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Abstract Among others, we prove that if a convex body K and a ball B have equal
constant volumes of caps and equal constant areas of sections with respect to the
supporting planes of a sphere, then K = B.
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1 Introduction

If the convex body M, the kernel, contains the origin O, let /i p((u) denote the sup-
porting hyperplane of M that is perpendicular to the unit vector # € S"~! and contains
in its same half space 71, () the origin O and the kernel M. Its other half space is
denoted by h"x/l (u).

If the convex body /C contains the kernel M in its interior, we define the functions

SM;IC(u) = |KNhapr(u)|, (section function) (1.1)
Cup @) = |KNRG, @), (cap function) (1.2)

where | - | is the appropriate Lebesgue measure.
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The goal of this article is to investigate the problem of determining /C if some
functions of the form (1.1) and (1.2) are given for a kernel M.

Two convex bodies K and K’ are called M-equicappedif C MK = =C MK and they
are M-equisectioned if S MK = =S MK A convex body K is called /\/l isocapped if
C MK is constant. It is said to be M-isosectioned if S MK is constant.

First we prove in the plane that

(a) two convex bodies coincide if they are M-equicapped and M-equisectioned, no
matter what M is (Theorem 3.1), and
(b) any disc-isocapped convex body is a disc concentric to the kernel (Theorem 3.2).!

Then, in higher dimensions we consider only such convex bodies that are sphere-
equisectioned and sphere-equicapped with a ball, and prove that

(1) a convex body that is sphere-equicapped and sphere-equisectioned with a ball, is
itself a ball (Theorem 5.3);

(2) a convex body that is twice sphere-equicapped (for two different concentric
spheres) with a ball is itself a ball (Theorem 5.1);

(3) a convex body that is twice sphere-equisectioned (for two different concentric
spheres) with a ball is itself a ball (Theorem 5.2, but dimension n = 3 excluded).

For more information about the subject we refer the reader to [1,3] etc.

2 Preliminaries

We work with the n-dimensional real space R”, its unit ball is B = B”" (in the plane
the unit disc is D), its unit sphere is S"~! and the set of its hyperplanes is H. The ball
(resp. disc) of radius o > O centred to the origin is denoted by o3 = oB" (resp. 0D).

Using the spherical coordinates &€ = (&1, ..., &§,—1) every unit vector can be written
in the form ug = (cos &1, sin&p cos &y, sin &g sin & cos &3, .. ), the ith coordinate of

which is u (Hj 1 sin&;) cosé; (&, := 0). In the plane we even use the ug =
(cosé&, smé) and uE = Ugz/2 = (—siné, cos§) notations and in analogy to this
latter one, we introduce the notation §J‘ = (&1,...,&,-2,&,—1 + 7/2) for higher
dimensions.

A hyperplane /1 € H is parametrized so that 7 (ug, ) means the one that is orthog-
onal to the unit vector ug € S"~! and contains the point rug, where r € R.2 For con-
venience we also frequently use /i(P, ug) to denote the hyperplane through the point

P € R" with normal vector ug € S"=1. For instance, 7 (P, ug) = h(ug, (WJ, ug)),
where O = 0 is the origin and (., .) is the usual inner product.

1 [1, Theorem 1] gives the same conclusion in the plane for disc-isosectioned convex bodies

2 Although fi(ug, r) = h(—ug, —r) this parametrization is locally bijective.
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On a convex body we mean a convex compact set € R” with non-empty interior
K and with piecewise C! boundary 3C. For a convex body K we let p;-: "~ — R
denote support function of K, which is defined by pi-(uz) = sup,cx(ug, x). We
also use the notation 7y (u) = 7i(u, py-(w)). If the origin is in K°, another useful
function of a convex body K is its radial function ¢y S"-! — R, which is defined
by oy () = |{ru:r > 0} NIK]|.

We need the special functions I, (a, b), the regularized incomplete beta function,
B(x; a, b), the incomplete beta function, B(a, b), the beta function, and I'(y), Euler’s
Gamma function, where 0 < a, b € R, x € [0, 1] and y € R. We introduce finally the
notation |Sk| = 27k/2 /T (k/2) as the standard surface measure of the k-dimensional
sphere. For the special functions we refer the reader to [11,12].

We shall frequently use the utility function x that takes relations as argument and
gives 1 if its argument fulfilled. For example x (1 > 0) = 1, but x(1 < 0) = 0 and
x(x > y)is lif x > y and itis zero if x < y. Nevertheless we still use x also as the
indicator function of the set given in its subscript.

A strictly positive integrable function w: R*\B — R is called weight and the
integral

V() i= [ Feeedx
Rn\B
of an integrable function f: R" — R is called the volume of f with respect to the
weight w or simply the w-volume of f. For the volume of the indicator function x g of

aset S C R” we use the notation V,,(S) := V,(xs) as a shorthand. If more weights
are indexed by i € N, then we use the even shorter notation V;(S) := V,,(S) =

Vilxs) = Va (Xg)-

3 In the plane

We heard the following easy result from Kincses [5].

Theorem 3.1 Assume that the border of the strictly convex plane bodies M and K are
differentiable of class C' and we are given M and the functions S Mg and C e
Then K can be uniquely determined.

Proof Fix the origin 0 in M°. In the plane ug = (cos &, sin &), therefore we consider
the functions

&) =S 1 xc(me) = 1h(ppg(ue), ug) N K|
(&) := Cpyppc(mg) = |W (pp(ug), ug) N K|
where /" is the appropriate half space bordered by 7.

Let h(&) be the point, where 7(p (&), ug) touches M. Then, as it is well
known, h(§) =P Sug = pr (E)ug-. Let a(&) and b(&) be the two intersections of
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hi(pp, (), ug)and oK takensothata (&) = h(é)—i—a(é)ug- andb (&) = h(é)—b(é)ug-,
where a(£) and b(&) are positive functions.

Then f (&) = a(€) + b(§).

In the other hand, we have

(e}
ar
—
~
-

g() = / x({x,ug) = pp(§))dx = rdrdg,

KAM

ol —— i
o

d d
where k(&) + O (&)u; € OK. Since ng) = gé(g) , this leads to

s

Z ., 0:(0) 3
2/(8) = / = / ordr | dg = / 204 (0)04(0) dt = a*(&) — (&)

_z
2

[S1E]

that implies

HE+FO  206) + £26)
2 O 2f®

a§) =

This clearly determines K. O

If the kernel M is known to be a disc oD, then any one of the functions SQD' i and
C oDk Can determine concentric discs by its constant value.

Theorem 3.2 Assume that one of the functions S oDk and C oD:K IS constant, where
D is the unit disc. Then K is a disc centred to the origin.

Proof 1f S DK is constant, then this theorem is [1, Theorem 1].

IfC oD IC is constant, the derivative of C oDiK is zero, hence—using the notations
of the previous proof—a(¢) = b(&) for every & € [0, 27r), that is, the point k(&) is
the midpoint of the segment a(§)b(§) on 7 (o, ug).

Let us consider the chord-map C: dX — 9/, that is defined by C(b(§)) = a(§)
forevery & € [0, 27r). This is clearly a bijective map. If £y € 9K, then by a(§) = b(§)
the whole sequence £; = C' (), where C* means the i consecutive usage of C, are on
a concentric circle of radius [£o|. Moreover, every point £; (i > 0) is the concentric
rotation of £; _; with angle A =2 arccos(lf;o‘). It is well known [4, Proposition 1.3.3]

that such a sequence is dense in /C if % is irrational, or it is finitely periodic in 9/C
if % is rational. However, if K is not a disc, then there is surely a point £ € 9K for

2 arccos( M’ﬁ )

which is irrational, hence K must be a concentric disc. 0
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4 Measures of convex bodies

In this section the dimension of the spaceisn = 2, 3, . ... As a shorthand we introduce
the notations

S = S g (i(, W) = K N1, w, @.1)
Cuic(®@) = Coppic (0, w) = IK N ¥ (0, W), 42)

where oBB" is the ball of radius ¢ > 0 centred to the origin and /™ is the appropriate
half space bordered by 7.

Lemma 4.1 Ifthe convex body K in R" contains in its interior the ball oB", then

n—l 1
/ Coxc(ug)d = r() I‘W —2 ,E)dx. 4.3)
Sn—1

Proof We have

[ Coxtuis = [ [ xeex.us) = 0 dxag

sn-1 sn—1 Rn

// (<|x| 5>‘||)d§dx

K\oB sn—1

The inner integral is the surface of the hyperspherical cap. The height of this hyper-
spherical capish = 1 — ‘ E hence by the well-known formula [13] we obtain

[ ()= ) a6 =Tyt (*53)
R r e \Te )

Sn=
This proves the lemma. O
Note that the weight in (4.3) is %I (% %) = 2arccos(| |) for dimension

\x\z
n = 2, and it is ﬁl 2 (1, l) =27 (1 — £) for dimension n = 3.
%) l_lg7 2 [x]

Lemma 4.2 Let the convex body K contain in its interior the ball oB". Then the
integral of the section function is

-3
e x2— 07T
/SQ;,C(uE)d§:|S e / M%dx. (4.4
-1 K\oBr
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Proof Observe, that using (4.3) we have for any ¢ > 0 that

NOW,
71"32//8@+5;IC(u5)d§d5

0 sn-1
re [ f
2
TR / /SQ-HS;IC(”E)dedg
Sn—] 0
r'(3)
= | Coxce) = Coppic(ug)ds
Sn—l
n—-11 n—1 1
= le\Z—ZQZ ( ) 5 5) dx — IM (T’ 5) dx
Kl K\(o+#)B =l
n—1 1
= [ ()
o+eBoB
") e () e () e
K\(g+e)B Il Ix]

hence

8;)0 e 7["/2 / / 0+5; c(ug)d&ds

0 sn-1
. n—1 1
=iy [ e ()
0+e)B\0B !
1 n—1 1 n—1 1
— / SII—%E(IW(T’E)_I”?Z(TE))dx
w K
K\oB
ISn71| -1 n—11
:1 n I - d
81—1310 e 2:292 5 5 r
e
d n—11
- 1x2—2(—, ))dx
K\{Bd (Hzg 2 2
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n—11
— Sn—l n—lI e
| lo gzg_zgz (—2 2)

\eB
2 2\ 1
sy ) (i) me
20208
As
2 2 opn2 Blog's - De'T —
LG B, 5 TG TG TEF +1D) ’
the statement is proved. O
Note that the weightin (4.4) is \/% in the plane, and 277 /|x | in dimensionn = 3,
x*—o

which is independent from o!
A version of the following lemma first appeared in [9].

Lemma 4.3 Let w; (i = 1, 2) be weights and let IC and L be convex bodies containing
the unit ball B. If V1(K) < Vi(L) and

> o, if X ¢ K,

<ol ifX ek, where equality

(1) Either 2% is a constant ck on 9K and 22 (X) [

may occur ll’l a set ofmeasure zero at most,
<cr, ifX ¢ L,

> cp ifX €L, where equality may

2) or % is a constant ¢, on 0L and Z)T?(X) H
occur in a set of measure zero at most,
then Vo (IKC) < Vo(L), where equality is if and only if K = L.

Proof We have

Va(£)— Va(K) = V(L) K)— Va(K\ £) = / Z’fg;wl(x)dx— / ng;wl(xwx
aye K\L

=0, if KAL=0,
> cxe(VI(L\ ) = Vi (K\ £) =cxc(VI(£) = Vi(K)), if KAL#® and (1),
> cr (VLN )= VI L) =cp(VI(D)—Vi(K), if KAL#Y and (2),

that proves the theorem. O

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher
dimensions.
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Theorem 5.1 Let 0 < o1 < 03 < 7 and let K be a convex body having 0B in its
interior. Ingl;,C = CQ1;FB and ng;IC = ng;FB’ then KK = rB, where B is the unit
ball.

Proof Let w1(r) = 1,2,Q% %, %) and wa(r) = I.2_» ”—51, %) for every non-

re—oy
2 2

vanishing r € R, where 7 is the regularized incomple;e beta function, and define
w1 (x) := o1(|x]) and wa (x) := w2 (|x]).
By formula (4.3) in Lemma 4.1 we have

')
/ w1 (x)dx = —a CQI;,C(uE)dg = / wi(x)dx,
7B\o; B -t K\o1B"

and similarly
r'(3)
wy(x)dx = — ng;zc(us>d§ = / wy(x)dx.
7B\02B" sn—1 K\e2B"

With the notations in Lemma 4.3, these mean V| (K) = V| (¥B) and V> (K) = V,(B).
Further, one can easily see that

wi(x) _ oi(x)

1< = — =
w2(x)  w(x])

Sqn(xD), (n is the dimension)

is constant on every sphere, especially on 7S" 1.
As @1 and w; are both strictly increasing, g, is strictly decreasing if and only if

@y (r) _ @)

. 5.1
@y(r) @ (r) o-b

First calculate for any n € N that

oy (r) r r P (=) T o

=/ n=3 ’
2 - 2 2\ 5=
re — 2

(Q_%) 2 ( 0) 7 02

then consider for n > 4 that
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1 1
2 —3 [ asfr? :
e /sTi Da-9+s) ds—1]. 52
r 2 07
0

From the two equations above we deduce

n—3

201 (1 _ ﬁ) :
@1(r) @5(r) 7 -

@2 (r) &) (r) 22 (1 Q%)T (;.73 fl n=s
T 2 2

n=3 1 "5 r
1—s)+s 2ds n=3
(2 (2( ) +s) )(rz_gg)zgz
n—3
r?—o)'7 a1

(’z(lfs)Jrs) dsfl)

where in the last inequality we used 01 < @3. Thus, for n > 4 we have proved (5.1).
Assume now, that n < 4. It is easy to see that

2

-3

01(r) — wx(r) ! (1 )Tl

a)lr—wzr:ﬁ/l‘z —t
B(*5.3) /,
1-&
72
hence differentiation leads to
(@ (r) — @5(r)B L
r r _—,
n— =1 n—=3 —1
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This is clearly negative for all r if » = 2 and n = 3, hence

- >1
wy(r) —

&) @) _ i) (a)g(r) o) 1) _ @)
n(r) @y (r) — w(r) @ (r) B
proving (5.1) forn < 3.

Thus, g%; is strictly monotone decreasing in any dimension, hence K = 7B
follows from Lemma 4.3. O

Theorem 5.2 Let 0 < o < 02 < r and the dimension be n # 3. If K is a convex

body having 02 B in its interior, and Sgl;lC = Sgl;fB’ SQz;IC = ng;FB’ then IC = rB.

Proof Let &1(r) = (r> — QZ)%rz’" and an(r) = (r* — QZ)%rz’" for every
1 2

non-vanishing r € R, and define w1 (x) := @1 (]x|) and w2 (x) := w12 (|x]).
By formula (4.4) in Lemma 4.2 we have

1
wﬂx)dx:m / Sgl;lc(”é)d£= / wi(x)dx,
FB\g1B" Sn-1 K\e15"

and similarly

1
/ wz(x)dxzm / SQZ;,C(ug)dgz / wr(x)dx.
n—1

7B\ o2 B" S K\o2 B"
With the notations in Lemma 4.3, these mean V1 (K) = V| (#B) and Vo(K) = VL2 (7B).
The ratio Z;—g; = géEI;B is obviously constant on every sphere, especially on

7S"1, and it is

Jr2-o3 202 .
- = 1 -2 ifpn=2,

w1 (r) e’
an(r) =11, . ifn =3,
(1+%)T, ifn > 3.
re—o5
Thus, i; g; is strictly monotone if the dimension n # 3, hence K = rB follows from
Lemma 4.3 for dimensions other than 3. O

This theorem leaves the question open in dimension 3 if SQ1 K= SQl B and SQz; =

SQz:F g imply K = 7B. We have not yet tried to find an answer.

The following generalizes Theorem 3.1 for most dimensions, but only for spheres.

Theorem 5.3 Let 91,00 € (0,7) and let K be a convex body in R" having
max (g1, 02)B in its interior. IfSQl;,C = SQI;FB and ng;lC = ng;FB’ and

(1) n=2o0rn =23, or
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(2) n>4and 01 < 02,
then K =7B.

Proof Let &1(r) = (r® — Q%)%rz_" and and @, (r) = Irz_g% (%, %) for every
2
non-vanishing r € R, and define w;(x) := @1 (|x]) and wz(x) := w2 (|x]).

By formula (4.4) in Lemma 4.2 we have

1
wl(x)dxzm/sgl;,c(ug)dij: / w1 (x)dx,
n—1

rB\o1 B" S K\o1B"
and by formula (4.3) in Lemma 4.1 we have
')
wy(x)dx = 7 CQZ;,C(u,;)dS = wy(x)dx.
FB\o2 B" St K\e2B"

With the notations in Lemma 4.3, these mean V{ (K) = Vi (#B) and V> (K) = Vo (rB).

The ratio z? g; = g?ﬂﬁ B is obviously constant on every sphere, especially on 7S" !,
and it is

1*% n—3 —1
o) fo Ttz (A—-07dt

w1(r) - (2 — Q%)%ern
n=3 1
2\ 2 n=s 2 2
aﬂ(l—f—%) (”2;3f01s2 (g—%(l—s)—i-s) ds—l)
= o by (5.2)
2\ 2
(14

n-3 1 1
2 2\ 2 2 )
r- — -3 n—
=20, 52 ! /sTS Da-9+s) ds—1
re—o] 2 ) )

n—=3 1 1
2 2 2 2 2
- 3 [ w
—20 [ 1+ =2 " ST a9 +s) ds—1
2 2 2 2
re— oy 5 [

if n > 3. For other values of n we have

_ 1*% n—3 -1
) fo Tz (A—-07dt
w1(r) r2 — Q%)%rzfn

2
-2 _ -
FP=oD fy T1T (-7 di, iftn=2,
2

1-% .
rfy T(—n7 di, ifn = 3.
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, gf E:; is strictly monotone increasing if n = 2, 3 and it is also strictly monotone

increasing if n > 3 and 01 < 2. In these cases Lemma 4.3 implies K = rB. O

This theorem leaves open the case when g1 > @ in dimensions n > 3. We have
not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [1, Conjecture 2] that in the plane M-equisectioned
convex bodies coincide, but they were unable to justify this in full.’> Nevertheless they
proved, among others, that a D-isosectioned convex body K in the plane is a disc
concentric to the disc D.

Having a convex body K that is sphere-isocapped with respect to two concentric
spheres raises the problem if there is a concentric ball 7 B—obviously sphere-isocapped
with respect to that two concentric spheres—that is sphere-equicapped to /C with
respect to that two concentric spheres. The very same problem exists also for bodies
that are sphere-isosectioned with respect to two concentric spheres. So we have the
following range characterization problems: Let 0 < 91 < o and let ¢y > ¢ > O be
positive constants. Is there a convex body K containing the ball 25 in its interior and
satisfying

(1) 1 = Cgl,,C and ¢ = ng-IC (raised by Theorem 5.1)?
(i) ¢ = SQ],,C and ¢, = SQQ"C (raised by Theorem 5.2)?
(iii) ¢ = SQ]‘]C and c| = CQI,,C (raised by Theorem 5.3)?

In the plane if M is allowed to shrink to a point (empty interior), then S MK is
the X-ray picture at a point source [3] investigated by Falconer in [2]. The method
used in Falconer’s article made Barker and Larman mention in [1] that in dimension
2 the convex body K can be determined from S MK and S MK if 9M and oM’
are intersecting each other in a suitable manner. The method in the anticipated proof
presented in [1] decisively depends on the condition of proper intersection.

Finally we note that determining a convex body by its constant width and constant
brightness [8] sounds very similar a problem as the ones investigated in this paper.
Moreover also the result is analogous to Theorem 5.3.
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