1 Introduction

If the convex body \(\mathcal M\), the kernel, contains the origin \(O\), let \(\hbar _{\mathcal M}({\varvec{u}})\) denote the supporting hyperplane of \(\mathcal M\) that is perpendicular to the unit vector \({\varvec{u}}\in {\mathbb {S}}^{n-1}\) and contains in its same half space \(\hbar ^-_{\mathcal M}({\varvec{u}})\) the origin \(O\) and the kernel \(\mathcal M\). Its other half space is denoted by \(\hbar ^+_{\mathcal M}({\varvec{u}})\).

If the convex body \(\mathcal K\) contains the kernel \(\mathcal M\) in its interior, we define the functions

$$\begin{aligned} \mathrm{S}_{\mathcal M;\mathcal K}^{}({\varvec{u}})&= |\mathcal K\cap \hbar _{\mathcal M}({\varvec{u}})|, \quad (section\,function) \end{aligned}$$
(1.1)
$$\begin{aligned} \mathrm{C}_{\mathcal M;\mathcal K}^{}({\varvec{u}})&= |\mathcal K\cap \hbar ^+_{\mathcal M}({\varvec{u}})|, \quad (cap\,function) \end{aligned}$$
(1.2)

where \(|\cdot |\) is the appropriate Lebesgue measure.

figure a

The goal of this article is to investigate the problem of determining \(\mathcal K\) if some functions of the form (1.1) and (1.2) are given for a kernel \(\mathcal M\).

Two convex bodies \(\mathcal K\) and \(\mathcal K'\) are called \(\mathcal M\)-equicapped if \(\mathrm{C}^{}_{\mathcal M;\mathcal K}\equiv \mathrm{C}^{}_{\mathcal M;\mathcal K'}\), and they are \(\mathcal M\)-equisectioned if \(\mathrm{S}^{}_{\mathcal M;\mathcal K}\equiv \mathrm{S}^{}_{\mathcal M;\mathcal K'}\). A convex body \(\mathcal K\) is called \(\mathcal M\)-isocapped if \(\mathrm{C}^{}_{\mathcal M;\mathcal K}\) is constant. It is said to be \(\mathcal M\)-isosectioned if \(\mathrm{S}^{}_{\mathcal M;\mathcal K}\) is constant.

First we prove in the plane that

  1. (a)

    two convex bodies coincide if they are \(\mathcal M\)-equicapped and \(\mathcal M\)-equisectioned, no matter what \(\mathcal M\) is (Theorem 3.1), and

  2. (b)

    any disc-isocapped convex body is a disc concentric to the kernel (Theorem 3.2).Footnote 1

Then, in higher dimensions we consider only such convex bodies that are sphere-equisectioned and sphere-equicapped with a ball, and prove that

  1. (1)

    a convex body that is sphere-equicapped and sphere-equisectioned with a ball, is itself a ball (Theorem 5.3);

  2. (2)

    a convex body that is twice sphere-equicapped (for two different concentric spheres) with a ball is itself a ball (Theorem 5.1);

  3. (3)

    a convex body that is twice sphere-equisectioned (for two different concentric spheres) with a ball is itself a ball (Theorem 5.2, but dimension \(n=3\) excluded).

For more information about the subject we refer the reader to [1, 3] etc.

2 Preliminaries

We work with the \(n\)-dimensional real space \({\mathbb {R}}^n\), its unit ball is \(\mathcal B=\mathcal B^n\) (in the plane the unit disc is \(\mathcal D\)), its unit sphere is \({\mathbb {S}}^{n-1}\) and the set of its hyperplanes is \({\mathbb {H}}\). The ball (resp. disc) of radius \(\varrho >0\) centred to the origin is denoted by \(\varrho \mathcal B=\varrho \mathcal B^{n}\) (resp. \(\varrho \mathcal D\)).

Using the spherical coordinates \({\varvec{\xi }}=(\xi _1,\ldots ,\xi _{n-1})\) every unit vector can be written in the form \({\varvec{u}}_{{\varvec{\xi }}}=(\cos \xi _1,\sin \xi _1\cos \xi _2,\) \(\sin \xi _1\sin \xi _2\cos \xi _3,\ldots )\), the \(i\)th coordinate of which is \(u_{{\varvec{\xi }}}^i=(\prod _{j=1}^{i-1}\sin \xi _j)\cos \xi _i\) (\(\xi _n:=0\)). In the plane we even use the \({\varvec{u}}_{\xi }=(\cos \xi ,\sin \xi )\) and \({\varvec{u}}_{\xi }^{\perp }={\varvec{u}}_{\xi +\pi /2}=(-\sin \xi ,\cos \xi )\) notations and in analogy to this latter one, we introduce the notation \({\varvec{\xi }}^{\perp }=(\xi _1,\dots ,\xi _{n-2},\xi _{n-1}+\pi /2)\) for higher dimensions.

A hyperplane \(\hbar \in \mathbb {H}\) is parametrized so that \(\hbar ({\varvec{u}}_{{\varvec{\xi }}},r)\) means the one that is orthogonal to the unit vector \({\varvec{u}}_{{\varvec{\xi }}}\in {\mathbb {S}}^{n-1}\) and contains the point \(r{\varvec{u}}_{{\varvec{\xi }}}\), where \(r\in {\mathbb {R}}\).Footnote 2 For convenience we also frequently use \(\hbar (P,{\varvec{u}}_{{\varvec{\xi }}})\) to denote the hyperplane through the point \(P\in {\mathbb {R}}^n\) with normal vector \({\varvec{u}}_{{\varvec{\xi }}}\in {\mathbb {S}}^{n-1}\). For instance, \(\hbar (P,{\varvec{u}}_{{\varvec{\xi }}})=\hbar ({\varvec{u}}_{{\varvec{\xi }}},\langle \overrightarrow{OP},{\varvec{u}}_{{\varvec{\xi }}}\rangle )\), where \(O=\mathbf{0}\) is the origin and \(\langle .,.\rangle \) is the usual inner product.

On a convex body we mean a convex compact set \(\mathcal K\subseteq {\mathbb {R}}^n\) with non-empty interior \(\mathcal K^{\circ }\) and with piecewise \(\mathrm{C}^1\) boundary \(\partial \mathcal K\). For a convex body \(\mathcal K\) we let \(p_{\mathcal K}^{}:{\mathbb {S}}^{n-1}\rightarrow {\mathbb {R}}\) denote support function of \(\mathcal K\), which is defined by \(p_{\mathcal K}^{}({\varvec{u}}_{\xi })=\sup _{{\varvec{x}}\in \mathcal K}\langle {\varvec{u}}_{\xi },x\rangle \). We also use the notation \(\hbar _{\mathcal K}({\varvec{u}})=\hbar ({\varvec{u}},p_{\mathcal K}^{}({\varvec{u}}))\). If the origin is in \(\mathcal K^{\circ }\), another useful function of a convex body \(\mathcal K\) is its radial function \(\varrho _{\mathcal K}^{}:{\mathbb {S}}^{n-1}\rightarrow {\mathbb {R}}_+\) which is defined by \(\varrho _{\mathcal K}^{}({\varvec{u}})=|\{r{\varvec{u}}:r>0\}\cap \partial K|\).

We need the special functions \(I_x(a,b)\), the regularized incomplete beta function, \(B(x;a,b)\), the incomplete beta function, \(B(a,b)\), the beta function, and \(\Gamma (y)\), Euler’s Gamma function, where \(0<a,b\in {\mathbb {R}}, x\in [0,1]\) and \(y\in {\mathbb {R}}\). We introduce finally the notation \(|{\mathbb {S}}^{k}|:=2\pi ^{k/2}/\!\Gamma (k/2)\) as the standard surface measure of the \(k\)-dimensional sphere. For the special functions we refer the reader to [11, 12].

We shall frequently use the utility function \(\chi \) that takes relations as argument and gives \(1\) if its argument fulfilled. For example \(\chi (1>0)=1\), but \(\chi (1\le 0)=0\) and \(\chi (x>y)\) is \(1\) if \(x>y\) and it is zero if \(x\le y\). Nevertheless we still use \(\chi \) also as the indicator function of the set given in its subscript.

A strictly positive integrable function \(\omega :{\mathbb {R}}^n\!\setminus \!\mathcal B\rightarrow {\mathbb {R}}_+\) is called weight and the integral

$$\begin{aligned} V_{\omega }(f):=\int _{{\mathbb {R}}^n\setminus \mathcal B}f(x)\omega (x)dx \end{aligned}$$

of an integrable function \(f:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is called the volume of \(f\) with respect to the weight \(\omega \) or simply the \(\omega \)-volume of \(f\). For the volume of the indicator function \(\chi _{\mathcal S}^{}\) of a set \(\mathcal S\subseteq {\mathbb {R}}^n\) we use the notation \(V_{\omega }(\mathcal S):=V_{\omega }(\chi _{\mathcal S})\) as a shorthand. If more weights are indexed by \(i\in {\mathbb {N}}\), then we use the even shorter notation \(V_{i}(\mathcal S):=V_{\omega _i}(\mathcal S)=V_{i}(\chi _{\mathcal S}^{}) :=V_{\omega _i}(\chi _{\mathcal S}^{})\).

3 In the plane

We heard the following easy result from Kincses [5].

Theorem 3.1

Assume that the border of the strictly convex plane bodies \(\mathcal M\) and \(\mathcal K\) are differentiable of class \(C^1\) and we are given \(\mathcal M\) and the functions \(\mathrm{S}_{\mathcal M;\mathcal K}^{}\) and \(\mathrm{C}_{\mathcal M;\mathcal K}^{}\). Then \(\mathcal K\) can be uniquely determined.

Proof

Fix the origin \(\mathbf{0}\) in \(\mathcal M^{\circ }\). In the plane \({\varvec{u}}_{\xi }=(\cos \xi ,\sin \xi )\), therefore we consider the functions

$$\begin{aligned} f(\xi )&:=\mathrm{S}_{\mathcal M;\mathcal K}^{}({\varvec{u}}_{\xi }) =|\hbar (p_{\mathcal M}^{}({\varvec{u}}_{\xi }),{\varvec{u}}_{\xi })\cap \mathcal K|\\ g(\xi )&:=\mathrm{C}_{\mathcal M;\mathcal K}^{}({\varvec{u}}_{\xi }) =|\hbar ^+(p_{\mathcal M}^{}({\varvec{u}}_{\xi }),{\varvec{u}}_{\xi })\cap \mathcal K| \end{aligned}$$

where \(\hbar ^+\) is the appropriate half space bordered by \(\hbar \).

Let \({\varvec{h}}(\xi )\) be the point, where \(\hbar (p^{}_{\mathcal M}(\xi ),{\varvec{u}}_{\xi })\) touches \(\mathcal M\). Then, as it is well known, \({\varvec{h}}(\xi )\!-\!p^{}_{\mathcal M}(\xi ){\varvec{u}}_{\xi }\!=\!p^{\prime }_{\mathcal M}(\xi ){\varvec{u}}_{\xi }^\perp \). Let \({\varvec{a}}(\xi )\) and \({\varvec{b}}(\xi )\) be the two intersections of \(\hbar (p^{}_{\mathcal M}(\xi ),{\varvec{u}}_{\xi })\) and \(\partial \mathcal K\) taken so that \({\varvec{a}}(\xi )={\varvec{h}}(\xi )+a(\xi ){\varvec{u}}_{\xi }^\perp \) and \({\varvec{b}}(\xi )={\varvec{h}}(\xi )-b(\xi ){\varvec{u}}_{\xi }^\perp \), where \(a(\xi )\) and \(b(\xi )\) are positive functions.

Then \(f(\xi )=a(\xi )+b(\xi )\).

In the other hand, we have

$$\begin{aligned} g(\xi )&=\int _{\mathcal K\setminus \mathcal M} \chi (\langle {\varvec{x}},{\varvec{u}}_{\xi }\rangle \ge p_{\mathcal M}^{}(\xi )) \,d{\varvec{x}} =\int _{-\tfrac{\pi }{2}}^{\tfrac{\pi }{2}}\int _{0}^{\varrho ^{}_{\xi }(\zeta )}r\,dr\,d\zeta , \end{aligned}$$

where \({\varvec{h}}(\xi )+\varrho ^{}_{\xi }(\zeta ){\varvec{u}}_{\zeta }\in \partial \mathcal K\). Since \(\frac{d\varrho ^{}_{\xi }(\zeta )}{d\xi }=\frac{d\varrho ^{}_{\xi }(\zeta )}{d\zeta }\), this leads to

$$\begin{aligned} 2g'(\xi )&=\int _{-\tfrac{\pi }{2}}^{\tfrac{\pi }{2}} \frac{d}{d\xi }\left( \int _{0}^{\varrho ^{}_{\xi }(\zeta )}2r\,dr\right) \,d\zeta =\int _{-\tfrac{\pi }{2}}^{\tfrac{\pi }{2}} 2\varrho ^{}_{\xi }(\zeta )\varrho ^{\prime }_{\xi }(\zeta ) \,d\zeta =a^2(\xi )-b^2(\xi ) \end{aligned}$$

that implies

$$\begin{aligned} a(\xi )=\frac{\frac{2g'(\xi )}{f(\xi )}+f(\xi )}{2} =\frac{2g'(\xi )+f^2(\xi )}{2f(\xi )} .\end{aligned}$$

This clearly determines \(\mathcal K\). \(\square \)

If the kernel \(\mathcal M\) is known to be a disc \(\varrho \mathcal D\), then any one of the functions \(\mathrm{S}_{\varrho \mathcal D;\mathcal K}^{}\) and \(\mathrm{C}_{\varrho \mathcal D;\mathcal K}^{}\) can determine concentric discs by its constant value.

Theorem 3.2

Assume that one of the functions \(\mathrm{S}_{\varrho \mathcal D;\mathcal K}^{}\) and \(\mathrm{C}_{\varrho \mathcal D;\mathcal K}^{}\) is constant, where \(\mathcal D\) is the unit disc. Then \(\mathcal K\) is a disc centred to the origin.

Proof

If \(\mathrm{S}_{\varrho \mathcal D;\mathcal K}^{}\) is constant, then this theorem is [1, Theorem 1].

If \(\mathrm{C}_{\varrho \mathcal D;\mathcal K}^{}\) is constant, the derivative of \(\mathrm{C}_{\varrho \mathcal D;\mathcal K}^{}\) is zero, hence—using the notations of the previous proof—\(a(\xi )=b(\xi )\) for every \(\xi \in [0,2\pi )\), that is, the point \({\varvec{h}}(\xi )\) is the midpoint of the segment \(\overline{{\varvec{a}}(\xi ){\varvec{b}}(\xi )}\) on \(\hbar (\varrho ,{\varvec{u}}_{\xi })\).

Let us consider the chord-map \(C:\partial \mathcal K\rightarrow \partial \mathcal K\), that is defined by \(C({\varvec{b}}(\xi ))={\varvec{a}}(\xi )\) for every \(\xi \in [0,2\pi )\). This is clearly a bijective map. If \({\varvec{\ell }}_0\in \partial \mathcal K\), then by \(a(\xi )=b(\xi )\) the whole sequence \({\varvec{\ell }}_i=C^i({\varvec{\ell }})\), where \(C^i\) means the \(i\) consecutive usage of \(C\), are on a concentric circle of radius \(|{\varvec{\ell }}_0|\). Moreover, every point \({\varvec{\ell }}_i\) (\(i>0\)) is the concentric rotation of \({\varvec{\ell }}_{i-1}\) with angle \(\lambda =2\arccos (\tfrac{\varrho }{|{\varvec{\ell }}_0|})\). It is well known [4, Proposition 1.3.3] that such a sequence is dense in \(\partial \mathcal K\) if \(\tfrac{\lambda }{\pi }\) is irrational, or it is finitely periodic in \(\partial \mathcal K\) if \(\tfrac{\lambda }{\pi }\) is rational. However, if \(\mathcal K\) is not a disc, then there is surely a point \({\varvec{\ell }}\in \partial \mathcal K\) for which \(\tfrac{2\arccos (\tfrac{\varrho }{|{\varvec{\ell }}_0|})}{\pi }\) is irrational, hence \(\mathcal K\) must be a concentric disc. \(\square \)

4 Measures of convex bodies

In this section the dimension of the space is \(n=2,3,\dots \). As a shorthand we introduce the notations

$$\begin{aligned} \mathrm{S}_{\varrho ;\mathcal K}^{}({\varvec{u}}) :=&\mathrm{S}_{\varrho \mathcal B;\mathcal K}^{}(\hbar (\varrho ,{\varvec{u}}))=|\mathcal K\cap \hbar (\varrho ,{\varvec{u}})|, \end{aligned}$$
(4.1)
$$\begin{aligned} \mathrm{C}_{\varrho ;\mathcal K}^{}({\varvec{u}}) :=&\mathrm{C}_{\varrho \mathcal B;\mathcal K}^{}(\hbar (\varrho ,{\varvec{u}}))=|\mathcal K\cap \hbar ^+(\varrho ,{\varvec{u}})|, \end{aligned}$$
(4.2)

where \(\varrho \mathcal B^{n}\) is the ball of radius \(\varrho >0\) centred to the origin and \(\hbar ^+\) is the appropriate half space bordered by \(\hbar \).

Lemma 4.1

If the convex body \(\mathcal K\) in \({\mathbb {R}}^n\) contains in its interior the ball \(\varrho \mathcal B^n\), then

$$\begin{aligned} \int _{{\mathbb {S}}^{n-1}} \mathrm{C}_{\varrho ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} =\frac{\pi ^{n/2}}{\Gamma (\tfrac{n}{2})} \int _{\mathcal K\setminus \varrho \mathcal B} I_{1-\frac{\varrho ^2}{|{\varvec{x}}|^2}}\Big (\frac{n-1}{2},\frac{1}{2}\Big )\ d{\varvec{x}}. \end{aligned}$$
(4.3)

Proof

We have

$$\begin{aligned} \int _{{\mathbb {S}}^{n-1}}\!\! \mathrm{C}_{\varrho ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }}&=\int _{{\mathbb {S}}^{n-1}}\int _{{\mathbb {R}}^n} \chi _{\mathcal K}^{}({\varvec{x}})\chi (\langle {\varvec{x}},{\varvec{u}}_{{\varvec{\xi }}}\rangle \ge \varrho ) \,d{\varvec{x}} d{\varvec{\xi }}\\&=\int _{\mathcal K\setminus \varrho \mathcal B} \int _{{\mathbb {S}}^{n-1}} \chi \left( \left\langle \frac{{\varvec{x}}}{|{\varvec{x}}|},{\varvec{u}}_{{\varvec{\xi }}}\right\rangle \ge \frac{\varrho }{|{\varvec{x}}|}\right) \,d{\varvec{\xi }} d{\varvec{x}} \end{aligned}$$

The inner integral is the surface of the hyperspherical cap. The height of this hyperspherical cap is \(h=1-\tfrac{\varrho }{|{\varvec{x}}|}\), hence by the well-known formula [13] we obtain

$$\begin{aligned} \int _{{\mathbb {S}}^{n-1}} \chi \left( \left\langle \frac{{\varvec{x}}}{|{\varvec{x}}|},{\varvec{u}}_{{\varvec{\xi }}}\right\rangle \ge \frac{\varrho }{|{\varvec{x}}|}\right) \, d{\varvec{\xi }} =\frac{\pi ^{n/2}}{\Gamma (\tfrac{n}{2})} I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}}\left( \frac{n-1}{2},\frac{1}{2}\right) . \end{aligned}$$

This proves the lemma. \(\square \)

Note that the weight in (4.3) is \(\frac{\pi ^{}}{\Gamma (1)} I_{1-\frac{\varrho ^2}{|{\varvec{x}}|^2}}(\frac{1}{2},\frac{1}{2}) =2\arccos (\tfrac{\varrho }{|{\varvec{x}}|})\) for dimension \(n=2\), and it is \(\frac{\pi ^{3/2}}{\Gamma (\tfrac{3}{2})} I_{1-\frac{\varrho ^2}{|{\varvec{x}}|^2}}(1,\frac{1}{2}) =2\pi (1-\tfrac{\varrho }{|{\varvec{x}}|})\) for dimension \(n=3\).

Lemma 4.2

Let the convex body \(\mathcal K\) contain in its interior the ball \(\varrho \mathcal B^{n}\). Then the integral of the section function is

$$\begin{aligned} \int _{{\mathbb {S}}^{n-1}} \mathrm{S}_{\varrho ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }}&=|{\mathbb {S}}^{n-2}|\int _{\mathcal K\setminus \varrho \mathcal B^{n}} \frac{({\varvec{x}}^2-\varrho ^2)^{\frac{n-3}{2}}}{|{\varvec{x}}|^{n-2}} d{\varvec{x}}. \end{aligned}$$
(4.4)

Proof

Observe, that using (4.3) we have for any \(\varepsilon >0\) that

$$\begin{aligned}&\frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _0^{\varepsilon }\int _{{\mathbb {S}}^{n-1}} \mathrm{S}_{\varrho +\delta ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} d\delta \\&\quad =\frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _{{\mathbb {S}}^{n-1}}\int _0^{\varepsilon } \mathrm{S}_{\varrho +\delta ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d\delta d{\varvec{\xi }}\\&\quad =\frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _{{\mathbb {S}}^{n-1}} \mathrm{C}_{\varrho ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})-\mathrm{C}_{\varrho +\varepsilon ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}}) d{\varvec{\xi }}\\&\quad =\int _{\mathcal K\setminus \varrho \mathcal B} I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}}\Big (\frac{n-1}{2},\frac{1}{2}\Big )\ d{\varvec{x}} -\int _{\mathcal K\setminus (\varrho +\varepsilon )\mathcal B} I_{\frac{|{\varvec{x}}|^2-(\varrho +\varepsilon )^2}{|{\varvec{x}}|^2}}\Big (\frac{n-1}{2},\frac{1}{2}\Big )\ d{\varvec{x}}\\&\quad =\int _{(\varrho +\varepsilon )\mathcal B\setminus \varrho \mathcal B} I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}}\Big (\frac{n-1}{2},\frac{1}{2}\Big )\ d{\varvec{x}} \\&\qquad -\int _{\mathcal K\setminus (\varrho +\varepsilon )\mathcal B} I_{\frac{|{\varvec{x}}|^2-(\varrho +\varepsilon )^2}{|{\varvec{x}}|^2}}\Big (\frac{n-1}{2},\frac{1}{2}\Big ) -I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}}\Big (\frac{n-1}{2},\frac{1}{2}\Big )\ d{\varvec{x}} , \end{aligned}$$

hence

$$\begin{aligned}&\lim _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon } \frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _0^{\varepsilon }\int _{{\mathbb {S}}^{n-1}} \mathrm{S}_{\varrho +\delta ;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} d\delta \\&\quad =\lim _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon } \int _{(\varrho +\varepsilon )\mathcal B\setminus \varrho \mathcal B} I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}}\left( \frac{n-1}{2},\frac{1}{2}\right) \,d{\varvec{x}}\\&\qquad -\int _{\mathcal K\setminus \varrho \mathcal B} \lim _{\varepsilon \rightarrow 0}\frac{1}{\varepsilon }\left( I_{\frac{|{\varvec{x}}|^2-(\varrho +\varepsilon )^2}{|{\varvec{x}}|^2}} \left( \frac{n-1}{2},\frac{1}{2}\right) -I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}}\left( \frac{n-1}{2},\frac{1}{2}\right) \right) \,d{\varvec{x}}\\&\quad =\lim _{\varepsilon \rightarrow 0}\frac{|{\mathbb {S}}^{n-1}|}{\varepsilon } \int _{\varrho }^{\varrho +\varepsilon } r^{n-1} I_{\frac{r^2-\varrho ^2}{r^2}}\left( \frac{n-1}{2},\frac{1}{2}\right) \,dr\\&\qquad -\int _{\mathcal K\setminus \varrho \mathcal B} \frac{d}{d\varrho }\left( I_{\frac{|{\varvec{x}}|^2-\varrho ^2}{|{\varvec{x}}|^2}} \left( \frac{n-1}{2},\frac{1}{2}\right) \right) \,d{\varvec{x}}\\&\quad =|{\mathbb {S}}^{n-1}|\varrho ^{n-1} I_{\frac{\varrho ^2-\varrho ^2}{\varrho ^2}}\left( \frac{n-1}{2},\frac{1}{2}\right) \\&\qquad -\frac{1}{B(\frac{n-1}{2},\frac{1}{2})} \int _{\mathcal K\setminus \varrho \mathcal B} \left( 1-\frac{\varrho ^2}{|{\varvec{x}}|^2}\right) ^{\frac{n-3}{2}} \left( \frac{\varrho ^2}{|{\varvec{x}}|^2}\right) ^{\tfrac{-1}{2}} \frac{-2\varrho }{|{\varvec{x}}|^2}\,d{\varvec{x}}\\&\quad =\frac{2}{B(\frac{n-1}{2},\frac{1}{2})} \int _{\mathcal K\setminus \varrho \mathcal B} \left( 1-\frac{\varrho ^2}{|{\varvec{x}}|^2}\right) ^{\frac{n-3}{2}} \frac{1}{|{\varvec{x}}|}\,d{\varvec{x}}. \end{aligned}$$

As

$$\begin{aligned} \frac{\pi ^{n/2}}{\Gamma (\tfrac{n}{2})}\frac{2}{B(\frac{n-1}{2},\frac{1}{2})} =\frac{2\pi ^{n/2}}{\Gamma (\frac{n-1}{2})\Gamma (\frac{1}{2})} =\frac{\frac{n-1}{2}}{\frac{n-1}{2}}\frac{2\pi ^{\frac{n-1}{2}}}{\Gamma (\frac{n-1}{2})} =\frac{(n-1)\pi ^{\frac{n-1}{2}}}{\Gamma (\frac{n-1}{2}+1)} =|{\mathbb {S}}^{n-2}|, \end{aligned}$$

the statement is proved. \(\square \)

Note that the weight in (4.4) is \(\frac{2}{\sqrt{{\varvec{x}}^2-\varrho ^2}}\) in the plane, and \(2\pi /|{\varvec{x}}|\) in dimension \(n=3\), which is independent from \(\varrho \)!

A version of the following lemma first appeared in [9].

Lemma 4.3

Let \(\omega _i \, (i=1,2)\) be weights and let \(\mathcal K\) and \(\mathcal L\) be convex bodies containing the unit ball \(\mathcal B\). If \(V_1(\mathcal K)\le V_1(\mathcal L)\) and

  1. (1)

    Either \(\tfrac{\omega _2}{\omega _1}\) is a constant \(c_{\mathcal K}\) on \(\partial \mathcal K\) and \(\frac{\omega _2}{\omega _1}(X) \left\{ \begin{array}{ll} \ge c_{\mathcal K},&{}if X\notin \mathcal K,\\ \le c_{\mathcal K},&{}if X\in \mathcal K, \end{array}\right. \) where equality may occur in a set of measure zero at most,

  2. (2)

    or \(\tfrac{\omega _2}{\omega _1}\) is a constant \(c_{\mathcal L}\) on \(\partial \mathcal L\) and \(\frac{\omega _2}{\omega _1}(X) \left\{ \begin{array}{ll} \le c_{\mathcal L},&{} if X\notin \mathcal L,\\ \ge c_{\mathcal L},&{} if X\in \mathcal L, \end{array}\right. \) where equality may occur in a set of measure zero at most,

then \(V_2({\mathcal K})\le V_2({\mathcal L})\), where equality is if and only if \(\mathcal K=\mathcal L\).

Proof

We have

$$\begin{aligned}&V_2(\mathcal L)\!-\!V_2(\mathcal K)\!=\!V_2(\mathcal L\!\setminus \mathcal K)\!-\!V_2(\mathcal K\!\setminus \mathcal L) \!=\! \int _{\mathcal L\setminus \mathcal K}\frac{\omega _2(x)}{\omega _1(x)}\omega _1(x)dx \!-\!\int _{\mathcal K\setminus \mathcal L}\frac{\omega _2(x)}{\omega _1(x)}\omega _1(x)dx \\&\quad \left\{ \begin{array}{ll} \!=\!0, &{}\quad \text {if }\, \mathcal K\triangle \mathcal L\!=\!\emptyset , \\ >c_{\mathcal K}(V_1(\mathcal L\!\setminus \mathcal K)\!-\!V_1(\mathcal K\!\setminus \mathcal L)) \!=\!c_{\mathcal K}(V_1(\mathcal L)-V_1(\mathcal K)), &{}\quad \text {if } \,\mathcal K\triangle \mathcal L\ne \emptyset \quad \mathrm{and}\quad (1), \\ >c_{\mathcal L}(V_1(\mathcal L\!\setminus \mathcal K)\!-\!V_1(\mathcal K\!\setminus \mathcal L)) \!=\!c_{\mathcal L}(V_1(\mathcal L)\!-\!V_1(\mathcal K)), &{}\quad \text {if }\, \mathcal K\triangle \mathcal L\ne \emptyset \quad \mathrm{and}\quad (2), \end{array}\right. \end{aligned}$$

that proves the theorem. \(\square \)

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher dimensions.

Theorem 5.1

Let \(0<\varrho _1<\varrho _2<\bar{r}\) and let \(\mathcal K\) be a convex body having \(\varrho _2\mathcal B\) in its interior. If \(\mathrm{C}_{\varrho _1;\mathcal K}^{}=\mathrm{C}_{\varrho _1;\bar{r}\mathcal B}^{}\) and \(\mathrm{C}_{\varrho _2;\mathcal K}^{}=\mathrm{C}_{\varrho _2;\bar{r}\mathcal B}^{}\), then \(\mathcal K\equiv \bar{r}\mathcal B\), where \(\mathcal B\) is the unit ball.

Proof

Let \(\bar{\omega }_1(r)=I_{\frac{r^2-\varrho _1^2}{r^2}}(\frac{n-1}{2},\frac{1}{2})\) and \(\bar{\omega }_2(r)=I_{\frac{r^2-\varrho _2^2}{r^2}}(\frac{n-1}{2},\frac{1}{2})\) for every non-vanishing \(r\in {\mathbb {R}}\), where \(I\) is the regularized incomplete beta function, and define \(\omega _1({\varvec{x}}):=\bar{\omega }_1(|{\varvec{x}}|)\) and \(\omega _2({\varvec{x}}):=\bar{\omega }_2(|{\varvec{x}}|)\).

By formula (4.3) in Lemma 4.1 we have

$$\begin{aligned} \int _{\bar{r}\mathcal B\setminus \varrho _1\mathcal B^{n}}\omega _1({\varvec{x}})\,d{\varvec{x}} =\frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _{{\mathbb {S}}^{n-1}} \mathrm{C}_{\varrho _1;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} = \int _{\mathcal K\setminus \varrho _1\mathcal B^{n}}\omega _1({\varvec{x}})\,d{\varvec{x}}, \end{aligned}$$

and similarly

$$\begin{aligned} \int _{\bar{r}\mathcal B\setminus \varrho _2\mathcal B^{n}}\omega _2({\varvec{x}})\,d{\varvec{x}} =\frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _{{\mathbb {S}}^{n-1}} \mathrm{C}_{\varrho _2;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} = \int _{\mathcal K\setminus \varrho _2\mathcal B^{n}}\omega _2({\varvec{x}})\,d{\varvec{x}} . \end{aligned}$$

With the notations in Lemma 4.3, these mean \(V_1(\mathcal K)=V_1(\bar{r}\mathcal B)\) and \(V_2(\mathcal K)=V_2(\bar{r}\mathcal B)\).

Further, one can easily see that

$$\begin{aligned} 1<\frac{\omega _1({\varvec{x}})}{\omega _2({\varvec{x}})} =\frac{\bar{\omega }_1(|{\varvec{x}}|)}{\bar{\omega }_2(|{\varvec{x}}|)}=:q_n(|{\varvec{x}}|),\text {(n is the dimension)} \end{aligned}$$

is constant on every sphere, especially on \(\bar{r}{\mathbb {S}}^{n-1}\).

As \(\bar{\omega }_1\) and \(\bar{\omega }_2\) are both strictly increasing, \(q_n\) is strictly decreasing if and only if

$$\begin{aligned} \frac{\bar{\omega }_1'(r)}{\bar{\omega }_2'(r)}<\frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}. \end{aligned}$$
(5.1)

First calculate for any \(n\in {\mathbb {N}}\) that

$$\begin{aligned} \frac{\bar{\omega }_1'(r)}{\bar{\omega }_2'(r)} =\frac{\left( 1-\frac{\varrho _1^2}{r^2}\right) ^{\frac{n-3}{2}}\left( \frac{\varrho _1^2}{r^2}\right) ^{\tfrac{-1}{2}} \frac{2\varrho _1^2}{r^3}}{\left( 1-\frac{\varrho _2^2}{r^2}\right) ^{\frac{n-3}{2}}\left( \frac{\varrho _2^2}{r^2}\right) ^{\tfrac{-1}{2}} \frac{2\varrho _2^2}{r^3}} =\frac{(r^2-\varrho _1^2)^{\frac{n-3}{2}}\varrho _1}{(r^2-\varrho _2^2)^{\frac{n-3}{2}}\varrho _2}, \end{aligned}$$

then consider for \(n\ge 4\) that

$$\begin{aligned} \frac{\bar{\omega }_1(r)B\left( \frac{n-1}{2},\frac{1}{2}\right) }{\left( 1-\frac{\varrho _1^2}{r^2}\right) ^{\frac{n-3}{2}}}&= \left( 1-\frac{\varrho _1^2}{r^2}\right) ^{\frac{3-n}{2}} \int _0^{1-\frac{\varrho _1^2}{r^2}}t^{\frac{n-3}{2}}(1-t)^{\frac{-1}{2}}\,dt \nonumber \\&= \int _0^{1}s^{\frac{n-3}{2}} \left( 1-s\left( 1-\frac{\varrho _1^2}{r^2}\right) \right) ^{\frac{-1}{2}} \left( 1-\frac{\varrho _1^2}{r^2}\right) \,ds\nonumber \\&= -2\int _0^{1}s^{\frac{n-3}{2}} \frac{d}{ds}\left( \left( 1-s\left( 1-\frac{\varrho _1^2}{r^2}\right) \right) ^{\frac{1}{2}}\right) \,ds\nonumber \\&= -2\left( \frac{\varrho _1}{r}-\frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( 1-s\left( 1-\frac{\varrho _1^2}{r^2}\right) \right) ^{\frac{1}{2}} \,ds \right) \nonumber \\&= \frac{2\varrho _1}{r} \left( \frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( \frac{r^2}{\varrho _1^2}(1-s)+s\right) ^{\frac{1}{2}} \,ds-1 \right) \!. \end{aligned}$$
(5.2)

From the two equations above we deduce

$$\begin{aligned} \frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}\frac{\bar{\omega }_2'(r)}{\bar{\omega }_1'(r)}&= \frac{\frac{2\varrho _1}{r}\left( 1-\frac{\varrho _1^2}{r^2}\right) ^{\frac{n-3}{2}} \left( \frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} (\frac{r^2}{\varrho _1^2}(1-s)+s)^{\frac{1}{2}} \,ds-1 \right) }{\frac{2\varrho _2}{r}\left( 1-\frac{\varrho _2^2}{r^2}\right) ^{\frac{n-3}{2}} \left( \frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} (\frac{r^2}{\varrho _2^2}(1-s)+s)^{\frac{1}{2}} \,ds-1 \right) } \frac{(r^2-\varrho _2^2)^{\frac{n-3}{2}}\varrho _2}{(r^2-\varrho _1^2)^{\frac{n-3}{2}}\varrho _1}\\&= \frac{\frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( \frac{r^2}{\varrho _1^2}(1-s)+s\right) ^{\frac{1}{2}} \,ds-1}{\frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( \frac{r^2}{\varrho _2^2}(1-s)+s\right) ^{\frac{1}{2}} \,ds-1} \ge 1, \end{aligned}$$

where in the last inequality we used \(\varrho _1<\varrho _2\). Thus, for \(n\ge 4\) we have proved (5.1).

Assume now, that \(n<4\). It is easy to see that

$$\begin{aligned} \bar{\omega }_1(r)-\bar{\omega }_2(r)&= \frac{1}{B\left( \frac{n-1}{2},\frac{1}{2}\right) }\int _{1-\tfrac{\varrho _2^2}{r^2}}^{1-\tfrac{\varrho _1^2}{r^2}}t^{\frac{n-3}{2}}(1-t)^{\tfrac{-1}{2}}\,dt , \end{aligned}$$

hence differentiation leads to

$$\begin{aligned} (\bar{\omega }_1'(r)&-\bar{\omega }_2'(r))B\left( \frac{n-1}{2},\frac{1}{2}\right) \\&= \left( 1-\frac{\varrho _1^2}{r^2}\right) ^{\frac{n-3}{2}}\left( \frac{\varrho _1^2}{r^2}\right) ^{\tfrac{-1}{2}} \frac{2\varrho _1^2}{r^3} -\left( 1-\frac{\varrho _2^2}{r^2}\right) ^{\frac{n-3}{2}}\left( \frac{\varrho _2^2}{r^2}\right) ^{\tfrac{-1}{2}} \frac{2\varrho _2^2}{r^3}\\&=\frac{2}{r^{n-1}}\left( (r^2-\varrho _1^2)^{\frac{n-3}{2}}\varrho _1-(r^2-\varrho _2^2)^{\frac{n-3}{2}}\varrho _2\right) \!. \end{aligned}$$

This is clearly negative for all \(r\) if \(n=2\) and \(n=3\), hence

$$\begin{aligned} \frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}\frac{\bar{\omega }_2'(r)}{\bar{\omega }_1'(r)} =\frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}\left( \frac{\bar{\omega }_2'(r)-\bar{\omega }_1'(r)}{\bar{\omega }_1'(r)}+1\right) \ge \frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}\ge 1 \end{aligned}$$

proving (5.1) for \(n\le 3\).

Thus, \(\frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}\) is strictly monotone decreasing in any dimension, hence \(\mathcal K\equiv \bar{r}\mathcal B\) follows from Lemma 4.3. \(\square \)

Theorem 5.2

Let \(0<\varrho _1<\varrho _2<\bar{r}\) and the dimension be \(n\ne 3\). If \(\mathcal K\) is a convex body having \(\varrho _2\mathcal B\) in its interior, and \(\mathrm{S}_{\varrho _1;\mathcal K}^{}\equiv \mathrm{S}_{\varrho _1;\bar{r}\mathcal B}^{}\), \(\mathrm{S}_{\varrho _2;\mathcal K}^{}\equiv \mathrm{S}_{\varrho _2;\bar{r}\mathcal B}^{}\), then \(\mathcal K\equiv \bar{r}\mathcal B\).

Proof

Let \(\bar{\omega }_1(r)=(r^2-\varrho _1^2)^{\frac{n-3}{2}}r^{2-n}\) and \(\bar{\omega }_2(r)=(r^2-\varrho _2^2)^{\frac{n-3}{2}}r^{2-n}\) for every non-vanishing \(r\in {\mathbb {R}}\), and define \(\omega _1({\varvec{x}}):=\bar{\omega }_1(|{\varvec{x}}|)\) and \(\omega _2({\varvec{x}}):=\bar{\omega }_2(|{\varvec{x}}|)\).

By formula (4.4) in Lemma 4.2 we have

$$\begin{aligned} \int _{\bar{r}\mathcal B\setminus \varrho _1\mathcal B^{n}}\omega _1({\varvec{x}})\,d{\varvec{x}} =\frac{1}{|{\mathbb {S}}^{n-2}|} \int _{{\mathbb {S}}^{n-1}} \mathrm{S}_{\varrho _1;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} = \int _{\mathcal K\setminus \varrho _1\mathcal B^{n}}\omega _1({\varvec{x}})\,d{\varvec{x}}, \end{aligned}$$

and similarly

$$\begin{aligned} \int _{\bar{r}\mathcal B\setminus \varrho _2\mathcal B^{n}}\omega _2({\varvec{x}})\,d{\varvec{x}} =\frac{1}{|{\mathbb {S}}^{n-2}|} \int _{{\mathbb {S}}^{n-1}} \mathrm{S}_{\varrho _2;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} = \int _{\mathcal K\setminus \varrho _2\mathcal B^{n}}\omega _2({\varvec{x}})\,d{\varvec{x}}. \end{aligned}$$

With the notations in Lemma 4.3, these mean \(V_1(\mathcal K)=V_1(\bar{r}\mathcal B)\) and \(V_2(\mathcal K)=V_2(\bar{r}\mathcal B)\).

The ratio \( \frac{\omega _1({\varvec{x}})}{\omega _2({\varvec{x}})} =\frac{\bar{\omega }_1(|{\varvec{x}}|)}{\bar{\omega }_2(|{\varvec{x}}|)} \) is obviously constant on every sphere, especially on \(\bar{r}{\mathbb {S}}^{n-1}\), and it is

$$\begin{aligned} \frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)} ={\left\{ \begin{array}{ll} \frac{\sqrt{r^2-\varrho _2^2}}{\sqrt{r^2-\varrho _1^2}} =\sqrt{1-\frac{\varrho _1^2-\varrho _2^2}{r^2-\varrho _1^2}},&{}\text { if } n=2,\\ 1,&{}\text { if } n=3,\\ \Big (1+\frac{\varrho _2^2-\varrho _1^2}{r^2-\varrho _2^2}\Big )^{\frac{n-3}{2}},&{}\text { if } n>3.\\ \end{array}\right. } \end{aligned}$$

Thus, \(\frac{\bar{\omega }_1(r)}{\bar{\omega }_2(r)}\) is strictly monotone if the dimension \(n\ne 3\), hence \(\mathcal K\equiv \bar{r}\mathcal B\) follows from Lemma 4.3 for dimensions other than \(3\). \(\square \)

This theorem leaves the question open in dimension \(3\) if \(\mathrm{S}_{\varrho _1;\mathcal K}^{}\equiv \mathrm{S}_{\varrho _1;\bar{r}\mathcal B}^{}\) and \(\mathrm{S}_{\varrho _2;\mathcal K}^{}\equiv \mathrm{S}_{\varrho _2;\bar{r}\mathcal B}^{}\) imply \(\mathcal K\equiv \bar{r}\mathcal B\). We have not yet tried to find an answer.

The following generalizes Theorem 3.1 for most dimensions, but only for spheres.

Theorem 5.3

Let \(\varrho _1,\varrho _2\in (0,\bar{r})\) and let \(\mathcal K\) be a convex body in \({\mathbb {R}}^n\) having \(\max (\varrho _1,\varrho _2)\mathcal B\) in its interior. If \(\mathrm{S}_{\varrho _1;\mathcal K}^{}\equiv \mathrm{S}_{\varrho _1;\bar{r}\mathcal B}^{}\) and \(\mathrm{C}_{\varrho _2;\mathcal K}^{}\equiv \mathrm{C}_{\varrho _2;\bar{r}\mathcal B}^{}\), and

  1. (1)

    \(n=2\) or \(n=3\), or

  2. (2)

    \(n\ge 4\) and \(\varrho _1\le \varrho _2\),

then \(\mathcal K\equiv \bar{r}\mathcal B\).

Proof

Let \(\bar{\omega }_1(r)=(r^2-\varrho _1^2)^{\frac{n-3}{2}}r^{2-n}\) and and \(\bar{\omega }_2(r)=I_{\frac{r^2-\varrho _2^2}{r^2}}(\frac{n-1}{2},\frac{1}{2})\) for every non-vanishing \(r\in {\mathbb {R}}\), and define \(\omega _1({\varvec{x}}):=\bar{\omega }_1(|{\varvec{x}}|)\) and \(\omega _2({\varvec{x}}):=\bar{\omega }_2(|{\varvec{x}}|)\).

By formula (4.4) in Lemma 4.2 we have

$$\begin{aligned} \int _{\bar{r}\mathcal B\setminus \varrho _1\mathcal B^{n}}\omega _1({\varvec{x}})\,d{\varvec{x}} =\frac{1}{|{\mathbb {S}}^{n-2}|} \int _{{\mathbb {S}}^{n-1}} \mathrm{S}_{\varrho _1;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} = \int _{\mathcal K\setminus \varrho _1\mathcal B^{n}}\omega _1({\varvec{x}})\,d{\varvec{x}}, \end{aligned}$$

and by formula (4.3) in Lemma 4.1 we have

$$\begin{aligned} \int _{\bar{r}\mathcal B\setminus \varrho _2\mathcal B^{n}}\omega _2({\varvec{x}})\,d{\varvec{x}} =\frac{\Gamma (\tfrac{n}{2})}{\pi ^{n/2}} \int _{{\mathbb {S}}^{n-1}} \mathrm{C}_{\varrho _2;\mathcal K}^{}({\varvec{u}}_{{\varvec{\xi }}})d{\varvec{\xi }} = \int _{\mathcal K\setminus \varrho _2\mathcal B^{n}}\omega _2({\varvec{x}})\,d{\varvec{x}}. \end{aligned}$$

With the notations in Lemma 4.3, these mean \(V_1(\mathcal K)=V_1(\bar{r}\mathcal B)\) and \(V_2(\mathcal K)=V_2(\bar{r}\mathcal B)\).

The ratio \( \frac{\omega _2({\varvec{x}})}{\omega _1({\varvec{x}})} =\frac{\bar{\omega }_2(|{\varvec{x}}|)}{\bar{\omega }_1(|{\varvec{x}}|)} \) is obviously constant on every sphere, especially on \(\bar{r}{\mathbb {S}}^{n-1}\), and it is

$$\begin{aligned} \frac{\bar{\omega }_2(r)}{\bar{\omega }_1(r)}&=\frac{\int _0^{1-\frac{\varrho _2^2}{r^2}}t^{\frac{n-3}{2}}(1-t)^{\frac{-1}{2}}\,dt}{(r^2-\varrho _1^2)^{\frac{n-3}{2}}r^{2-n}}\\&=\frac{\frac{2\varrho _2}{r}\left( 1-\frac{\varrho _2^2}{r^2}\right) ^{\frac{n-3}{2}} \left( \frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( \frac{r^2}{\varrho _2^2}(1-s)+s\right) ^{\frac{1}{2}} \,ds-1 \right) }{\frac{1}{r}\left( 1-\frac{\varrho _1^2}{r^2}\right) ^{\frac{n-3}{2}}} \text {by}\quad (5.2)\\&=2\varrho _1\left( \frac{r^2-\varrho _2^2}{r^2-\varrho _1^2}\right) ^{\frac{n-3}{2}} \left( \frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( \frac{r^2}{\varrho _2^2}(1-s)+s\right) ^{\frac{1}{2}} \,ds-1 \right) \\&=2\varrho _1\left( 1+\frac{\varrho _1^2-\varrho _2^2}{r^2-\varrho _1^2}\right) ^{\frac{n-3}{2}} \left( \frac{n-3}{2} \int _0^{1}s^{\frac{n-5}{2}} \left( \frac{r^2}{\varrho _2^2}(1-s)+s\right) ^{\frac{1}{2}} \,ds-1 \right) \end{aligned}$$

if \(n>3\). For other values of \(n\) we have

$$\begin{aligned} \frac{\bar{\omega }_2(r)}{\bar{\omega }_1(r)}&=\frac{\int _0^{1-\frac{\varrho _2^2}{r^2}}t^{\frac{n-3}{2}}(1-t)^{\frac{-1}{2}}\,dt}{(r^2-\varrho _1^2)^{\frac{n-3}{2}}r^{2-n}}\\&={\left\{ \begin{array}{ll} (r^2-\varrho _1^2)^{\frac{1}{2}} \int _0^{1-\frac{\varrho _2^2}{r^2}}t^{\frac{-1}{2}}(1-t)^{\frac{-1}{2}}\,dt ,&{}\text { if } n=2,\\ r\int _0^{1-\frac{\varrho _2^2}{r^2}}(1-t)^{\frac{-1}{2}}\,dt ,&{}\text { if } n=3.\\ \end{array}\right. } \end{aligned}$$

Thus, \(\frac{\bar{\omega }_2(r)}{\bar{\omega }_1(r)}\) is strictly monotone increasing if \(n=2,3\) and it is also strictly monotone increasing if \(n>3\) and \(\varrho _1\le \varrho _2\). In these cases Lemma 4.3 implies \(\mathcal K\equiv \bar{r}\mathcal B\). \(\square \)

This theorem leaves open the case when \(\varrho _1>\varrho _2\) in dimensions \(n>3\). We have not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [1, Conjecture 2] that in the plane \(\mathcal M\)-equisectioned convex bodies coincide, but they were unable to justify this in full.Footnote 3 Nevertheless they proved, among others, that a \(\mathcal D\)-isosectioned convex body \(\mathcal K\) in the plane is a disc concentric to the disc \(\mathcal D\).

Having a convex body \(\mathcal K\) that is sphere-isocapped with respect to two concentric spheres raises the problem if there is a concentric ball \(\bar{r}\mathcal B\)—obviously sphere-isocapped with respect to that two concentric spheres—that is sphere-equicapped to \(\mathcal K\) with respect to that two concentric spheres. The very same problem exists also for bodies that are sphere-isosectioned with respect to two concentric spheres. So we have the following range characterization problems: Let \(0<\varrho _1<\varrho _2\) and let \(c_{1}>c_{2}>0\) be positive constants. Is there a convex body \(\mathcal K\) containing the ball \(\varrho _2\mathcal B\) in its interior and satisfying

  1. (i)

    \(c_{1}\equiv \mathrm{C}_{\varrho _1;\mathcal K}^{}\) and \(c_{2}\equiv \mathrm{C}_{\varrho _2;\mathcal K}^{}\) (raised by Theorem 5.1)?

  2. (ii)

    \(c_{1}\equiv \mathrm{S}_{\varrho _1;\mathcal K}^{}\) and \(c_{2}\equiv \mathrm{S}_{\varrho _2;\mathcal K}^{}\) (raised by Theorem 5.2)?

  3. (iii)

    \(c_{1}\equiv \mathrm{S}_{\varrho _1;\mathcal K}^{}\) and \(c_{1}\equiv \mathrm{C}_{\varrho _1;\mathcal K}^{}\) (raised by Theorem 5.3)?

In the plane if \(\mathcal M\) is allowed to shrink to a point (empty interior), then \(\mathrm{S}_{\mathcal M;\mathcal K}^{}\) is the X-ray picture at a point source [3] investigated by Falconer in [2]. The method used in Falconer’s article made Barker and Larman mention in [1] that in dimension \(2\) the convex body \(\mathcal K\) can be determined from \(\mathrm{S}_{\mathcal M;\mathcal K}^{}\) and \(\mathrm{S}_{\mathcal M';\mathcal K}^{}\) if \(\partial \mathcal M\) and \(\partial \mathcal M'\) are intersecting each other in a suitable manner. The method in the anticipated proof presented in [1] decisively depends on the condition of proper intersection.

Finally we note that determining a convex body by its constant width and constant brightness [8] sounds very similar a problem as the ones investigated in this paper. Moreover also the result is analogous to Theorem 5.3.