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Abstract Among others, we prove that if a convex body K and a ball B have equal
constant volumes of caps and equal constant areas of sections with respect to the
supporting planes of a sphere, then K ≡ B.
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1 Introduction

If the convex body M, the kernel, contains the origin O , let h̄M(u) denote the sup-
porting hyperplane ofM that is perpendicular to the unit vector u ∈ S

n−1 and contains
in its same half space h̄−

M(u) the origin O and the kernel M. Its other half space is
denoted by h̄+

M(u).
If the convex bodyK contains the kernelM in its interior, we define the functions

SM;K(u) = |K ∩ h̄M(u)|, (section f unction) (1.1)

CM;K(u) = |K ∩ h̄+
M(u)|, (cap f unction) (1.2)

where | · | is the appropriate Lebesgue measure.
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The goal of this article is to investigate the problem of determining K if some
functions of the form (1.1) and (1.2) are given for a kernel M.

TwoconvexbodiesK andK′ are calledM-equicapped ifCM;K ≡ CM;K′ , and they
areM-equisectioned if SM;K ≡ SM;K′ . A convex body K is calledM-isocapped if
CM;K is constant. It is said to beM-isosectioned if SM;K is constant.

First we prove in the plane that

(a) two convex bodies coincide if they areM-equicapped andM-equisectioned, no
matter what M is (Theorem 3.1), and

(b) any disc-isocapped convex body is a disc concentric to the kernel (Theorem 3.2).1

Then, in higher dimensions we consider only such convex bodies that are sphere-
equisectioned and sphere-equicapped with a ball, and prove that

(1) a convex body that is sphere-equicapped and sphere-equisectioned with a ball, is
itself a ball (Theorem 5.3);

(2) a convex body that is twice sphere-equicapped (for two different concentric
spheres) with a ball is itself a ball (Theorem 5.1);

(3) a convex body that is twice sphere-equisectioned (for two different concentric
spheres) with a ball is itself a ball (Theorem 5.2, but dimension n = 3 excluded).

For more information about the subject we refer the reader to [1,3] etc.

2 Preliminaries

We work with the n-dimensional real space Rn , its unit ball is B = Bn (in the plane
the unit disc is D), its unit sphere is Sn−1 and the set of its hyperplanes is H. The ball
(resp. disc) of radius � > 0 centred to the origin is denoted by �B = �Bn (resp. �D).

Using the spherical coordinates ξ = (ξ1, . . . , ξn−1) every unit vector can be written
in the form uξ = (cos ξ1, sin ξ1 cos ξ2, sin ξ1 sin ξ2 cos ξ3, . . .), the i th coordinate of
which is ui

ξ
= (

∏i−1
j=1 sin ξ j ) cos ξi (ξn := 0). In the plane we even use the uξ =

(cos ξ, sin ξ) and u⊥
ξ = uξ+π/2 = (− sin ξ, cos ξ) notations and in analogy to this

latter one, we introduce the notation ξ⊥ = (ξ1, . . . , ξn−2, ξn−1 + π/2) for higher
dimensions.

A hyperplane h̄ ∈ H is parametrized so that h̄(uξ , r) means the one that is orthog-
onal to the unit vector uξ ∈ S

n−1 and contains the point ruξ , where r ∈ R.2 For con-
venience we also frequently use h̄(P, uξ ) to denote the hyperplane through the point

P ∈ R
n with normal vector uξ ∈ S

n−1. For instance, h̄(P, uξ ) = h̄(uξ , 〈−→
OP, uξ 〉),

where O = 0 is the origin and 〈., .〉 is the usual inner product.

1 [1, Theorem 1] gives the same conclusion in the plane for disc-isosectioned convex bodies
2 Although h̄(uξ , r) = h̄(−uξ ,−r) this parametrization is locally bijective.
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On a convex body we mean a convex compact setK ⊆ R
n with non-empty interior

K◦ and with piecewise C1 boundary ∂K. For a convex bodyK we let pK : Sn−1 → R

denote support function of K, which is defined by pK(uξ ) = supx∈K〈uξ , x〉. We
also use the notation h̄K(u) = h̄(u, pK(u)). If the origin is in K◦, another useful
function of a convex body K is its radial function �K : Sn−1 → R+ which is defined
by �K(u) = |{ru : r > 0} ∩ ∂K |.

We need the special functions Ix (a, b), the regularized incomplete beta function,
B(x; a, b), the incomplete beta function, B(a, b), the beta function, and �(y), Euler’s
Gamma function, where 0 < a, b ∈ R, x ∈ [0, 1] and y ∈ R. We introduce finally the
notation |Sk | := 2πk/2/�(k/2) as the standard surface measure of the k-dimensional
sphere. For the special functions we refer the reader to [11,12].

We shall frequently use the utility function χ that takes relations as argument and
gives 1 if its argument fulfilled. For example χ(1 > 0) = 1, but χ(1 ≤ 0) = 0 and
χ(x > y) is 1 if x > y and it is zero if x ≤ y. Nevertheless we still use χ also as the
indicator function of the set given in its subscript.

A strictly positive integrable function ω : Rn \B → R+ is called weight and the
integral

Vω( f ) :=
∫

Rn\B
f (x)ω(x)dx

of an integrable function f : Rn → R is called the volume of f with respect to the
weight ω or simply the ω-volume of f . For the volume of the indicator function χS of
a set S ⊆ R

n we use the notation Vω(S) := Vω(χS) as a shorthand. If more weights
are indexed by i ∈ N, then we use the even shorter notation Vi (S) := Vωi (S) =
Vi (χS) := Vωi (χS).

3 In the plane

We heard the following easy result from Kincses [5].

Theorem 3.1 Assume that the border of the strictly convex plane bodiesM andK are
differentiable of class C1 and we are given M and the functions SM;K and CM;K.
Then K can be uniquely determined.

Proof Fix the origin 0 inM◦. In the plane uξ = (cos ξ, sin ξ), therefore we consider
the functions

f (ξ) := SM;K(uξ ) = |h̄(pM(uξ ), uξ ) ∩ K|
g(ξ) := CM;K(uξ ) = |h̄+(pM(uξ ), uξ ) ∩ K|

where h̄+ is the appropriate half space bordered by h̄.
Let h(ξ) be the point, where h̄(pM(ξ), uξ ) touches M. Then, as it is well

known, h(ξ)− pM(ξ)uξ = p′
M(ξ)u⊥

ξ . Let a(ξ) and b(ξ) be the two intersections of
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h̄(pM(ξ), uξ ) and ∂K taken so that a(ξ) = h(ξ)+a(ξ)u⊥
ξ and b(ξ) = h(ξ)−b(ξ)u⊥

ξ ,
where a(ξ) and b(ξ) are positive functions.

Then f (ξ) = a(ξ) + b(ξ).
In the other hand, we have

g(ξ) =
∫

K\M
χ(〈x, uξ 〉 ≥ pM(ξ)) dx =

π
2∫

−π
2

�ξ (ζ )∫

0

r dr dζ,

where h(ξ) + �ξ (ζ )uζ ∈ ∂K. Since
d�ξ (ζ )

dξ
= d�ξ (ζ )

dζ
, this leads to

2g′(ξ) =
π
2∫

−π
2

d

dξ

⎛

⎜
⎝

�ξ (ζ )∫

0

2r dr

⎞

⎟
⎠ dζ =

π
2∫

−π
2

2�ξ (ζ )�′
ξ (ζ ) dζ = a2(ξ) − b2(ξ)

that implies

a(ξ) =
2g′(ξ)
f (ξ)

+ f (ξ)

2
= 2g′(ξ) + f 2(ξ)

2 f (ξ)
.

This clearly determines K. ��

If the kernelM is known to be a disc �D, then any one of the functions S
�D;K and

C
�D;K can determine concentric discs by its constant value.

Theorem 3.2 Assume that one of the functions S
�D;K and C

�D;K is constant, where
D is the unit disc. Then K is a disc centred to the origin.

Proof If S
�D;K is constant, then this theorem is [1, Theorem 1].

If C
�D;K is constant, the derivative of C

�D;K is zero, hence—using the notations
of the previous proof—a(ξ) = b(ξ) for every ξ ∈ [0, 2π), that is, the point h(ξ) is
the midpoint of the segment a(ξ)b(ξ) on h̄(�, uξ ).

Let us consider the chord-map C : ∂K → ∂K, that is defined by C(b(ξ)) = a(ξ)

for every ξ ∈ [0, 2π). This is clearly a bijective map. If �0 ∈ ∂K, then by a(ξ) = b(ξ)

the whole sequence �i = Ci (�), where Ci means the i consecutive usage of C , are on
a concentric circle of radius |�0|. Moreover, every point �i (i > 0) is the concentric
rotation of �i−1 with angle λ = 2 arccos( �

|�0| ). It is well known [4, Proposition 1.3.3]

that such a sequence is dense in ∂K if λ
π
is irrational, or it is finitely periodic in ∂K

if λ
π
is rational. However, if K is not a disc, then there is surely a point � ∈ ∂K for

which
2 arccos(

�
|�0| )

π
is irrational, hence K must be a concentric disc. ��
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4 Measures of convex bodies

In this section the dimension of the space is n = 2, 3, . . . . As a shorthand we introduce
the notations

S�;K(u) := S
�B;K(h̄(�, u)) = |K ∩ h̄(�, u)|, (4.1)

C�;K(u) := C
�B;K(h̄(�, u)) = |K ∩ h̄+(�, u)|, (4.2)

where �Bn is the ball of radius � > 0 centred to the origin and h̄+ is the appropriate
half space bordered by h̄.

Lemma 4.1 If the convex body K in Rn contains in its interior the ball �Bn, then

∫

Sn−1

C�;K(uξ )dξ = πn/2

�( n2 )

∫

K\�B
I
1− �2

|x|2

(n − 1

2
,
1

2

)
dx. (4.3)

Proof We have

∫

Sn−1

C�;K(uξ )dξ =
∫

Sn−1

∫

Rn

χK(x)χ(〈x, uξ 〉 ≥ �) dxdξ

=
∫

K\�B

∫

Sn−1

χ

(〈
x
|x| , uξ

〉

≥ �

|x|
)

dξdx

The inner integral is the surface of the hyperspherical cap. The height of this hyper-
spherical cap is h = 1 − �

|x| , hence by the well-known formula [13] we obtain

∫

Sn−1

χ

(〈
x
|x| , uξ

〉

≥ �

|x|
)

dξ = πn/2

�( n2 )
I |x|2−�2

|x|2

(
n − 1

2
,
1

2

)

.

This proves the lemma. ��
Note that the weight in (4.3) is π

�(1) I1− �2

|x|2
( 12 ,

1
2 ) = 2 arccos( �

|x| ) for dimension

n = 2, and it is π3/2

�(
3
2 )
I
1− �2

|x|2
(1, 1

2 ) = 2π(1 − �
|x| ) for dimension n = 3.

Lemma 4.2 Let the convex body K contain in its interior the ball �Bn. Then the
integral of the section function is

∫

Sn−1

S�;K(uξ )dξ = |Sn−2|
∫

K\�Bn

(x2 − �2)
n−3
2

|x|n−2 dx. (4.4)
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Proof Observe, that using (4.3) we have for any ε > 0 that

�( n2 )

πn/2

ε∫

0

∫

Sn−1

S�+δ;K(uξ )dξdδ

= �( n2 )

πn/2

∫

Sn−1

ε∫

0

S�+δ;K(uξ )dδdξ

= �( n2 )

πn/2

∫

Sn−1

C�;K(uξ ) − C�+ε;K(uξ )dξ

=
∫

K\�B
I |x|2−�2

|x|2

(n − 1

2
,
1

2

)
dx −

∫

K\(�+ε)B
I |x|2−(�+ε)2

|x|2

(n − 1

2
,
1

2

)
dx

=
∫

(�+ε)B\�B
I |x|2−�2

|x|2

(n − 1

2
,
1

2

)
dx

−
∫

K\(�+ε)B
I |x|2−(�+ε)2

|x|2

(n − 1

2
,
1

2

)
− I |x|2−�2

|x|2

(n − 1

2
,
1

2

)
dx,

hence

lim
ε→0

1

ε

�( n2 )

πn/2

ε∫

0

∫

Sn−1

S�+δ;K(uξ )dξdδ

= lim
ε→0

1

ε

∫

(�+ε)B\�B
I |x|2−�2

|x|2

(
n − 1

2
,
1

2

)

dx

−
∫

K\�B
lim
ε→0

1

ε

(

I |x|2−(�+ε)2

|x|2

(
n − 1

2
,
1

2

)

− I |x|2−�2

|x|2

(
n − 1

2
,
1

2

))

dx

= lim
ε→0

|Sn−1|
ε

�+ε∫

�

rn−1 I r2−�2

r2

(
n − 1

2
,
1

2

)

dr

−
∫

K\�B

d

d�

(

I |x|2−�2

|x|2

(
n − 1

2
,
1

2

))

dx
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= |Sn−1|�n−1 I �2−�2

�2

(
n − 1

2
,
1

2

)

− 1

B( n−1
2 , 1

2 )

∫

K\�B

(

1 − �2

|x|2
) n−3

2
(

�2

|x|2
)−1

2 −2�

|x|2 dx

= 2

B( n−1
2 , 1

2 )

∫

K\�B

(

1 − �2

|x|2
) n−3

2 1

|x| dx.

As

πn/2

�( n2 )

2

B( n−1
2 , 1

2 )
= 2πn/2

�( n−1
2 )�( 12 )

=
n−1
2

n−1
2

2π
n−1
2

�( n−1
2 )

= (n − 1)π
n−1
2

�( n−1
2 + 1)

= |Sn−2|,

the statement is proved. ��
Note that theweight in (4.4) is 2√

x2−�2
in the plane, and 2π/|x| in dimension n = 3,

which is independent from �!
A version of the following lemma first appeared in [9].

Lemma 4.3 Letωi (i = 1, 2) be weights and letK andL be convex bodies containing
the unit ball B. If V1(K) ≤ V1(L) and

(1) Either ω2
ω1

is a constant cK on ∂K and ω2
ω1

(X)

{≥ cK, i f X /∈ K,

≤ cK, i f X ∈ K,
where equality

may occur in a set of measure zero at most,

(2) or ω2
ω1

is a constant cL on ∂L and ω2
ω1

(X)

{≤ cL, i f X /∈ L,

≥ cL, i f X ∈ L,
where equality may

occur in a set of measure zero at most,

then V2(K) ≤ V2(L), where equality is if and only if K = L.
Proof We have

V2(L)−V2(K)=V2(L\ K)−V2(K\ L)=
∫

L\K

ω2(x)

ω1(x)
ω1(x)dx−

∫

K\L

ω2(x)

ω1(x)
ω1(x)dx

⎧
⎨

⎩

=0, if K�L=∅,

> cK(V1(L\ K)−V1(K\ L))=cK(V1(L) − V1(K)), if K�L �= ∅ and (1),
> cL(V1(L\ K)−V1(K\ L))=cL(V1(L)−V1(K)), if K�L �= ∅ and (2),

that proves the theorem. ��

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher
dimensions.
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Theorem 5.1 Let 0 < �1 < �2 < r̄ and let K be a convex body having �2B in its
interior. If C

�1;K = C
�1;r̄B and C

�2;K = C
�2;r̄B, then K ≡ r̄B, where B is the unit

ball.

Proof Let ω̄1(r) = I r2−�21
r2

( n−1
2 , 1

2 ) and ω̄2(r) = I r2−�22
r2

( n−1
2 , 1

2 ) for every non-

vanishing r ∈ R, where I is the regularized incomplete beta function, and define
ω1(x) := ω̄1(|x|) and ω2(x) := ω̄2(|x|).

By formula (4.3) in Lemma 4.1 we have

∫

r̄B\�1Bn

ω1(x) dx = �( n2 )

πn/2

∫

Sn−1

C�1;K(uξ )dξ =
∫

K\�1Bn

ω1(x) dx,

and similarly

∫

r̄B\�2Bn

ω2(x) dx = �( n2 )

πn/2

∫

Sn−1

C�2;K(uξ )dξ =
∫

K\�2Bn

ω2(x) dx.

With the notations in Lemma 4.3, these mean V1(K) = V1(r̄B) and V2(K) = V2(r̄B).
Further, one can easily see that

1 <
ω1(x)

ω2(x)
= ω̄1(|x|)

ω̄2(|x|) =: qn(|x|), (n is the dimension)

is constant on every sphere, especially on r̄Sn−1.
As ω̄1 and ω̄2 are both strictly increasing, qn is strictly decreasing if and only if

ω̄′
1(r)

ω̄′
2(r)

<
ω̄1(r)

ω̄2(r)
. (5.1)

First calculate for any n ∈ N that

ω̄′
1(r)

ω̄′
2(r)

=

(

1 − �21
r2

) n−3
2

(
�21
r2

)−1
2 2�21

r3

(

1 − �22
r2

) n−3
2

(
�22
r2

)−1
2 2�22

r3

= (r2 − �2
1)

n−3
2 �1

(r2 − �2
2)

n−3
2 �2

,

then consider for n ≥ 4 that

ω̄1(r)B
( n−1

2 , 1
2

)

(

1 − �21
r2

) n−3
2

=
(

1 − �2
1

r2

) 3−n
2

1− �21
r2∫

0

t
n−3
2 (1 − t)

−1
2 dt
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=
1∫

0

s
n−3
2

(

1 − s

(

1 − �2
1

r2

))−1
2

(

1 − �2
1

r2

)

ds

= −2

1∫

0

s
n−3
2

d

ds

⎛

⎝

(

1 − s

(

1 − �2
1

r2

)) 1
2
⎞

⎠ ds

= −2

⎛

⎝�1

r
− n − 3

2

1∫

0

s
n−5
2

(

1 − s

(

1 − �2
1

r2

)) 1
2

ds

⎞

⎠

= 2�1
r

⎛

⎝n − 3

2

1∫

0

s
n−5
2

(
r2

�2
1

(1 − s) + s

) 1
2

ds − 1

⎞

⎠. (5.2)

From the two equations above we deduce

ω̄1(r)

ω̄2(r)

ω̄′
2(r)

ω̄′
1(r)

=
2�1
r

(

1 − �21
r2

) n−3
2

(
n−3
2

∫ 1
0 s

n−5
2 ( r

2

�21
(1 − s) + s)

1
2 ds − 1

)

2�2
r

(

1 − �22
r2

) n−3
2

(
n−3
2

∫ 1
0 s

n−5
2 ( r

2

�22
(1 − s) + s)

1
2 ds − 1

)
(r2 − �2

2)
n−3
2 �2

(r2 − �2
1)

n−3
2 �1

=
n−3
2

∫ 1
0 s

n−5
2

(
r2

�21
(1 − s) + s

) 1
2

ds − 1

n−3
2

∫ 1
0 s

n−5
2

(
r2

�22
(1 − s) + s

) 1
2

ds − 1

≥ 1,

where in the last inequality we used �1 < �2. Thus, for n ≥ 4 we have proved (5.1).
Assume now, that n < 4. It is easy to see that

ω̄1(r) − ω̄2(r) = 1

B
( n−1

2 , 1
2

)

1−�21
r2∫

1−�22
r2

t
n−3
2 (1 − t)

−1
2 dt,

hence differentiation leads to

(ω̄′
1(r) − ω̄′

2(r))B

(
n − 1

2
,
1

2

)

=
(

1 − �2
1

r2

) n−3
2

(
�2
1

r2

)−1
2 2�2

1

r3
−

(

1 − �2
2

r2

) n−3
2

(
�2
2

r2

)−1
2 2�2

2

r3

= 2

rn−1

(
(r2 − �2

1)
n−3
2 �1 − (r2 − �2

2)
n−3
2 �2

)
.
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This is clearly negative for all r if n = 2 and n = 3, hence

ω̄1(r)

ω̄2(r)

ω̄′
2(r)

ω̄′
1(r)

= ω̄1(r)

ω̄2(r)

(
ω̄′
2(r) − ω̄′

1(r)

ω̄′
1(r)

+ 1

)

≥ ω̄1(r)

ω̄2(r)
≥ 1

proving (5.1) for n ≤ 3.
Thus, ω̄1(r)

ω̄2(r)
is strictly monotone decreasing in any dimension, hence K ≡ r̄B

follows from Lemma 4.3. ��
Theorem 5.2 Let 0 < �1 < �2 < r̄ and the dimension be n �= 3. If K is a convex
body having �2B in its interior, and S

�1;K ≡ S
�1;r̄B, S�2;K ≡ S

�2;r̄B, then K ≡ r̄B.

Proof Let ω̄1(r) = (r2 − �2
1)

n−3
2 r2−n and ω̄2(r) = (r2 − �2

2)
n−3
2 r2−n for every

non-vanishing r ∈ R, and define ω1(x) := ω̄1(|x|) and ω2(x) := ω̄2(|x|).
By formula (4.4) in Lemma 4.2 we have

∫

r̄B\�1Bn

ω1(x) dx = 1

|Sn−2|
∫

Sn−1

S�1;K(uξ )dξ =
∫

K\�1Bn

ω1(x) dx,

and similarly

∫

r̄B\�2Bn

ω2(x) dx = 1

|Sn−2|
∫

Sn−1

S�2;K(uξ )dξ =
∫

K\�2Bn

ω2(x) dx.

With the notations in Lemma 4.3, these mean V1(K) = V1(r̄B) and V2(K) = V2(r̄B).
The ratio ω1(x)

ω2(x)
= ω̄1(|x|)

ω̄2(|x|) is obviously constant on every sphere, especially on

r̄Sn−1, and it is

ω̄1(r)

ω̄2(r)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
r2−�22√
r2−�21

=
√

1 − �21−�22
r2−�21

, if n = 2,

1, if n = 3,
(
1 + �22−�21

r2−�22

) n−3
2

, if n > 3.

Thus, ω̄1(r)
ω̄2(r)

is strictly monotone if the dimension n �= 3, hence K ≡ r̄B follows from
Lemma 4.3 for dimensions other than 3. ��
This theorem leaves the question open in dimension 3 if S

�1;K ≡ S
�1;r̄B and S

�2;K ≡
S

�2;r̄B imply K ≡ r̄B. We have not yet tried to find an answer.

The following generalizes Theorem 3.1 for most dimensions, but only for spheres.

Theorem 5.3 Let �1, �2 ∈ (0, r̄) and let K be a convex body in R
n having

max(�1, �2)B in its interior. If S
�1;K ≡ S

�1;r̄B and C
�2;K ≡ C

�2;r̄B, and
(1) n = 2 or n = 3, or
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(2) n ≥ 4 and �1 ≤ �2,

then K ≡ r̄B.
Proof Let ω̄1(r) = (r2 − �2

1)
n−3
2 r2−n and and ω̄2(r) = I r2−�22

r2

( n−1
2 , 1

2 ) for every

non-vanishing r ∈ R, and define ω1(x) := ω̄1(|x|) and ω2(x) := ω̄2(|x|).
By formula (4.4) in Lemma 4.2 we have

∫

r̄B\�1Bn

ω1(x) dx = 1

|Sn−2|
∫

Sn−1

S�1;K(uξ )dξ =
∫

K\�1Bn

ω1(x) dx,

and by formula (4.3) in Lemma 4.1 we have

∫

r̄B\�2Bn

ω2(x) dx = �( n2 )

πn/2

∫

Sn−1

C�2;K(uξ )dξ =
∫

K\�2Bn

ω2(x) dx.

With the notations in Lemma 4.3, these mean V1(K) = V1(r̄B) and V2(K) = V2(r̄B).
The ratio ω2(x)

ω1(x)
= ω̄2(|x|)

ω̄1(|x|) is obviously constant on every sphere, especially on r̄S
n−1,

and it is

ω̄2(r)

ω̄1(r)
=

∫ 1− �22
r2

0 t
n−3
2 (1 − t)

−1
2 dt

(r2 − �2
1)

n−3
2 r2−n

=
2�2
r

(

1 − �22
r2

) n−3
2

(

n−3
2

∫ 1
0 s

n−5
2

(
r2

�22
(1 − s) + s

) 1
2

ds − 1

)

1
r

(

1 − �21
r2

) n−3
2

by (5.2)

= 2�1

(
r2 − �2

2

r2 − �2
1

) n−3
2

⎛

⎝n − 3

2

1∫

0

s
n−5
2

(
r2

�2
2

(1 − s) + s

) 1
2

ds − 1

⎞

⎠

= 2�1

(

1 + �2
1 − �2

2

r2 − �2
1

) n−3
2

⎛

⎝n − 3

2

1∫

0

s
n−5
2

(
r2

�2
2

(1 − s) + s

) 1
2

ds − 1

⎞

⎠

if n > 3. For other values of n we have

ω̄2(r)

ω̄1(r)
=

∫ 1− �22
r2

0 t
n−3
2 (1 − t)

−1
2 dt

(r2 − �2
1)

n−3
2 r2−n

=

⎧
⎪⎪⎨

⎪⎪⎩

(r2 − �2
1)

1
2
∫ 1− �22

r2

0 t
−1
2 (1 − t)

−1
2 dt, if n = 2,

r
∫ 1− �22

r2

0 (1 − t)
−1
2 dt, if n = 3.

123



470 Beitr Algebra Geom (2015) 56:459–471

Thus, ω̄2(r)
ω̄1(r)

is strictly monotone increasing if n = 2, 3 and it is also strictly monotone
increasing if n > 3 and �1 ≤ �2. In these cases Lemma 4.3 implies K ≡ r̄B. ��

This theorem leaves open the case when �1 > �2 in dimensions n > 3. We have
not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [1, Conjecture 2] that in the planeM-equisectioned
convex bodies coincide, but they were unable to justify this in full.3 Nevertheless they
proved, among others, that a D-isosectioned convex body K in the plane is a disc
concentric to the disc D.

Having a convex body K that is sphere-isocapped with respect to two concentric
spheres raises the problem if there is a concentric ball r̄B—obviously sphere-isocapped
with respect to that two concentric spheres—that is sphere-equicapped to K with
respect to that two concentric spheres. The very same problem exists also for bodies
that are sphere-isosectioned with respect to two concentric spheres. So we have the
following range characterization problems: Let 0 < �1 < �2 and let c1 > c2 > 0 be
positive constants. Is there a convex bodyK containing the ball �2B in its interior and
satisfying

(i) c1 ≡ C
�1;K and c2 ≡ C

�2;K (raised by Theorem 5.1)?
(ii) c1 ≡ S

�1;K and c2 ≡ S
�2;K (raised by Theorem 5.2)?

(iii) c1 ≡ S
�1;K and c1 ≡ C

�1;K (raised by Theorem 5.3)?

In the plane if M is allowed to shrink to a point (empty interior), then SM;K is
the X-ray picture at a point source [3] investigated by Falconer in [2]. The method
used in Falconer’s article made Barker and Larman mention in [1] that in dimension
2 the convex body K can be determined from SM;K and SM′;K if ∂M and ∂M′
are intersecting each other in a suitable manner. The method in the anticipated proof
presented in [1] decisively depends on the condition of proper intersection.

Finally we note that determining a convex body by its constant width and constant
brightness [8] sounds very similar a problem as the ones investigated in this paper.
Moreover also the result is analogous to Theorem 5.3.
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