Skip to main content
Log in

Effects of nanostructure on clean energy: big solutions gained from small features

  • Progress
  • Materials Science
  • Published:
Science Bulletin

Abstract

The increasing energy consumption and environmental concerns have driven the development of cost-effective, high-efficiency clean energy. Advanced functional nanomaterials and relevant nanotechnologies are playing a crucial role and showing promise in resolving some energy issues. In this view, we focus on recent advances of functional nanomaterials in clean energy applications, including solar energy conversion, water splitting, photodegradation, electrochemical energy conversion and storage, and thermoelectric conversion, which have attracted considerable interests in the regime of clean energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen J, Yu M, Wang Y et al (2014) Au@SiO2 core/shell nanoparticle-decorated TiO2 nanorod arrays for enhanced photoelectrochemical water splitting. Chin Sci Bull 59:2191–2198

    Article  Google Scholar 

  2. Han C, Li Z, Dou S (2014) Recent progress in thermoelectric materials. Chin Sci Bull 59:2073–2091

    Article  Google Scholar 

  3. Li Z, Zhou Y, Sun R et al (2014) Nanostructured SnO2 photoanode-based dye-sensitized solar cells. Chin Sci Bull 59:2122–2134

    Article  Google Scholar 

  4. Qiu J, Dawood J, Zhang S (2014) Hydrogenation of nanostructured semiconductors for energy conversion and storage. Chin Sci Bull 59:2144–2161

    Article  Google Scholar 

  5. Wang Z, Wu Y, Wang L et al (2014) Polarization behavior of microbial fuel cells under stack operation. Chin Sci Bull 59:2214–2220

    Article  Google Scholar 

  6. Wen R, Yue J, Ma Z et al (2014) Synthesis of Li4Ti5O12 nanostructural anode materials with high charge-discharge capability. Chin Sci Bull 59:2162–2174

    Article  Google Scholar 

  7. Wen Y, Huang C, Wang L et al (2014) Heteroatom-doped graphene for electrochemical energy storage. Chin Sci Bull 59:2102–2121

    Article  Google Scholar 

  8. Zhang WH, Cai B (2014) Organolead halide perovskites: a family of promising semiconductor materials for solar cells. Chin Sci Bull 59:2092–2101

    Article  Google Scholar 

  9. Chen XQ, Li Z, Bai Y et al (2015) Room-temperature synthesis of Cu2−x E (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells. Chem Eur J 21:1055–1063

    Article  Google Scholar 

  10. Chen XQ, Bai Y, Sun Q et al (2015) Ambient synthesis of one-dimensional/two-dimensional CuAgSe ternary nanotubes as high-performance counter electrodes of quantum-dot-sensitized solar cells. ChemPlusChem. doi:10.1002/cplu.201500466R201500461

    Google Scholar 

  11. Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951–954

    Article  Google Scholar 

  12. Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  13. Jeon NJ, Noh JH, Yang WS et al (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480

    Article  Google Scholar 

  14. Green MA, Emery K, Hishikawa Y et al (2013) Solar cell efficiency tables (version 42). Prog Photovolt 21:827–837

    Article  Google Scholar 

  15. Jackson P, Hariskos D, Lotter E et al (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20 %. Prog Photovolt 19:894–897

    Article  Google Scholar 

  16. Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2:591

    Google Scholar 

  17. Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402

    Article  Google Scholar 

  18. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  19. Navarro Yerga RM, Álvarez Galván MC, del Valle F et al (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2:471–485

    Article  Google Scholar 

  20. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  Google Scholar 

  21. Reece SY, Hamel JA, Sung K et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648

    Article  Google Scholar 

  22. Brillet J, Yum JH, Cornuz M et al (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photon 6:824–828

    Article  Google Scholar 

  23. Pinaud BA, Benck JD, Seitz LC et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002

    Article  Google Scholar 

  24. Osterloh FE, Parkinson BA (2011) Recent developments in solar water-splitting photocatalysis. MRS Bull 36:17–22

    Article  Google Scholar 

  25. Yamada Y, Miyahigashi T, Kotani H et al (2012) Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst. Energy Environ Sci 5:6111–6118

    Article  Google Scholar 

  26. Luo J, Im JH, Mayer MT et al (2014) Water photolysis at 12.3 % efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345:1593–1596

    Article  Google Scholar 

  27. Bonke SA, Wiechen M, MacFarlane DR et al (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8:2791–2796

    Article  Google Scholar 

  28. Kärkäs MD, Verho O, Johnston EV et al (2014) Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem Rev 114:11863–12001

    Article  Google Scholar 

  29. Wang CC, Li JR, Lv XL et al (2014) Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 7:2831–2867

    Article  Google Scholar 

  30. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  Google Scholar 

  31. Tian J, Sang Y, Yu G et al (2013) A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv Mater 25:5075–5080

    Article  Google Scholar 

  32. Ai H, Shi J, Chen J et al (2014) The preparation of nitrogen-doped TiO2 nanocrystals with exposed 001 facets and their visible-light photocatalytic performances. Chin Sci Bull 59:2199–2207

    Article  Google Scholar 

  33. Wang X, Yao X (2014) Pt-induced electrochemical growth of ZnO rods onto reduced graphene oxide for enhanced photodegradation performance. Chin Sci Bull 59:2208–2213

    Article  Google Scholar 

  34. Xiong J, Cheng G, Li G et al (2011) Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv 1:1542–1553

    Article  Google Scholar 

  35. Xiong J, Cheng G, Qin F et al (2013) Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem Eng J 220:228–236

    Article  Google Scholar 

  36. Xiong J, Jiao Z, Lu G et al (2013) Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties. Chem Eur J 19:9472–9475

    Article  Google Scholar 

  37. Cheng G, Xiong J, Stadler FJ (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37:3207–3213

    Article  Google Scholar 

  38. Xiong J, Cheng G, Lu Z et al (2011) BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances. CrystEngComm 13:2381–2390

    Article  Google Scholar 

  39. Xiong J, Dong Q, Wang T et al (2014) Direct conversion of Bi nanospheres into 3D flower-like BiOBr nanoarchitectures with enhanced photocatalytic properties. RSC Adv 4:583–586

    Article  Google Scholar 

  40. Zhang L, Wang W, Sun S (2014) Photocatalytic oxidation of ammonia by Bi2WO6 nanoplates using fluorescent light. Chin Sci Bull 59:2181–2185

    Article  Google Scholar 

  41. Xiong J, Li Z, Chen J et al (2014) Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu2O core-shell heteronanowires. ACS Appl Mater Interfaces 6:15716–15725

    Article  Google Scholar 

  42. Liu J, Liu H, Yang T et al (2014) Mesoporous carbon with large pores as anode for Na-ion batteries. Chin Sci Bull 59:2186–2190

    Article  Google Scholar 

  43. Singh P, Shiva K, Celio H et al (2015) Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ Sci 8:3000–3005

    Article  Google Scholar 

  44. Wang J, Eng C, Chen-Wiegart YK et al (2015) Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat Commun 6:7496

    Article  Google Scholar 

  45. Han C, Li Z, Li WJ et al (2014) Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. J Mater Chem A 2:11683–11690

    Article  Google Scholar 

  46. Zhang S, Li W, Tan B et al (2015) One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. J Mater Chem A 3:4793–4798

    Article  Google Scholar 

  47. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  48. Linares N, Silvestre-Albero AM, Serrano E et al (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43:7681–7717

    Article  Google Scholar 

  49. Manthiram A, Fu Y, Chung SH et al (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787

    Article  Google Scholar 

  50. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium–air battery electrolytes. Phys Chem Chem Phys 16:2801–2822

    Article  Google Scholar 

  51. Wang H, Park JD, Ren ZJ (2015) Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol 49:3267–3277

    Article  Google Scholar 

  52. Kilner JA, Burriel M (2014) Materials for intermediate-temperature solid-oxide fuel cells. Ann Rev Mater Res 44:365–393

    Article  Google Scholar 

  53. Li Z, Sun Q, Yao XD et al (2012) Semiconductor nanowires for thermoelectrics. J Mater Chem 22:22821–22831

    Article  Google Scholar 

  54. Hicks LD, Dresselhaus MS (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631–16634

    Article  Google Scholar 

  55. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  Google Scholar 

  56. Harman TC, Walsh MP, laforge BE et al (2005) Nanostructured thermoelectric materials. J Electron Mater 34:L19–L22

    Article  Google Scholar 

  57. Han C, Li Z, Lu GQ et al (2015) Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures. Nano Energy 15:193–204

    Article  Google Scholar 

  58. Han C, Sun Q, Cheng ZX et al (2014) ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic-n–p conductivity transition. J Am Chem Soc 136:17626–17633

    Article  Google Scholar 

  59. Chen XQ, Li Z, Dou SX (2015) Ambient facile synthesis of gram-scale copper selenide nanostructures from commercial copper and selenium powder. ACS Appl Mater Interfaces 7:13295–13302

    Article  Google Scholar 

  60. Chen X, Li Z, Yang J et al (2015) Aqueous preparation of surfactant-free copper selenide nanowires. J Colloid Interface Sci 442:140–146

    Article  Google Scholar 

  61. Liu C, Gallagher JJ, Sakimoto KK et al (2015) Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15:3634–3639

    Article  Google Scholar 

  62. Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102

    Article  Google Scholar 

  63. Li L, Zhao N, Wei W et al (2013) A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel 108:112–130

    Article  Google Scholar 

  64. Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2:206–211

    Article  Google Scholar 

  65. Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617

    Article  Google Scholar 

  66. Akia M, Yazdani F, Motaee E et al (2014) A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res J 1:16–25

    Article  Google Scholar 

  67. Chen WH, Lin BJ, Huang MY et al (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  Google Scholar 

  68. Zheng YJ, Chen SY, Lin Y et al (2013) Bio-inspired optimization of sustainable energy systems: a review. Math Probl Eng 2013:12

    Google Scholar 

  69. Bowen CR, Kim HA, Weaver PM et al (2014) Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 7:25–44

    Article  Google Scholar 

  70. Yan X, Liu Y, Zhao B et al (2013) Methanation over Ni/SiO2: effect of the catalyst preparation methodologies. Int J Hydrogen Energy 38:2283–2291

    Article  Google Scholar 

  71. Gong Z, Shen H, Wang Q et al (2013) Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels 6:36

    Article  Google Scholar 

  72. Zhang L, Xia G, Ge Y et al (2015) Ammonia borane confined by nitrogen-containing carbon nanotubes: enhanced dehydrogenation properties originating from synergetic catalysis and nanoconfinement. J Mater Chem A 3:20494–20499

    Article  Google Scholar 

  73. Briscoe J, Stewart M, Vopson M et al (2012) Nanostructured p–n junctions for kinetic-to-electrical energy conversion. Adv Energy Mater 2:1261–1268

    Article  Google Scholar 

Download references

Acknowledgments

Zhen Li acknowledges support from the Australian Research Council (ARC) through the Discovery Projects DP130102699 and DP130102274. Shixue Dou is grateful for support from ARC through the Linkage Project LP120200289. The authors would like to thank the support from the Institute for Superconducting and Electronic Materials (ISEM), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, and also thank Dr. Tania Silver for polishing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Han, C., Li, Z. et al. Effects of nanostructure on clean energy: big solutions gained from small features. Sci. Bull. 60, 2083–2090 (2015). https://doi.org/10.1007/s11434-015-0972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0972-z

Keywords

Navigation