

ORIGINAL PAPER

Characterizations of balls by sections and caps

Árpád Kurusa · Tibor Ódor

Received: 4 March 2014 / Accepted: 15 April 2014 / Published online: 28 May 2014 © The Managing Editors 2014

Abstract Among others, we prove that if a convex body K and a ball B have equal constant volumes of caps and equal constant areas of sections with respect to the supporting planes of a sphere, then $K \equiv \mathcal{B}$.

Keywords Sections · Caps · Ball · Sphere · Characterization · Isoperimetric inequality · Floating body

Mathematics Subject Classification (2012) 52A40

1 Introduction

If the convex body *M*, the *kernel*, contains the origin *O*, let $h_M(u)$ denote the supporting hyperplane of M that is perpendicular to the unit vector $u \in \mathbb{S}^{n-1}$ and contains in its same half space $h^{-}_{\mathcal{M}}(u)$ the origin *O* and the kernel *M*. Its other half space is denoted by $\hbar^+_{\mathcal{M}}(\mathbf{u})$.

If the convex body K contains the kernel M in its interior, we define the functions

$$
S_{\mathcal{M};\mathcal{K}}(\boldsymbol{u}) = |\mathcal{K} \cap \hbar_{\mathcal{M}}(\boldsymbol{u})|, \quad (section function)
$$
 (1.1)

$$
C_{\mathcal{M};\mathcal{K}}(u) = |\mathcal{K} \cap \hbar^+_{\mathcal{M}}(u)|, \quad (cap function)
$$
 (1.2)

where $|\cdot|$ is the appropriate Lebesgue measure.

Á. Kurusa $(\boxtimes) \cdot$ T. Ódor

T. Ódor e-mail: odor@math.u-szeged.hu

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., Szeged 6720, Hungary e-mail: kurusa@math.u-szeged.hu

The goal of this article is to investigate the problem of determining K if some functions of the form (1.1) and (1.2) are given for a kernel M.

Two convex bodies K and K' are called M -*equicapped* if $C_{M:K} \equiv C_{M:K'}$, and they are *M*-equisectioned if $S_{\mathcal{M};\mathcal{K}} \equiv S_{\mathcal{M};\mathcal{K}'}$. A convex body $\mathcal K$ is called *M*-*isocapped* if $C_{\mathcal{M}, \mathcal{K}}$ is constant. It is said to be *M*-*isosectioned* if $S_{\mathcal{M}, \mathcal{K}}$ is constant.

First we prove in the plane that

- (a) two convex bodies coincide if they are *M*-equicapped *and M*-equisectioned, no matter what M is (Theorem [3.1\)](#page-2-0), and
- (b) any disc-isocapped convex body is a disc concentric to the kernel (Theorem 3.2).^{[1](#page-1-0)}

Then, in higher dimensions we consider only such convex bodies that are sphereequisectioned and sphere-equicapped with a ball, and prove that

- (1) a convex body that is sphere-equicapped and sphere-equisectioned with a ball, is itself a ball (Theorem [5.3\)](#page-9-0);
- (2) a convex body that is twice sphere-equicapped (for two different concentric spheres) with a ball is itself a ball (Theorem [5.1\)](#page-6-0);
- (3) a convex body that is twice sphere-equisectioned (for two different concentric spheres) with a ball is itself a ball (Theorem [5.2,](#page-9-1) but dimension $n = 3$ excluded).

For more information about the subject we refer the reader to [\[1](#page-11-0),[3\]](#page-12-0) etc.

2 Preliminaries

We work with the *n*-dimensional real space \mathbb{R}^n , its unit ball is $\mathcal{B} = \mathcal{B}^n$ (in the plane the unit disc is *D*), its unit sphere is \mathbb{S}^{n-1} and the set of its hyperplanes is H. The ball (resp. disc) of radius $\rho > 0$ centred to the origin is denoted by $\rho B = \rho B^n$ (resp. ρD).

Using the spherical coordinates $\xi = (\xi_1, \ldots, \xi_{n-1})$ every unit vector can be written in the form $u_{\xi} = (\cos \xi_1, \sin \xi_1 \cos \xi_2, \sin \xi_1 \sin \xi_2 \cos \xi_3, \ldots)$, the *i*th coordinate of which is $u^i_{\xi} = (\prod_{j=1}^{i-1} \sin \xi_j) \cos \xi_i$ ($\xi_n := 0$). In the plane we even use the $u_{\xi} =$ $(\cos \xi, \sin \xi)$ and $u_{\xi}^{\perp} = u_{\xi + \pi/2} = (-\sin \xi, \cos \xi)$ notations and in analogy to this latter one, we introduce the notation $\xi^{\perp} = (\xi_1, \ldots, \xi_{n-2}, \xi_{n-1} + \pi/2)$ for higher dimensions.

A hyperplane $\hbar \in \mathbb{H}$ is parametrized so that $\hbar(u_{\xi}, r)$ means the one that is orthogonal to the unit vector $u_{\xi} \in \mathbb{S}^{n-1}$ and contains the point ru_{ξ} , where $r \in \mathbb{R}^2$ $r \in \mathbb{R}^2$. For convenience we also frequently use $h(P, u_{\xi})$ to denote the hyperplane through the point $P \in \mathbb{R}^n$ with normal vector $u_{\xi} \in \mathbb{S}^{n-1}$. For instance, $\hbar(P, u_{\xi}) = \hbar(u_{\xi}, \langle \overrightarrow{OP}, u_{\xi} \rangle)$, where $O = 0$ is the origin and $\langle ., . \rangle$ is the usual inner product.

 1 [\[1](#page-11-0), Theorem 1] gives the same conclusion in the plane for disc-isosectioned convex bodies

² Although \hbar (u _ξ, *r*) = \hbar (− u _ξ, −*r*) this parametrization is locally bijective.

On a convex body we mean a convex compact set $K \subseteq \mathbb{R}^n$ with non-empty interior *K*[◦] and with piecewise C¹ boundary ∂*K*. For a convex body *K* we let p_k : $\mathbb{S}^{n-1} \to \mathbb{R}$ denote support function of *K*, which is defined by $p_K(u_\xi) = \sup_{x \in K} \langle u_\xi, x \rangle$. We also use the notation $\hbar \mathcal{K}(u) = \hbar(u, p_{\mathcal{K}}(u))$. If the origin is in \mathcal{K}° , another useful function of a convex body *K* is its *radial function* $\varrho_K : \mathbb{S}^{n-1} \to \mathbb{R}_+$ which is defined by $\rho_K(u) = |\{r u : r > 0\} \cap \partial K|$.
We need the gracial functions

We need the special functions $I_x(a, b)$, the regularized incomplete beta function, $B(x; a, b)$, the incomplete beta function, $B(a, b)$, the beta function, and $\Gamma(y)$, Euler's Gamma function, where $0 < a, b \in \mathbb{R}, x \in [0, 1]$ and $y \in \mathbb{R}$. We introduce finally the notation $|\mathbb{S}^k| := 2\pi^{k/2} \Gamma(k/2)$ as the standard surface measure of the *k*-dimensional sphere. For the special functions we refer the reader to [\[11](#page-12-1),[12](#page-12-2)].

We shall frequently use the utility function χ that takes relations as argument and gives 1 if its argument fulfilled. For example $\chi(1 > 0) = 1$, but $\chi(1 \le 0) = 0$ and $\chi(x > y)$ is 1 if $x > y$ and it is zero if $x \le y$. Nevertheless we still use χ also as the indicator function of the set given in its subscript.

A strictly positive integrable function $\omega: \mathbb{R}^n \setminus \mathcal{B} \to \mathbb{R}_+$ is called *weight* and the integral

$$
V_{\omega}(f) := \int\limits_{\mathbb{R}^n \setminus \mathcal{B}} f(x)\omega(x)dx
$$

of an integrable function $f: \mathbb{R}^n \to \mathbb{R}$ is called the *volume of f with respect to the weight* ω or simply the ω -*volume of f*. For the volume of the indicator function χ_S of a set $S \subseteq \mathbb{R}^n$ we use the notation $V_\omega(S) := V_\omega(\chi_S)$ as a shorthand. If more weights are indexed by $i \in \mathbb{N}$, then we use the even shorter notation $V_i(\mathcal{S}) := V_{\omega_i}(\mathcal{S}) =$ $V_i(\chi_S) := V_{\omega_i}(\chi_S)$.

3 In the plane

We heard the following easy result from Kincses [\[5\]](#page-12-3).

Theorem 3.1 *Assume that the border of the strictly convex plane bodiesMand K are differentiable of class* C^1 *and we are given M and the functions* $S_{\mathcal{M}\cdot\mathcal{K}}$ *and* $C_{\mathcal{M}\cdot\mathcal{K}}$ *. Then K can be uniquely determined.*

Proof Fix the origin **0** in \mathcal{M}° . In the plane $u_\xi = (\cos \xi, \sin \xi)$, therefore we consider the functions

$$
f(\xi) := \mathcal{S}_{\mathcal{M};\mathcal{K}}(\mathbf{u}_{\xi}) = |\hbar(p_{\mathcal{M}}(\mathbf{u}_{\xi}), \mathbf{u}_{\xi}) \cap \mathcal{K}|
$$

$$
g(\xi) := \mathcal{C}_{\mathcal{M};\mathcal{K}}(\mathbf{u}_{\xi}) = |\hbar^+(p_{\mathcal{M}}(\mathbf{u}_{\xi}), \mathbf{u}_{\xi}) \cap \mathcal{K}|
$$

where \hbar^+ is the appropriate half space bordered by \hbar .

Let $h(\xi)$ be the point, where $h(p_M(\xi), u_\xi)$ touches *M*. Then, as it is well known, $h(\xi) - p_{\mathcal{M}}(\xi)u_{\xi} = p'_{\mathcal{M}}(\xi)u_{\xi}^{\perp}$. Let $a(\xi)$ and $b(\xi)$ be the two intersections of

 $h(p_M(\xi), u_{\xi})$ and ∂K taken so that $a(\xi) = h(\xi) + a(\xi)u_{\xi}^{\perp}$ and $b(\xi) = h(\xi) - b(\xi)u_{\xi}^{\perp}$, where $a(\xi)$ and $b(\xi)$ are positive functions.

Then $f(\xi) = a(\xi) + b(\xi)$.

In the other hand, we have

$$
g(\xi) = \int_{\mathcal{K}\backslash\mathcal{M}} \chi(\langle \mathbf{x}, \mathbf{u}_{\xi} \rangle \ge p_{\mathcal{M}}(\xi)) d\mathbf{x} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\varrho_{\xi}(\zeta)} r dr d\zeta,
$$

where $h(\xi) + \varrho_{\xi}(\zeta)u_{\zeta} \in \partial \mathcal{K}$. Since $\frac{d\varrho_{\xi}(\zeta)}{d\xi} = \frac{d\varrho_{\xi}(\zeta)}{d\zeta}$, this leads to

$$
2g'(\xi) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d}{d\xi} \left(\int_{0}^{\varrho_{\xi}(\xi)} 2r \, dr \right) d\xi = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\varrho_{\xi}(\xi)\varrho_{\xi}'(\xi) d\xi = a^2(\xi) - b^2(\xi)
$$

that implies

$$
a(\xi) = \frac{\frac{2g'(\xi)}{f(\xi)} + f(\xi)}{2} = \frac{2g'(\xi) + f^2(\xi)}{2f(\xi)}.
$$

This clearly determines K .

If the kernel *M* is known to be a disc $\rho \mathcal{D}$, then any one of the functions $S_{\rho \mathcal{D} ; \mathcal{K}}$ and $C_{\varrho\mathcal{D};\mathcal{K}}$ can determine concentric discs by its constant value.

Theorem 3.2 Assume that one of the functions $S_{\varrho D;K}$ and $C_{\varrho D;K}$ is constant, where *D is the unit disc. Then K is a disc centred to the origin.*

Proof If S_{ϱ} *D*;*K* is constant, then this theorem is [\[1](#page-11-0), Theorem 1].

If $C_{\varrho D;\mathcal{K}}$ is constant, the derivative of $C_{\varrho D;\mathcal{K}}$ is zero, hence—using the notations of the previous proof— $a(\xi) = b(\xi)$ for every $\xi \in [0, 2\pi)$, that is, the point $h(\xi)$ is the midpoint of the segment $a(\xi) b(\xi)$ on $h(\varrho, u_{\xi})$.

Let us consider the chord-map $C: \partial \mathcal{K} \to \partial \mathcal{K}$, that is defined by $C(b(\xi)) = a(\xi)$ for every $\xi \in [0, 2\pi)$. This is clearly a bijective map. If $\ell_0 \in \partial \mathcal{K}$, then by $a(\xi) = b(\xi)$ the whole sequence $\ell_i = C^i(\ell)$, where C^i means the *i* consecutive usage of *C*, are on a concentric circle of radius $|\ell_0|$. Moreover, every point ℓ_i (*i* > 0) is the concentric rotation of ℓ_{i-1} with angle $\lambda = 2 \arccos(\frac{\varrho}{|\ell_0|})$. It is well known [\[4](#page-12-4), Proposition 1.3.3] that such a sequence is dense in ∂K if $\frac{\lambda}{\pi}$ is irrational, or it is finitely periodic in ∂K if $\frac{\lambda}{\pi}$ is rational. However, if *K* is not a disc, then there is surely a point $\ell \in \partial K$ for which $\frac{2 \arccos(\frac{\varrho}{|\ell_0|})}{\pi}$ is irrational, hence *K* must be a concentric disc.

4 Measures of convex bodies

In this section the dimension of the space is $n = 2, 3, \ldots$. As a shorthand we introduce the notations

$$
S_{\varrho; \mathcal{K}}(\boldsymbol{u}) := S_{\varrho \mathcal{B}; \mathcal{K}}(\hbar(\varrho, \boldsymbol{u})) = |\mathcal{K} \cap \hbar(\varrho, \boldsymbol{u})|, \tag{4.1}
$$

$$
C_{\varrho;\mathcal{K}}(\boldsymbol{u}) := C_{\varrho\mathcal{B};\mathcal{K}}(\hbar(\varrho,\boldsymbol{u})) = |\mathcal{K} \cap \hbar^{+}(\varrho,\boldsymbol{u})|, \tag{4.2}
$$

where ϱB^n is the ball of radius $\varrho > 0$ centred to the origin and \hbar^+ is the appropriate half space bordered by \hbar .

Lemma 4.1 *If the convex body* K *in* \mathbb{R}^n *contains in its interior the ball* ϱB^n *, then*

$$
\int_{\mathbb{S}^{n-1}} C_{\varrho; \mathcal{K}}(u_{\xi}) d\xi = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2})} \int_{\mathcal{K} \setminus \varrho \mathcal{B}} I_{1-\frac{\varrho^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) dx.
$$
 (4.3)

Proof We have

$$
\int_{\mathbb{S}^{n-1}} C_{\varrho; \mathcal{K}}(u_{\xi}) d\xi = \int_{\mathbb{S}^{n-1}} \int_{\mathbb{R}^n} \chi_{\mathcal{K}}(x) \chi(\langle x, u_{\xi} \rangle \ge \varrho) dxd\xi
$$

$$
= \int_{\mathcal{K} \backslash \varrho \mathcal{B} \mathcal{S}^{n-1}} \int_{\mathbb{R}^n} \chi\left(\left\langle \frac{x}{|x|}, u_{\xi} \right\rangle \ge \frac{\varrho}{|x|} \right) d\xi dx
$$

The inner integral is the surface of the hyperspherical cap. The height of this hyperspherical cap is $h = 1 - \frac{\varrho}{|\mathbf{x}|}$, hence by the well-known formula [\[13\]](#page-12-5) we obtain

$$
\int\limits_{\mathbb{S}^{n-1}} \chi\left(\left\langle\frac{x}{|x|}, u_{\xi}\right\rangle \geq \frac{\varrho}{|x|}\right) d\xi = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2})} I_{\frac{|x|^2-\varrho^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right).
$$

This proves the lemma.

Note that the weight in [\(4.3\)](#page-4-0) is $\frac{\pi}{\Gamma(1)} I_{1-\frac{\rho^2}{|\mathbf{x}|^2}}$ $\frac{e^2}{|x|^2}$ ($\frac{1}{2}$, $\frac{1}{2}$) = 2 arccos($\frac{e}{|x|}$) for dimension *n* = 2, and it is $\frac{\pi^{3/2}}{\Gamma(\frac{3}{2})}$ $I_{1-\frac{\varrho^2}{|\mathbf{x}|}}$ $\frac{e^2}{|x|^2}$ (1, $\frac{1}{2}$) = $2\pi (1 - \frac{e}{|x|})$ for dimension *n* = 3.

Lemma 4.2 Let the convex body K contain in its interior the ball ϱB^n . Then the *integral of the section function is*

$$
\int_{\mathbb{S}^{n-1}} S_{\varrho; \mathcal{K}}(u_{\xi}) d\xi = |\mathbb{S}^{n-2}| \int_{\mathcal{K} \setminus \varrho \mathcal{B}^n} \frac{(x^2 - \varrho^2)^{\frac{n-3}{2}}}{|x|^{n-2}} dx.
$$
 (4.4)

$$
\overline{a}
$$

Proof Observe, that using [\(4.3\)](#page-4-0) we have for any $\varepsilon > 0$ that

$$
\frac{\Gamma(\frac{n}{2})}{\pi^{n/2}} \int_{0}^{\varepsilon} \int_{\mathbb{S}^{n-1}} S_{\varrho+\delta;\mathcal{K}}(u_{\xi}) d\xi d\delta
$$
\n
\n
$$
= \frac{\Gamma(\frac{n}{2})}{\pi^{n/2}} \int_{\mathbb{S}^{n-1}} \int_{0}^{\varepsilon} S_{\varrho+\delta;\mathcal{K}}(u_{\xi}) d\delta d\xi
$$
\n
\n
$$
= \frac{\Gamma(\frac{n}{2})}{\pi^{n/2}} \int_{\mathbb{S}^{n-1}} C_{\varrho;\mathcal{K}}(u_{\xi}) - C_{\varrho+\varepsilon;\mathcal{K}}(u_{\xi}) d\xi
$$
\n
\n
$$
= \int_{\mathcal{K}\backslash \varrho/\mathcal{B}} I_{\frac{|x|^2-\varrho^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) dx - \int_{\mathcal{K}\backslash (\varrho+\varepsilon)/\mathcal{B}} I_{\frac{|x|^2-(\varrho+\varepsilon)^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) dx
$$
\n
\n
$$
= \int_{(\varrho+\varepsilon)/\mathcal{B}\backslash \varrho/\mathcal{B}} I_{\frac{|x|^2-(\varrho+\varepsilon)^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) dx
$$
\n
\n
$$
- \int_{\mathcal{K}\backslash (\varrho+\varepsilon)/\mathcal{B}} I_{\frac{|x|^2-(\varrho+\varepsilon)^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) - I_{\frac{|x|^2-\varrho^2}{|x|^2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) dx,
$$

hence

$$
\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \frac{\Gamma(\frac{n}{2})}{\pi^{n/2}} \int_{0}^{\varepsilon} \int_{\mathbb{S}^{n-1}} S_{\varrho + \delta; \mathcal{K}}(u_{\xi}) d\xi d\delta
$$
\n
\n
$$
= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{(\varrho + \varepsilon) \mathcal{B} \setminus \varrho \mathcal{B}} I_{\frac{|x|^2 - \varrho^2}{|x|^2}} \left(\frac{n-1}{2}, \frac{1}{2}\right) dx
$$
\n
\n
$$
- \int_{\mathcal{K} \setminus \varrho \mathcal{B}} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(I_{\frac{|x|^2 - (\varrho + \varepsilon)^2}{|x|^2}} \left(\frac{n-1}{2}, \frac{1}{2}\right) - I_{\frac{|x|^2 - \varrho^2}{|x|^2}} \left(\frac{n-1}{2}, \frac{1}{2}\right) \right) dx
$$
\n
\n
$$
= \lim_{\varepsilon \to 0} \frac{|\mathbb{S}^{n-1}|}{\varepsilon} \int_{\varrho}^{\varrho + \varepsilon} r^{n-1} I_{\frac{r^2 - \varrho^2}{r^2}} \left(\frac{n-1}{2}, \frac{1}{2}\right) dr
$$
\n
\n
$$
- \int_{\mathcal{K} \setminus \varrho \mathcal{B}} \frac{d}{d\varrho} \left(I_{\frac{|x|^2 - \varrho^2}{|x|^2}} \left(\frac{n-1}{2}, \frac{1}{2}\right) \right) dx
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

$$
=|\mathbb{S}^{n-1}|e^{n-1}I_{\frac{e^{2}-e^{2}}{e^{2}}}\left(\frac{n-1}{2},\frac{1}{2}\right)
$$

$$
-\frac{1}{B(\frac{n-1}{2},\frac{1}{2})}\int_{K\setminus eB}\left(1-\frac{e^{2}}{|x|^{2}}\right)^{\frac{n-3}{2}}\left(\frac{e^{2}}{|x|^{2}}\right)^{\frac{-1}{2}}\frac{-2e}{|x|^{2}}dx
$$

$$
=\frac{2}{B(\frac{n-1}{2},\frac{1}{2})}\int_{K\setminus eB}\left(1-\frac{e^{2}}{|x|^{2}}\right)^{\frac{n-3}{2}}\frac{1}{|x|}dx.
$$

As

$$
\frac{\pi^{n/2}}{\Gamma(\frac{n}{2})}\frac{2}{B(\frac{n-1}{2},\frac{1}{2})}=\frac{2\pi^{n/2}}{\Gamma(\frac{n-1}{2})\Gamma(\frac{1}{2})}=\frac{\frac{n-1}{2}}{\frac{n-1}{2}}\frac{2\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2})}=\frac{(n-1)\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2}+1)}=|\mathbb{S}^{n-2}|,
$$

the statement is proved.

Note that the weight in [\(4.4\)](#page-4-1) is $\frac{2}{\sqrt{x^2}}$ $\frac{2}{x^2-e^2}$ in the plane, and $2\pi/|x|$ in dimension *n* = 3, which is independent from ρ !

A version of the following lemma first appeared in [\[9](#page-12-6)].

Lemma 4.3 *Let* ω_i ($i = 1, 2$) *be weights and let* K *and* $\mathcal L$ *be convex bodies containing the unit ball B. If* $V_1(K) \leq V_1(\mathcal{L})$ *and*

- (1) *Either* $\frac{\omega_2}{\omega_1}$ *is a constant* c_K *on* ∂K *and* $\frac{\omega_2}{\omega_1}(X) \n\begin{cases} \n\geq c_K, & if X \notin \mathcal{K}, \\ \n\leq c_K, & if X \in \mathcal{K}, \n\end{cases}$ where equality *may occur in a set of measure zero at most,*
- (2) *or* $\frac{\omega_2}{\omega_1}$ *is a constant* c_L *on* $\partial \mathcal{L}$ *and* $\frac{\omega_2}{\omega_1}(X) \left\{ \leq c_L, if X \notin \mathcal{L}, \text{ where equality may} \right\}$ *occur in a set of measure zero at most,*

then $V_2(\mathcal{K}) \leq V_2(\mathcal{L})$ *, where equality is if and only if* $\mathcal{K} = \mathcal{L}$ *.*

Proof We have

$$
V_2(\mathcal{L}) - V_2(\mathcal{K}) = V_2(\mathcal{L} \setminus \mathcal{K}) - V_2(\mathcal{K} \setminus \mathcal{L}) = \int_{\mathcal{L} \setminus \mathcal{K}} \frac{\omega_2(x)}{\omega_1(x)} \omega_1(x) dx - \int_{\mathcal{K} \setminus \mathcal{L}} \frac{\omega_2(x)}{\omega_1(x)} \omega_1(x) dx
$$

\n
$$
= 0,
$$
 if $\mathcal{K} \triangle \mathcal{L} = \emptyset$,
\n $\ge c_{\mathcal{K}}(V_1(\mathcal{L} \setminus \mathcal{K}) - V_1(\mathcal{K} \setminus \mathcal{L})) = c_{\mathcal{K}}(V_1(\mathcal{L}) - V_1(\mathcal{K})),$ if $\mathcal{K} \triangle \mathcal{L} \neq \emptyset$ and (1),
\n $\ge c_{\mathcal{L}}(V_1(\mathcal{L} \setminus \mathcal{K}) - V_1(\mathcal{K} \setminus \mathcal{L})) = c_{\mathcal{L}}(V_1(\mathcal{L}) - V_1(\mathcal{K})),$ if $\mathcal{K} \triangle \mathcal{L} \neq \emptyset$ and (2),

that proves the theorem.

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher dimensions.

Theorem 5.1 *Let* $0 < \varrho_1 < \varrho_2 < \bar{r}$ *and let* K *be a convex body having* $\varrho_2 \mathcal{B}$ *in its interior.* If $C_{\varrho_1; K} = C_{\varrho_1; \bar{r} \mathcal{B}}$ and $C_{\varrho_2; K} = C_{\varrho_2; \bar{r} \mathcal{B}}$ *, then* $K \equiv \bar{r} \mathcal{B}$ *, where* \mathcal{B} *is the unit ball.*

Proof Let $\bar{\omega}_1(r) = I_{r^2 - e_1^2}$ $(\frac{n-1}{2}, \frac{1}{2})$ and $\bar{\omega}_2(r) = I_{\frac{r^2 - \rho_2^2}{r^2}}$ $(\frac{n-1}{2}, \frac{1}{2})$ for every nonvanishing $r \in \mathbb{R}$, where *I* is the regularized incomplete beta function, and define $\omega_1(\mathbf{x}) := \overline{\omega}_1(|\mathbf{x}|)$ and $\omega_2(\mathbf{x}) := \overline{\omega}_2(|\mathbf{x}|)$.

By formula [\(4.3\)](#page-4-0) in Lemma [4.1](#page-4-2) we have

$$
\int\limits_{\bar{r}\mathcal{B}\setminus\varrho_1\mathcal{B}^n}\omega_1(x)\,dx=\frac{\Gamma(\frac{n}{2})}{\pi^{n/2}}\int\limits_{\mathbb{S}^{n-1}}C_{\varrho_1;\mathcal{K}}(u_{\xi})d\xi=\int\limits_{\mathcal{K}\setminus\varrho_1\mathcal{B}^n}\omega_1(x)\,dx,
$$

and similarly

$$
\int\limits_{\bar{r}\mathcal{B}\setminus\varrho_2\mathcal{B}^n}\omega_2(x)\,dx=\frac{\Gamma(\frac{n}{2})}{\pi^{n/2}}\int\limits_{\mathbb{S}^{n-1}}C_{\varrho_2;\mathcal{K}}(u_\xi)d\xi=\int\limits_{\mathcal{K}\setminus\varrho_2\mathcal{B}^n}\omega_2(x)\,dx.
$$

With the notations in Lemma [4.3,](#page-6-1) these mean $V_1(\mathcal{K}) = V_1(\bar{r}\mathcal{B})$ and $V_2(\mathcal{K}) = V_2(\bar{r}\mathcal{B})$.

Further, one can easily see that

$$
1 < \frac{\omega_1(\mathbf{x})}{\omega_2(\mathbf{x})} = \frac{\bar{\omega}_1(|\mathbf{x}|)}{\bar{\omega}_2(|\mathbf{x}|)} =: q_n(|\mathbf{x}|), \qquad (n \text{ is the dimension})
$$

is constant on every sphere, especially on $\bar{r}S^{n-1}$.

As $\bar{\omega}_1$ and $\bar{\omega}_2$ are both strictly increasing, q_n is strictly decreasing if and only if

$$
\frac{\bar{\omega}_1'(r)}{\bar{\omega}_2'(r)} < \frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)}.\tag{5.1}
$$

First calculate for any $n \in \mathbb{N}$ that

$$
\frac{\bar{\omega}'_1(r)}{\bar{\omega}'_2(r)} = \frac{\left(1 - \frac{\varrho_1^2}{r^2}\right)^{\frac{n-3}{2}} \left(\frac{\varrho_1^2}{r^2}\right)^{\frac{-1}{2}} \frac{2\varrho_1^2}{r^3}}{\left(1 - \frac{\varrho_2^2}{r^2}\right)^{\frac{n-3}{2}} \left(\frac{\varrho_2^2}{r^2}\right)^{\frac{-1}{2}} \frac{2\varrho_2^2}{r^3}} = \frac{(r^2 - \varrho_1^2)^{\frac{n-3}{2}} \varrho_1}{(r^2 - \varrho_2^2)^{\frac{n-3}{2}} \varrho_2^2},
$$

then consider for $n \geq 4$ that

$$
\frac{\bar{\omega}_1(r)B\left(\frac{n-1}{2},\frac{1}{2}\right)}{\left(1-\frac{\rho_1^2}{r^2}\right)^{\frac{n-3}{2}}} = \left(1-\frac{\rho_1^2}{r^2}\right)^{\frac{3-n}{2}} \int\limits_{0}^{1-\frac{\rho_1^2}{2}} t^{\frac{n-3}{2}} (1-t)^{\frac{-1}{2}} dt
$$

 \mathcal{L} Springer

$$
= \int_{0}^{1} s^{\frac{n-3}{2}} \left(1 - s \left(1 - \frac{\varrho_1^2}{r^2} \right) \right)^{\frac{-1}{2}} \left(1 - \frac{\varrho_1^2}{r^2} \right) ds
$$

\n
$$
= -2 \int_{0}^{1} s^{\frac{n-3}{2}} \frac{d}{ds} \left(\left(1 - s \left(1 - \frac{\varrho_1^2}{r^2} \right) \right)^{\frac{1}{2}} \right) ds
$$

\n
$$
= -2 \left(\frac{\varrho_1}{r} - \frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}} \left(1 - s \left(1 - \frac{\varrho_1^2}{r^2} \right) \right)^{\frac{1}{2}} ds \right)
$$

\n
$$
= \frac{2\varrho_1}{r} \left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}} \left(\frac{r^2}{\varrho_1^2} (1-s) + s \right)^{\frac{1}{2}} ds - 1 \right). \quad (5.2)
$$

From the two equations above we deduce

$$
\frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)} \frac{\bar{\omega}_2'(r)}{\bar{\omega}_1'(r)} = \frac{\frac{2\rho_1}{r} \left(1 - \frac{\rho_1^2}{r^2}\right)^{\frac{n-3}{2}} \left(\frac{n-3}{2} \int_0^1 s^{\frac{n-5}{2}} \left(\frac{r^2}{\rho_1^2} (1-s) + s\right)^{\frac{1}{2}} ds - 1\right)}{\frac{2\rho_2}{r} \left(1 - \frac{\rho_2^2}{r^2}\right)^{\frac{n-3}{2}} \left(\frac{n-3}{2} \int_0^1 s^{\frac{n-5}{2}} \left(\frac{r^2}{\rho_2^2} (1-s) + s\right)^{\frac{1}{2}} ds - 1\right)} \frac{\left(r^2 - \rho_1^2\right)^{\frac{n-3}{2}} \rho_2}{\left(\frac{n-3}{2} \int_0^1 s^{\frac{n-5}{2}} \left(\frac{r^2}{\rho_1^2} (1-s) + s\right)^{\frac{1}{2}} ds - 1}
$$
\n
$$
= \frac{\frac{n-3}{2} \int_0^1 s^{\frac{n-5}{2}} \left(\frac{r^2}{\rho_2^2} (1-s) + s\right)^{\frac{1}{2}} ds - 1}{\frac{n-3}{2} \int_0^1 s^{\frac{n-5}{2}} \left(\frac{r^2}{\rho_2^2} (1-s) + s\right)^{\frac{1}{2}} ds - 1} \ge 1,
$$

where in the last inequality we used $\varrho_1 < \varrho_2$. Thus, for $n \ge 4$ we have proved [\(5.1\)](#page-7-0). Assume now, that $n < 4$. It is easy to see that

$$
\bar{\omega}_1(r) - \bar{\omega}_2(r) = \frac{1}{B\left(\frac{n-1}{2},\frac{1}{2}\right)} \int\limits_{1-\frac{\rho_2^2}{r^2}}^{1-\frac{\rho_1^2}{r^2}}(1-t)^{\frac{-1}{2}}\,dt,
$$

hence differentiation leads to

$$
\begin{split} (\bar{\omega}'_1(r) - \bar{\omega}'_2(r)) B\left(\frac{n-1}{2}, \frac{1}{2}\right) \\ &= \left(1 - \frac{\varrho_1^2}{r^2}\right)^{\frac{n-3}{2}} \left(\frac{\varrho_1^2}{r^2}\right)^{\frac{-1}{2}} \frac{2\varrho_1^2}{r^3} - \left(1 - \frac{\varrho_2^2}{r^2}\right)^{\frac{n-3}{2}} \left(\frac{\varrho_2^2}{r^2}\right)^{\frac{-1}{2}} \frac{2\varrho_2^2}{r^3} \\ &= \frac{2}{r^{n-1}} \left((r^2 - \varrho_1^2)^{\frac{n-3}{2}} \varrho_1 - (r^2 - \varrho_2^2)^{\frac{n-3}{2}} \varrho_2\right). \end{split}
$$

² Springer

This is clearly negative for all *r* if $n = 2$ and $n = 3$, hence

$$
\frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)} \frac{\bar{\omega}_2'(r)}{\bar{\omega}_1'(r)} = \frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)} \left(\frac{\bar{\omega}_2'(r) - \bar{\omega}_1'(r)}{\bar{\omega}_1'(r)} + 1 \right) \ge \frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)} \ge 1
$$

proving (5.1) for $n \leq 3$.

Thus, $\frac{\bar{\omega}_1(r)}{\omega_2(r)}$ is strictly monotone decreasing in any dimension, hence $K = \bar{r}B$ follows from Lemma [4.3.](#page-6-1) \Box

Theorem 5.2 *Let* $0 < \varrho_1 < \varrho_2 < \bar{r}$ *and the dimension be n* $\neq 3$ *. If* K *is a convex* $\mathcal{L}_{\text{poly}}$ *body having* $\rho_2 \mathcal{B}$ *in its interior, and* $\mathcal{S}_{\varrho_1; \mathcal{K}} \equiv \mathcal{S}_{\varrho_1; \bar{r} \mathcal{B}}$, $\mathcal{S}_{\varrho_2; \mathcal{K}} \equiv \mathcal{S}_{\varrho_2; \bar{r} \mathcal{B}}$, then $\mathcal{K} \equiv \bar{r} \mathcal{B}$.

Proof Let $\bar{\omega}_1(r) = (r^2 - \rho_1^2)^{\frac{n-3}{2}} r^{2-n}$ and $\bar{\omega}_2(r) = (r^2 - \rho_2^2)^{\frac{n-3}{2}} r^{2-n}$ for every non-vanishing $r \in \mathbb{R}$, and define $\omega_1(x) := \bar{\omega}_1(|x|)$ and $\omega_2(x) := \bar{\omega}_2(|x|)$.

By formula [\(4.4\)](#page-4-1) in Lemma [4.2](#page-4-3) we have

$$
\int\limits_{\bar{r}\mathcal{B}\backslash\rho_1\mathcal{B}^n}\omega_1(x)\,dx=\frac{1}{|\mathbb{S}^{n-2}|}\int\limits_{\mathbb{S}^{n-1}}S_{\rho_1;\mathcal{K}}(u_{\xi})d\xi=\int\limits_{\mathcal{K}\backslash\rho_1\mathcal{B}^n}\omega_1(x)\,dx,
$$

and similarly

$$
\int\limits_{\bar{r}\mathcal{B}\setminus\varrho_2\mathcal{B}^n}\omega_2(x)\,dx=\frac{1}{|\mathbb{S}^{n-2}|}\int\limits_{\mathbb{S}^{n-1}}S_{\varrho_2;\mathcal{K}}(u_{\xi})d\xi=\int\limits_{\mathcal{K}\setminus\varrho_2\mathcal{B}^n}\omega_2(x)\,dx.
$$

With the notations in Lemma [4.3,](#page-6-1) these mean $V_1(\mathcal{K}) = V_1(\bar{r}\mathcal{B})$ and $V_2(\mathcal{K}) = V_2(\bar{r}\mathcal{B})$.

The ratio $\frac{\omega_1(x)}{\omega_2(x)} = \frac{\omega_1(|x|)}{\omega_2(|x|)}$ is obviously constant on every sphere, especially on \bar{r} ^{Sn−1}, and it is

$$
\frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)} = \begin{cases} \frac{\sqrt{r^2 - \varrho_2^2}}{\sqrt{r^2 - \varrho_1^2}} = \sqrt{1 - \frac{\varrho_1^2 - \varrho_2^2}{r^2 - \varrho_1^2}}, & \text{if } n = 2, \\ 1, & \text{if } n = 3, \\ \left(1 + \frac{\varrho_2^2 - \varrho_1^2}{r^2 - \varrho_2^2}\right)^{\frac{n-3}{2}}, & \text{if } n > 3. \end{cases}
$$

Thus, $\frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)}$ is strictly monotone if the dimension $n \neq 3$, hence $K \equiv \bar{r}B$ follows from Lemma 4.3 for dimensions other than 3.

This theorem leaves the question open in dimension 3 if $S_{\varrho_1;K} \equiv S_{\varrho_1; \bar{r} \bar{B}}$ and $S_{\varrho_2;K} \equiv$ $S_{\varrho_2;\vec{r},\mathcal{B}}$ imply $\mathcal{K} \equiv \vec{r}\mathcal{B}$. We have not yet tried to find an answer.

The following generalizes Theorem [3.1](#page-2-0) for most dimensions, but only for spheres.

Theorem 5.3 *Let* $\varrho_1, \varrho_2 \in (0, \bar{r})$ *and let* K *be a convex body in* \mathbb{R}^n *having* $\max(\varrho_1, \varrho_2)$ *B in its interior. If* $S_{\varrho_1; K} \equiv S_{\varrho_1; \bar{r} \mathcal{B}}$ and $C_{\varrho_2; K} \equiv C_{\varrho_2; \bar{r} \mathcal{B}}$, and

(1) *n* = 2 *or n* = 3*, or*

 (2) *n* \geq 4 *and* $\varrho_1 \leq \varrho_2$, *then* $K \equiv \overline{r}B$ *. Proof* Let $\bar{\omega}_1(r) = (r^2 - \rho_1^2)^{\frac{n-3}{2}} r^{2-n}$ and and $\bar{\omega}_2(r) = I_{\frac{r^2 - \rho_2^2}{2}}(\frac{n-1}{2}, \frac{1}{2})$ for every non-vanishing $r \in \mathbb{R}$, and define $\omega_1(\mathbf{x}) := \bar{\omega}_1(|\mathbf{x}|)$ and $\omega_2(\mathbf{x}) := \bar{\omega}_2(|\mathbf{x}|)$. By formula [\(4.4\)](#page-4-1) in Lemma [4.2](#page-4-3) we have

$$
\int\limits_{\bar{r}\mathcal{B}\backslash\rho_1\mathcal{B}^n}\omega_1(x)\,dx=\frac{1}{|\mathbb{S}^{n-2}|}\int\limits_{\mathbb{S}^{n-1}}S_{\rho_1;\mathcal{K}}(u_{\xi})d\xi=\int\limits_{\mathcal{K}\backslash\rho_1\mathcal{B}^n}\omega_1(x)\,dx,
$$

and by formula [\(4.3\)](#page-4-0) in Lemma [4.1](#page-4-2) we have

$$
\int\limits_{\bar{r} \mathcal{B} \setminus \varrho_2 \mathcal{B}^n} \omega_2(x) \, dx = \frac{\Gamma(\frac{n}{2})}{\pi^{n/2}} \int\limits_{\mathbb{S}^{n-1}} C_{\varrho_2; \mathcal{K}}(u_{\xi}) d\xi = \int\limits_{\mathcal{K} \setminus \varrho_2 \mathcal{B}^n} \omega_2(x) \, dx.
$$

With the notations in Lemma [4.3,](#page-6-1) these mean $V_1(\mathcal{K}) = V_1(\bar{r}\mathcal{B})$ and $V_2(\mathcal{K}) = V_2(\bar{r}\mathcal{B})$.

The ratio $\frac{\omega_2(x)}{\omega_1(x)} = \frac{\bar{\omega}_2(|x|)}{\bar{\omega}_1(|x|)}$ is obviously constant on every sphere, especially on $\bar{r} \mathbb{S}^{n-1}$, and it is

$$
\frac{\bar{\omega}_{2}(r)}{\bar{\omega}_{1}(r)} = \frac{\int_{0}^{1-\frac{e_{2}^{2}}{r^{2}}} \int_{t^{\frac{n-3}{2}}}^{t^{\frac{n-3}{2}}}(1-t)^{\frac{-1}{2}}dt}{(r^{2}-\rho_{1}^{2})^{\frac{n-3}{2}}r^{2-n}}
$$
\n
$$
= \frac{\frac{2\varrho_{2}}{r}\left(1-\frac{\varrho_{2}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2}\int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}}ds-1\right)}{\frac{1}{r}\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}}
$$
by (5.2)\n
$$
= 2\varrho_{1}\left(\frac{r^{2}-\varrho_{2}^{2}}{r^{2}-\varrho_{1}^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2}\int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}}ds-1\right)
$$
\n
$$
= 2\varrho_{1}\left(1+\frac{\varrho_{1}^{2}-\varrho_{2}^{2}}{r^{2}-\varrho_{1}^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2}\int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}}ds-1\right)
$$

if $n > 3$. For other values of *n* we have

$$
\frac{\bar{\omega}_2(r)}{\bar{\omega}_1(r)} = \frac{\int_0^{1 - \frac{\rho_2^2}{r^2}} t^{\frac{n-3}{2}} (1-t)^{\frac{-1}{2}} dt}{(r^2 - \rho_1^2)^{\frac{n-3}{2}} r^{2-n}} \n= \begin{cases}\n(r^2 - \rho_1^2)^{\frac{1}{2}} \int_0^{1 - \frac{\rho_2^2}{r^2}} t^{\frac{-1}{2}} (1-t)^{\frac{-1}{2}} dt, & \text{if } n = 2, \\
r \int_0^{1 - \frac{\rho_2^2}{r^2}} (1-t)^{\frac{-1}{2}} dt, & \text{if } n = 3.\n\end{cases}
$$

Thus, $\frac{\tilde{\omega}_2(r)}{\tilde{\omega}_1(r)}$ is strictly monotone increasing if $n = 2, 3$ and it is also strictly monotone increasing if *n* > 3 and $\varrho_1 \le \varrho_2$. In these cases Lemma [4.3](#page-6-1) implies $K \equiv \bar{r}B$.

This theorem leaves open the case when $q_1 > q_2$ in dimensions $n > 3$. We have not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [\[1,](#page-11-0) Conjecture 2] that in the plane*M*-equisectioned convex bodies coincide, but they were unable to justify this in full. 3 Nevertheless they proved, among others, that a D -isosectioned convex body K in the plane is a disc concentric to the disc *D*.

Having a convex body *K* that is sphere-isocapped with respect to two concentric spheres raises the problem if there is a concentric ball $\bar{r}B$ —obviously sphere-isocapped with respect to that two concentric spheres—that is sphere-equicapped to *K* with respect to that two concentric spheres. The very same problem exists also for bodies that are sphere-isosectioned with respect to two concentric spheres. So we have the following *range characterization* problems: Let $0 < \varrho_1 < \varrho_2$ and let $c_1 > c_2 > 0$ be positive constants. Is there a convex body K containing the ball $\varrho_2 \mathcal{B}$ in its interior and satisfying

(i) $c_1 \equiv \mathbf{C}_{\varrho_1; \mathcal{K}}$ and $c_2 \equiv \mathbf{C}_{\varrho_2; \mathcal{K}}$ (raised by Theorem [5.1\)](#page-6-0)? (ii) $c_1 \equiv S_{\rho_1; \mathcal{K}}$ and $c_2 \equiv S_{\rho_2; \mathcal{K}}$ (raised by Theorem [5.2\)](#page-9-1)? (iii) $c_1 \equiv S_{\varrho_1; \mathcal{K}}$ and $c_1 \equiv C_{\varrho_1; \mathcal{K}}$ (raised by Theorem [5.3\)](#page-9-0)?

In the plane if *M* is allowed to shrink to a point (empty interior), then $S_{M,K}$ is the X-ray picture at a point source [\[3\]](#page-12-0) investigated by Falconer in [\[2](#page-12-7)]. The method used in Falconer's article made Barker and Larman mention in [\[1](#page-11-0)] that in dimension 2 the convex body *K* can be determined from $S_{\mathcal{M}',\mathcal{K}}$ and $S_{\mathcal{M}',\mathcal{K}}$ if ∂*M* and ∂*M*^{*n*} are intersecting each other in a suitable manner. The method in the anticipated proof presented in [\[1\]](#page-11-0) decisively depends on the condition of proper intersection.

Finally we note that determining a convex body by its constant width and constant brightness [\[8](#page-12-8)] sounds very similar a problem as the ones investigated in this paper. Moreover also the result is analogous to Theorem [5.3.](#page-9-0)

Acknowledgments This research was supported by the European Union and co-funded by the European Social Fund under the project "Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences" of project number 'TÁMOP-4.2.2.A-11/1/KONV-2012-0073". The authors appreciate János Kincses for discussions of the problems solved in this paper.

References

1. Barker, J.A., Larman, D.G.: Determination of convex bodies by certain sets of sectional volumes. Discrete Math. **241**, 79–96 (2001)

³ Recently Kincses [\[5\]](#page-12-3) informed the authors in detail that he is very close to finish the construction of two different *D*-equisectioned convex bodies K_1 and K_2 in the plane for a disk *D*.

- 2. Falconer, K.J.: X-ray problems for point sources. Proc. Lond. Math. Soc. **46**, 241–262 (1983)
- 3. Gardner, R.J.: Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 58. Cambridge University Press, Cambridge (2006) (1st edition in 1996)
- 4. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)
- 5. Kincses, J.: Oral discussion (2013)
- 6. Kurusa, Á., Ódor, T.: Isoptic characterization of spheres, manuscript (2014)
- 7. Kurusa, Á., Ódor, T.: Spherical floating body, manuscript (2014)
- 8. Nakajima, S.: Eine charakteristicische Eigenschaft der Kugel. Jber. Dtsch. Math. Verein **35**, 298–300 (1926)
- 9. Ódor, T.: Rekonstrukciós, karakterizációs és extrémum problémák a geometriában. PhD dissertation, Budapest (1994) (in hungarian; title in english: Problems of reconstruction, characterization and extremum in geometry)
- 10. Ódor, T.: Ball characterizations by visual angles and sections, unpublished manuscript (2003)
- 11. Wikipedia: Beta function. http://en.wikipedia.org/wiki/Beta_function
- 12. Wikipedia: Gamma function. http://en.wikipedia.org/wiki/Gamma_function
- 13. Wikipedia: Spherical cap. http://en.wikipedia.org/wiki/Spherical_cap