDG PET in preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med. 2003;44:1784–8.

    PubMed  Google Scholar 

  25. Mainenti PP, Iodice D, Segreto S, et al. Colorectal cancer and 18FDG-PET/CT: what about adding the T to the N parameter in loco-regional staging? World J Gastroenterol. 2011;17:1427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gearhart SL, Frassica D, Rosen R, et al. Improved staging with pretreatment positron emission tomography/computed tomography in low rectal cancer. Ann Surg Oncol. 2006;13:397–404.

    Article  PubMed  Google Scholar 

  27. Bipat S, van Leeuwen MS, Comans EF, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis–meta-analysis. Radiology. 2005;237:123–31.

    Article  PubMed  Google Scholar 

  28. Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257:674–84.

    Article  PubMed  Google Scholar 

  29. Patel S, McCall M, Ohinmaa A, Bigam D, Dryden DM. Positron emission tomography/computed tomographic scans compared to computed tomographic scans for detecting colorectal liver metastases: a systematic review. Ann Surg. 2011;253:666–71.

    Article  PubMed  Google Scholar 

  30. Mukai M, Sadahiro S, Yasuda S, et al. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep. 2000;7:86–7.

    Google Scholar 

  31. Schmoll HJ, Van Cutsem E, Stein A, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23:2479–516.

    Article  CAS  PubMed  Google Scholar 

  32. Lambregts DM, Cappendijk VC, Maas M, et al. Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer. Eur Radiol. 2011;21:1250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maas M, Rutten IJ, Nelemans PJ, et al. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis: imaging for recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1560–71.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brush J, Boyd K, Chappell F, et al. The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation. Health Technol Assess. 2011;15:1–192, iii–iv.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan K, Welch S, Walker-Dilks C, et al. Evidence-based guideline recommendations on the use of positron emission tomography imaging in colorectal cancer. Clin Oncol (R Coll Radiol). 2012;24:232–49.

    Article  CAS  Google Scholar 

  36. Lu YY, Chen JH, Chien CR, et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Color Dis. 2013;28:1039–47.

    Article  Google Scholar 

  37. Yu T, Meng N, Chi D, et al. Diagnostic value of 18F-FDG PET/CT in detecting local recurrent colorectal cancer: a pooled analysis of 26 individual studies. Cell Biochem Biophys. 2015;72:443–51.

    Article  CAS  PubMed  Google Scholar 

  38. Flamen P, Hoekstra OS, Homans F, et al. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer. 2001;37:862–9.

    Article  CAS  PubMed  Google Scholar 

  39. NCCN Clinical Practice Guidelines in Oncology Rectal Cancer Version 2.2020. page REC-11. Available at: www.nccn.org. Accessed 26 Mar 2020.

  40. Lu YY, Chen JH, Chien CR, et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis. 2013;28:1039–47.

    Article  PubMed  Google Scholar 

  41. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000;41:1177–89.

    CAS  PubMed  Google Scholar 

  42. Flamen P, Stroobants S, Van Cutsem E, et al. Additional value of whole-body positron emission tomography with fluorine-18-2-fluoro-2-deoxy-D-glucose in recurrent colorectal cancer. J Clin Oncol. 1999;17:894–901.

    Article  CAS  PubMed  Google Scholar 

  43. Lai DT, Fulham M, Stephen MS, et al. The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg. 1996;131:703–7.

    Article  CAS  PubMed  Google Scholar 

  44. Sobhani I, Tiret E, Lebtahi R, et al. Early detection of recurrence by 18FDG-PET in the follow-up of patients with colorectal cancer. Br J Cancer. 2008;98:875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiering B, Krabbe PF, Jager GJ, et al. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer. 2005;104:2658–70.

    Article  PubMed  Google Scholar 

  46. Moulton CA, Gu CS, Law CH, et al. Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: a randomized clinical trial. JAMA. 2014;311:1863–9.

    Article  CAS  PubMed  Google Scholar 

  47. Valentini V, Gambacorta MA, Barbaro B, et al. International consensus guidelines on clinical target volume delineation in rectal cancer. Radiother Oncol. 2016;120:195–201.

    Article  PubMed  Google Scholar 

  48. Krengli M, Cannillo B, Turri L, et al. Target volume delineation for preoperative radiotherapy of rectal cancer: inter-observer variability and potential impact of FDG-PET/CT imaging. Technol Cancer Res Treat. 2010;9:393–8.

    Article  PubMed  Google Scholar 

  49. Agarwal A, Marcus C, Xiao J, et al. FDG PET/CT in the management of colorectal and anal cancers. AJR Am J Roentgenol. 2014;203:1109–19.

    Article  PubMed  Google Scholar 

  50. Bulens P, Thomas M, Deroose CM, et al. PET imaging in adaptive radiotherapy of gastrointestinal tumors. Q J Nucl Med Mol Imaging. 2018;62:385–403.

    Article  PubMed  Google Scholar 

  51. Gwynne S, Mukherjee S, Webster R, et al. Imaging for target volume delineation in rectal cancer radiotherapy – a systematic review. Clin Oncol (R Coll Radiol). 2012;24:52–63.

    Article  CAS  Google Scholar 

  52. Bassi MC, Turri L, Sacchetti G, et al. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70:1423–6.

    Article  PubMed  Google Scholar 

  53. Anderson C, Koshy M, Staley C, et al. PET-CT fusion in radiation management of patients with anorectal tumors. Int J Radiat Oncol Biol Phys. 2007;69:155–62.

    Article  PubMed  Google Scholar 

  54. Lee ST, Muralidharan V, Tebbutt N, et al. Prevalence of hypoxia and correlation with glycolytic metabolism and angiogenic biomarkers in metastatic colorectal carcinoma. Eur J Nucl Med Mol Imaging. 2020. Online ahead of print. 2021 48(5):1585–1592.

    Google Scholar 

  55. Zaniboni A, Savelli G, Pizzocaro C, et al. Positron emission tomography for the response evaluation following treatment with chemotherapy in patients affected by colorectal liver metastases: a selected review. Gastroenterol Res Pract. 2015;2015:706808.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Altini C, Niccoli Asabella A, De Luca R, et al. Comparison of 18F-FDG PET/CT methods of analysis for predicting response to neoadjuvant chemoradiation therapy in patients with locally advanced low rectal cancer. Abdom Imaging. 2015;40:1190–202.

    Article  PubMed  Google Scholar 

  57. Maffione AM, Marzola MC, Capirci C, et al. Value of 18F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis. AJR Am J Roentgenol. 2015;204:1261–8.

    Article  PubMed  Google Scholar 

  58. Memon S, Lynch AC, Akhurst T, et al. Systematic review of FDG-PET prediction of complete pathological response and survival in rectal cancer. Ann Surg Oncol. 2014;21:3598–607.

    Article  PubMed  Google Scholar 

  59. Rymer B, Curtis NJ, Siddiqui MRS, et al. FDG PET/CT can assess the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy: evidence from meta-analysis and systematic review. Clin Nucl Med. 2016;41:371–5.

    Article  PubMed  Google Scholar 

  60. Maffione AM, Ferretti A, Chondrogiannis S, et al. Proposal of a new 18F-FDG PET/CT predictor of response in rectal cancer treated by neoadjuvant chemoradiation therapy and comparison with PERCIST criteria. Clin Nucl Med. 2013;38:795–7.

    Article  PubMed  Google Scholar 

  61. Giannini V, Mazzetti S, Bertotto I, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur J Nucl Med Mol Imaging. 2019;46:878–88.

    Article  CAS  PubMed  Google Scholar 

  62. Cerny M, Dunet V, Rebecchini C, et al. Response of locally advanced rectal cancer (LARC) to radiochemotherapy: DW-MRI and multiparametric PET/CT in correlation with histopathology. Nuklearmedizin. 2019;58:28–38.

    Article  PubMed  Google Scholar 

  63. Joye I, Deroose CM, Vandecaveye V, et al. The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol. 2014;113:158–65.

    Article  PubMed  Google Scholar 

  64. Brandi G, Nannini M, Pantaleo MA, et al. Molecular imaging suggests efficacy of bevacizumab beyond the second line in advanced colorectal cancer patients. Chemotherapy. 2008;54:421–4.

    Article  CAS  PubMed  Google Scholar 

  65. Funaioli C, Pinto C, Di Fabio F, et al. 18FDG-PET evaluation correlates better than CT with pathological response in a metastatic colon cancer patient treated with bevacizumab-based therapy. Tumori. 2007;93:611–5.

    Google Scholar 

  66. Brendle C, Schwenzer NF, Rempp H, et al. Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur J Nucl Med Mol Imaging. 2016;43:123–32.

    Article  CAS  PubMed  Google Scholar 

  67. Queiroz MA, Ortega CD, Ferreira FR, et al. Diagnostic accuracy of FDG-PET/MRI versus pelvic MRI and thoracic and abdominal CT for detecting synchronous distant metastases in rectal cancer patients. Eur J Nucl Med Mol Imaging. 2021;48:186–95.

    Article  PubMed  Google Scholar 

  68. Whitney R, Tatum C, Hahl M, et al. Safety of hepatic resection in metastatic disease to the liver after yttrium-90 therapy. J Surg Res. 2011;166:236–40.

    Article  PubMed  Google Scholar 

  69. Dutton SJ, Kenealy N, Love SB, Wasan HS, Sharma RA, FOXFIRE Protocol Development Group and the NCRI Colorectal Clinical Study Group. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional Selective Internal Radiation Therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer. BMC Cancer. 2014;14:497.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gibbs P, Gebski V, Van Buskirk M, Thurston K, Cade DN, Van Hazel GA, SIRFLOX Study Group. Selective Internal Radiation Therapy (SIRT) with yttrium-90 resin microspheres plus standard systemic chemotherapy regimen of FOLFOX versus FOLFOX alone as first-line treatment of non-resectable liver metastases from colorectal cancer: the SIRFLOX study. BMC Cancer. 2014;14:897.

    Article  PubMed  PubMed Central  Google Scholar 

  71. van Hazel GA, Bower G, Sharma RA, et al. Selective internal radiation therapy (SIRT) for liver metastases with concomitant systemic oxaliplatin, 5-fluorouracil and folinic acid: a phase I/II dose escalation study. J Clin Oncol. 2005;23:1–1087.

    Google Scholar 

  72. Lim L, Gibbs P, Yip D, et al. A prospective evaluation of treatment with Selective Internal Radiation Therapy (SIR-spheres) in patients with unresectable liver metastases from colorectal cancer previously treated with 5-FU based chemotherapy. BMC Cancer. 2005;5:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bester L, Meteling B, Pocock N, et al. Radioembolisation with Yttrium-90 microspheres: an effective treatment modality for unresectable liver metastases. J Med Imaging Radiat Oncol. 2013;57:72–80.

    Article  PubMed  Google Scholar 

  74. Cosimelli M, Golfieri R, Cagol PP, et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer. 2010;103:324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hendlisz A, Van den Eynde M, Peeters M, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.

    Article  CAS  PubMed  Google Scholar 

  76. Van Cutsem E, Nordlinger B, Arnold D. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. The European Society for Medical Oncology (ESMO). Ann Oncol. 2014;25(Suppl 6):6–7.

    Google Scholar 

  77. Van Hazel G, Blackwell A, Anderson J, et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.

    Article  PubMed  Google Scholar 

  78. Bombardieri E, Maccauro M, Deckere E, et al. Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol. 2001;12(Suppl 2):S51–61.

    Article  PubMed  Google Scholar 

  79. Kwekkeboom DJ, Kooj PP, Bakker WH, et al. Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumour uptake. J Nucl Med. 1999;40:762–7.

    CAS  PubMed  Google Scholar 

  80. Baum RP. Receptor PET/CT imaging of neuroendocrine tumors using the Ga-68 labelled, high affinity somatostatin analogue DOTA-1-NaI3-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging. 2005;32:109s.

    Google Scholar 

  81. Ambrosini V, Nanni C, Zompatori M, et al. 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2010;37:722–7.

    Google Scholar 

  82. Haug A, Auernhammer CJ, Wängler B, et al. Intraindividual comparison of [68Ga]DOTA-TATE and [18F]DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.

    Article  CAS  PubMed  Google Scholar 

  83. Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    Article  CAS  PubMed  Google Scholar 

  84. Gabriel M, Andergassen U, Putzer D, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging. 2010;54:92–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Pelosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Polverari, G., Penna, D., Cassalia, L., Deandreis, D., Pelosi, E. (2022). Diagnostic Applications of Nuclear Medicine: Colorectal Cancer. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics