Skip to main content
Log in

Heteroatom-doped graphene for electrochemical energy storage

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

The increasing energy consumption and environmental concerns due to burning fossil fuel are key drivers for the development of effective energy storage systems based on innovative materials. Among these materials, graphene has emerged as one of the most promising due to its chemical, electrical, and mechanical properties. Heteroatom doping has been proven as an effective way to tailor the properties of graphene and render its potential use for energy storage devices. In this view, we review the recent developments in the synthesis and applications of heteroatom-doped graphene in supercapacitors and lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  2. Dai L (2012) Functionalization of graphene for efficient energy conversion and storage. Accounts Chem Res 46:31–42

    Article  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  4. Huang X, Yin Z, Wu S et al (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  Google Scholar 

  5. Huang X, Qi X, Boey F et al (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  Google Scholar 

  6. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Cataly 2:781–794

    Article  Google Scholar 

  7. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  8. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  9. Nair R, Blake P, Grigorenko A et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  Google Scholar 

  10. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  11. Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356–358

    Article  Google Scholar 

  12. Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8:235–242

    Article  Google Scholar 

  13. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754

    Article  Google Scholar 

  14. Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  Google Scholar 

  15. Shin MK, Lee B, Kim SH et al (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun 3:650

    Article  Google Scholar 

  16. Zhao Y, Jiang C, Hu C et al (2013) Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7:2406–2412

    Article  Google Scholar 

  17. Zhao Y, Hu C, Hu Y et al (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angewe Chem Int Ed 124:11533–11537

    Article  Google Scholar 

  18. Chen P, Yang JJ, Li SS et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256

    Article  Google Scholar 

  19. Guo HL, Su P, Kang X et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1:2248

    Article  Google Scholar 

  20. Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916

    Article  Google Scholar 

  21. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  22. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  23. Jeon IY, Shin YR, Sohn GJ et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109:5588–5593

    Google Scholar 

  24. Chen J, Li C, Shi G (2013) Graphene materials for electrochemical capacitors. J Phys Chem Lett 4:1244–1253

    Article  Google Scholar 

  25. Cao X, Shi Y, Shi W et al (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168

    Article  Google Scholar 

  26. Zhu Y, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  Google Scholar 

  27. El-Kady MF, Strong V, Dubin S et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  Google Scholar 

  28. Wen Z, Wang X, Mao S et al (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616

    Article  Google Scholar 

  29. Wu ZS, Winter A, Chen L et al (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24:5130–5135

    Article  Google Scholar 

  30. Zhang C, Mahmood N, Yin H et al (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932–4937

    Article  Google Scholar 

  31. Wu ZS, Ren W, Wang DW et al (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  Google Scholar 

  32. Xu J, Wang K, Zu SZ et al (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  Google Scholar 

  33. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335

    Article  Google Scholar 

  34. Li X, Geng D, Zhang Y et al (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825

    Article  Google Scholar 

  35. Some S, Kim J, Lee K et al (2012) Highly air-stable phosphorus-doped n-type graphene field-effect transistors. Adv Mater 24:5481–5486

    Article  Google Scholar 

  36. Yang S, Zhi L, Tang K et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634–3640

    Article  Google Scholar 

  37. Reddy ALM, Srivastava A, Gowda SR et al (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342

    Article  Google Scholar 

  38. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33

    Article  Google Scholar 

  39. Deng D, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193

    Article  Google Scholar 

  40. Chang Y, Han G, Yuan J et al (2013) Using hydroxylamine as a reducer to prepare N-doped graphene hydrogels used in high-performance energy storage. J Power Sources 238:492–500

    Article  Google Scholar 

  41. Wu ZS, Ren W, Xu L et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Google Scholar 

  42. Jeong HM, Lee JW, Shin WH et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Article  Google Scholar 

  43. Xiao N, Lau D, Shi W et al (2013) A simple process to prepare nitrogen-modified few-layer graphene for a supercapacitor electrode. Carbon 57:184–190

    Article  Google Scholar 

  44. Wang DW, Wu KH, Gentle IR et al (2012) Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon 50:3333–3341

    Google Scholar 

  45. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  Google Scholar 

  46. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI et al (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131:5026–5027

    Article  Google Scholar 

  47. Zhang LL, Zhao X, Ji H et al (2012) Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energ Environ Sci 5:9618

    Article  Google Scholar 

  48. Lai L, Yang H, Wang L et al (2012) Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6:5941–5951

    Article  Google Scholar 

  49. Lai L, Wang L, Yang H et al (2012) Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy 1:723–731

    Article  Google Scholar 

  50. Zhao L, Qiu Y, Yu J et al (2013) Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale 5:4902–4909

    Article  Google Scholar 

  51. Chen CM, Zhang Q, Zhao XC et al (2012) Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J Mater Chem 22:14076

    Article  Google Scholar 

  52. Qiu Y, Zhang X, Yang S (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13:12554–12558

    Article  Google Scholar 

  53. Zheng B, Chen TW, Xiao FN et al (2013) KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor. J Solid State Electrochem 17:1809–1814

    Article  Google Scholar 

  54. Zhou M, Li X, Cui J et al (2012) Synthesis and capacitive performances of graphene/N-doping porous carbon composite with high nitrogen content and two-dimensional nanoarchitecture. Int J Electrochem Sci 7:9984–9996

    Google Scholar 

  55. Hu B, Wang K, Wu L et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Article  Google Scholar 

  56. Hassan FM, Chabot V, Li J et al (2013) Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J Mater Chem A 1:2904

    Article  Google Scholar 

  57. Jiang B, Tian C, Wang L et al (2012) Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction. Appl Surf Sci 258:3438–3443

    Article  Google Scholar 

  58. Bai Y, Rakhi RB, Chen W et al (2013) Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J Power Sources 233:313–319

    Article  Google Scholar 

  59. Sun L, Wang L, Tian C et al (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498

    Article  Google Scholar 

  60. Su P, Guo H, Peng S et al (2012) Preparation of nitrogen-doped graphene and its supercapacitive properties. Acta Phys-Chim Sin 28:2745–2753

    Google Scholar 

  61. Lee YH, Chang KH, Hu CC (2013) Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources 227:300–308

    Article  Google Scholar 

  62. Lee JW, Ko JM, Kim JD (2012) Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim Acta 85:459–466

    Article  Google Scholar 

  63. Cao H, Zhou X, Qin Z et al (2013) Low-temperature preparation of nitrogen-doped graphene for supercapacitors. Carbon 56:218–223

    Article  Google Scholar 

  64. You B, Wang L, Yao L et al (2013) Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun 49:5016–5018

    Article  Google Scholar 

  65. Han J, Zhang LL, Lee S et al (2012) Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 7:19–26

    Article  Google Scholar 

  66. Karthika P, Rajalakshmi N, Dhathathreyan K (2013) Phosphorus-doped exfoliated graphene for supercapacitor electrodes. J Nanosci Nanotechnol 13:1746–1751

    Article  Google Scholar 

  67. Pham VH, Hur SH, Kim EJ et al (2013) Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 49:6665–6667

    Article  Google Scholar 

  68. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  Google Scholar 

  69. Xu C, Xu B, Gu Y et al (2013) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 6:1388

    Article  Google Scholar 

  70. Wang H, Zhang C, Liu Z et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430

    Article  Google Scholar 

  71. Cai D, Wang S, Lian P et al (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium ion batteries. Electrochim Acta 90:492–497

    Article  Google Scholar 

  72. Shen Y, Zhang HB, Zhang H et al (2013) Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon 56:132–138

    Article  Google Scholar 

  73. Du M, Xu C, Sun J et al (2012) One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries. Electrochim Acta 80:302–307

    Article  Google Scholar 

  74. Wang X, Cao X, Bourgeois L et al (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium ion batteries. Adv Funct Mater 22:2682–2690

    Article  Google Scholar 

  75. Xu C, Sun J, Gao L (2012) Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale 4:5425–5430

    Article  Google Scholar 

  76. Zhang K, Han P, Gu L et al (2012) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664

    Article  Google Scholar 

  77. Cai D, Li D, Wang S et al (2013) High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium ion batteries. J Alloy Compd 561:54–58

    Article  Google Scholar 

  78. Li D, Shi D, Chen Z et al (2013) Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Adv 3:5003

    Article  Google Scholar 

  79. Li D, Shi D, Liu Z et al (2013) TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. J Nanopart Res 15:1–10

    Google Scholar 

  80. Nethravathi C, Rajamathi CR, Rajamathi M et al (2013) N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl Mater Interfaces 5:2708–2714

    Article  Google Scholar 

  81. Vinayan BP, Ramaprabhu S (2013) Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. J Mater Chem A 1:3865

    Article  Google Scholar 

  82. Wang X, Tian W, Liu D et al (2013) Unusual formation of α-Fe2O3 hexagonal nanoplatelets in N-doped sandwiched graphene chamber for high-performance lithium ions batteries. Nano Energy 2:257–267

    Article  Google Scholar 

  83. Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium ion batteries. Adv Mater 25:2152–2157

    Article  Google Scholar 

  84. Zhang L, Hao W, Wang H et al (2013) Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium ion anodes. J Mater Chem A 1:7601

    Article  Google Scholar 

  85. Zhang K, Wang H, He X et al (2011) A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. J Mater Chem 21:11916

    Article  Google Scholar 

  86. Mahmood N, Zhang C, Hou Y (2013) Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 9:1321–1328

    Article  Google Scholar 

  87. Zou F, Hu X, Sun Y et al (2013) Microwave-Induced in situ synthesis of Zn2GeO4/N-doped graphene nanocomposites and their lithium storage properties. Chem Eur J 19:6027–6033

    Article  Google Scholar 

  88. Wang ZL, Xu D, Wang HG et al (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422–2430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisa Hulicova-Jurcakova.

Additional information

SPECIAL ISSUE: Advanced Materials for Clean Energy

About this article

Cite this article

Wen, Y., Huang, C., Wang, L. et al. Heteroatom-doped graphene for electrochemical energy storage. Chin. Sci. Bull. 59, 2102–2121 (2014). https://doi.org/10.1007/s11434-014-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0266-x

Keywords

Navigation