Skip to main content

Advertisement

Log in

Selumetinib: a selective MEK1 inhibitor for solid tumor treatment

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cancer incidence is rapidly growing. Solid tumors are responsible for a majority of cancers. Recently, molecular-targeted agents have played a significant role in cancer treatment. Ras–Raf–MEK–ERK signaling pathway, is a substantial element in the survival, propagation, and drug resistance of human cancers. MEK is a specific part of the so-called cascade, and ERK proteins are its sole target. Furthermore, their downstream position in the Ras–ERK cascade, is noteworthy to direct their function in patients with upstream mutated genes. MEK1 mutations are responsible for initiating several solid tumors. Selumetinib (AZD6244) is a second-generation, selective, potent, and non-ATP competitive allosteric MEK1 inhibitor. The efficacy of selumetinib in various solid tumors such as colorectal cancer, lung cancer, neurofibroma, and melanoma is investigated. The present paper provides an overview of the MAPK cascade, the role of selumetinib as a MEK1/2 inhibitor, and the related findings of clinical trials for solid tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

BC:

Biliary tract cancer

ERα:

Estrogen receptor alpha

HCC:

Hepatocellular carcinoma

MEKi:

Mitogen-activated protein kinase inhibitor

NSCLC:

Non-small-cell lung cancer

PI3K:

Phosphoinositide 3-kinase

TSH:

Thyroid-stimulating hormone

US:

United States

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–42.

    Article  PubMed  Google Scholar 

  2. Itahashi K, Shimizu T, Koyama T, Kondo S, Fujiwara Y, Yamamoto N. Global trends in the distribution of cancer types among patients in oncology phase I trials, 1991–2015. Invest New Drugs. 2019;37:166–17.

    Article  PubMed  Google Scholar 

  3. Wang S, Liu X, Chen Y, Zhan X, Wu T, Chen B, et al. The role of SOX2 overexpression in prognosis of patients with solid tumors: a meta-analysis and system review. Medicine Baltimore. 2020;99:e19604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown SR, Hall A, Buckley HL, Flanagan L, De Castro DG, Farnell K, et al. Investigating the potential clinical benefit of Selumetinib in resensitising advanced iodine refractory differentiated thyroid cancer to radioiodine therapy ( SEL-I- METRY ): protocol for a multicentre UK single arm phase II trial. BMC Cancer. 2019;19(1):1–10.

    Article  Google Scholar 

  5. Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA - J Am Med Assoc. 2014;311:2397–24.

    Article  Google Scholar 

  6. Gupta A, Love S, Schuh A, Shanyinde M, Larkin JM, Plummer R, et al. DOC-MEK: a double-blind randomized phase II trial of docetaxel with or without selumetinib in wild-type BRAF advanced melanoma. Ann Oncol Elsevier Masson SAS. 2014;25:968–97. https://doi.org/10.1093/annonc/mdu054.

    Article  CAS  Google Scholar 

  7. Patel SP, Lazar AJ, Papadopoulos NE, Liu P, Infante JR, Glass MR, et al. Clinical responses to selumetinib (AZD6244; ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma. Cancer. 2013;119:799–80.

    Article  CAS  PubMed  Google Scholar 

  8. Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, et al. Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a Phase III, Multicenter, Randomized Trial (SUMIT). J Clin Oncol. 2018;36:1232–12.

    Article  CAS  PubMed  Google Scholar 

  9. Seto T, Hirai F, Saka H, Kogure Y, Yoh K, Niho S, et al. Safety and tolerability of selumetinib as a monotherapy, or in combination with docetaxel as second-line therapy, in Japanese patients with advanced solid malignancies or non-small cell lung cancer. Jpn J Clin Oncol. 2018;48:31–42.

    Article  PubMed  Google Scholar 

  10. Bridgewater J, Lopes A, Beare S, Duggan M, Lee D, Ricamara M, et al. A phase 1b study of Selumetinib in combination with Cisplatin and Gemcitabine in advanced or metastatic biliary tract cancer: The ABC-04 study. BMC Cancer. 2016;16:1–9. https://doi.org/10.1186/s12885-016-2174-8.

    Article  CAS  Google Scholar 

  11. Eroglu Z, Tawbi HA, Hu J, Guan M, Frankel PH, Ruel NH, et al. A randomised phase II trial of selumetinib vs selumetinib plus temsirolimus for soft-tissue sarcomas. Br J Cancer. 2015;112:1644–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu C, Lee S, Liu K, Hung Y, Wang C, Lin Y, et al. ScienceDirect Older age impacts on survival outcome in patients receiving curative surgery for solid cancer. Asian J Surg Elsevier Taiwan LLC. 2018;41:333–4. https://doi.org/10.1016/j.asjsur.2017.02.008.

    Article  Google Scholar 

  13. Coleman RL, Sill MW, Thaker PH, Bender DP, Street D, McGuire WP, et al. A phase II evaluation of selumetinib (AZD6244, ARRY-142886), a selective MEK-1/2 inhibitor in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2015;138:30–5. https://doi.org/10.1016/j.ygyno.2015.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greystoke A, Steele N, Arkenau H, Blackhall F, Haris N, Lindsay CR, et al. SELECT-3: a phase I study of selumetinib in combination with platinum-doublet chemotherapy for advanced NSCLC in the first-line setting. Nature. 2017;117(7):938–46. https://doi.org/10.1038/bjc.2017.271.

    Article  CAS  Google Scholar 

  15. Bernabé R, Patrao A, Carter L, Blackhall F, Dean E. Selumetinib in the treatment of non-small-cell lung cancer. Futur Oncol. 2016;12:2545–25.

    Article  Google Scholar 

  16. Deming DA, Cavalcante LL, Lubner SJ, Mulkerin DL, Loconte NK, Eickhoff JC, et al. A phase i study of selumetinib (AZD6244/ARRY-142866), a MEK1/2 inhibitor, in combination with cetuximab in refractory solid tumors and KRAS mutant colorectal cancer. Invest New Drugs. 2016;34:168–1.

    Article  CAS  PubMed  Google Scholar 

  17. Wilky BA, Rudek MA, Ahmed S, Laheru DA, Cosgrove D, Donehower RC, et al. A phase I trial of vertical inhibition of IGF signalling using cixutumumab, an anti-IGF-1R antibody, and selumetinib, an MEK 1/2 inhibitor, in advanced solid tumours. Br J Cancer. 2015;112:24–31.

    Article  CAS  PubMed  Google Scholar 

  18. Carvajal RD, Schwartz GK, Mann H, Smith I, Nathan PD. Study design and rationale for a randomised, placebo-controlled, double-blind study to assess the efficacy of selumetinib (AZD6244; ARRY-142886) in combination with dacarbazine in patients with metastatic uveal melanoma (SUMIT). BMC Cancer. 2015;15:1–9. https://doi.org/10.1186/s12885-015-1470-z.

    Article  CAS  Google Scholar 

  19. Gao JH, Wang CH, Tong H, Wen SL, Huang ZY, Tang CW. Targeting inhibition of extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) suppresses growth and angiogenesis of gastric cancer. Sci Rep Nature. 2015;5:1–13.

    Google Scholar 

  20. Ahmed Z, Timsah Z, Suen KM, Cook NP, Lee GR, Lin C-C, et al. Grb2 monomer–dimer equilibrium determines normal versus oncogenic function. Nat Commun. 2015;6:7354.

    Article  CAS  PubMed  Google Scholar 

  21. Hillig RC, Sautier B, Schroeder J, Moosmayer D, Hilpmann A, Stegmann CM, et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc Natl Acad Sci U S A. 2019;116:2551–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin CC, Wieteska L, Suen KM, Kalverda AP, Ahmed Z, Ladbury JE. Grb2 binding induces phosphorylation-independent activation of Shp2. Commun Biol. 2021;4(1):1–11. https://doi.org/10.1038/s42003-021-01969-7.

    Article  CAS  Google Scholar 

  23. Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, et al. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell. 2020;183:490-502.e18. https://doi.org/10.1016/j.cell.2020.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Naschberger A, Baradaran R, Rupp B, Carroni M. The structure of neurofibromin isoform 2 reveals different functional states. Nature. 2021;599:315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu D, Zhao W, Vallega KA, Sun SY. Managing acquired resistance to third-generation egfr tyrosine kinase inhibitors through co-targeting mek/erk signaling. Lung Cancer Targets Ther. 2021;12:1–10.

    Article  Google Scholar 

  27. Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007;6:391–40.

    Article  CAS  PubMed  Google Scholar 

  28. Jänne PA, Mann H, Ghiorghiu D. Study design and rationale for a randomized, placebo-controlled, double-blind study to assess the efficacy and safety of selumetinib in combination with docetaxel as second-line treatment in patients with kras-mutant advanced non-small cell lung cancer (S). Clin Lung Cancer. 2016;17:e1-4. https://doi.org/10.1016/j.cllc.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  29. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382:1430–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Espírito Santo V, Passos J, Nzwalo H, Carvalho I, Santos F, Martins C, et al. Selumetinib for plexiform neurofibromas in neurofibromatosis type 1: a single-institution experience. J Neurooncol. 2020;147:459–63. https://doi.org/10.1007/s11060-020-03443-6.

    Article  CAS  PubMed  Google Scholar 

  31. Wang TJC, Mehta MP. Low-grade glioma radiotherapy treatment and trials. Neurosurg Clin N Am. 2019;30:111–8. https://doi.org/10.1016/j.nec.2018.08.008.

    Article  CAS  PubMed  Google Scholar 

  32. Fangusaro J, Onar-thomas A, Poussaint TY, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF -aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma : a multicentre, phase 2 trial. Lancet Oncol. 2019;20:1011–10. https://doi.org/10.1016/S1470-2045(19)30277-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol. 2017;19:1135–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–14. https://doi.org/10.1016/S0140-6736(19)32319-0.

    Article  PubMed  Google Scholar 

  35. Do K, Speranza G, Bishop R, Khin S, Rubinstein L, Kinders RJ, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs. 2015;33:720–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bennouna J, Lang I, Valladares-Ayerbes M, Boer K, Adenis A, Escudero P, et al. A Phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest New Drugs. 2011;29:1021–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–24.

    Article  PubMed  Google Scholar 

  38. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–45. https://doi.org/10.1038/nature25183.

    Article  CAS  PubMed  Google Scholar 

  39. Hill A, Gupta R, Zhao D, Vankina R, Amanam I, Salgia R. Targeted therapies in non-small-cell lung cancer. Cancer Treat Res. 2019;178:3–43.

    Article  CAS  PubMed  Google Scholar 

  40. Subbiah V, Baik C, Kirkwood JM. Clinical development of BRAF plus MEK inhibitor combinations. Trends in Cance The Authors. 2020;6:797–81. https://doi.org/10.1016/j.trecan.2020.05.009.

    Article  CAS  Google Scholar 

  41. Melosky B, Bradbury P, Tu D, Florescu M, Reiman A, Nicholas G, et al. Lung Cancer Selumetinib in patients receiving standard pemetrexed and platinum-based chemotherapy for advanced or metastatic KRAS wildtype or unknown non- squamous non-small cell lung cancer : a randomized, multicenter, phase II study. Canadian Cancer. 2019;133:48–55.

    Google Scholar 

  42. Soria J-C, Fülöp A, Maciel C, Fischer JR, Girotto G, Lago S, et al. SELECT-2: a phase II, double-blind, randomized, placebo-controlled study to assess the efficacy of selumetinib plus docetaxel as a second-line treatment of patients with advanced or metastatic non-small-cell lung cancer. Ann Oncol. 2017;28:3028–30.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Das M. Selumetinib does not improve survival outcomes in NSCLC. Lancet Oncol. 2017;18:e313. https://doi.org/10.1016/S1470-2045(17)30363-7.

    Article  PubMed  Google Scholar 

  44. Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14:38–47. https://doi.org/10.1016/S1470-2045(12)70489-8.

    Article  CAS  PubMed  Google Scholar 

  45. Hainsworth JD, Cebotaru CL, Kanarev V, Ciuleanu TE, Damyanov D, Stella P, et al. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. J Thorac Oncol. 2010;5:1630–16. https://doi.org/10.1097/JTO.0b013e3181e8b3a3.

    Article  PubMed  Google Scholar 

  46. Mishra H, Mishra PK, Ekielski A, Jaggi M, Iqbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol. 2018;144:2283–30.

    Article  CAS  PubMed  Google Scholar 

  47. Robert C, Dummer R, Gutzmer R, Lorigan P, Kim KB, Nyakas M, et al. Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol. 2013;14:733–74. https://doi.org/10.1016/S1470-2045(13)70237-7.

    Article  CAS  PubMed  Google Scholar 

  48. Kirkwood JM, Bastholt L, Robert C, Sosman J, Larkin J, Hersey P, et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2012;18:555–6.

    Article  CAS  PubMed  Google Scholar 

  49. Beck D, Niessner H, Smalley KSM, Flaherty K, Paraiso KHT, Busch C, et al. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal. 2013;6:1–12.

    Article  Google Scholar 

  50. Grisanti S, Tura A. Uveal Melanoma. Noncutaneous Melanoma. Codon Publications; 2018. p. 1–18.

    Google Scholar 

  51. Chattopadhyay C, Kim DW, Gombos DS, Oba J, Qin Y, Williams MD, et al. Uveal melanoma: from diagnosis to treatment and the science in between. Cancer. 2016;122:2299–31.

    Article  PubMed  Google Scholar 

  52. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:96.

    Article  Google Scholar 

  53. Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, et al. Pancreatic cancer: yesterday, today and tomorrow. Futur Oncol. 2016;12:1929–46.

    Article  CAS  Google Scholar 

  54. Chung V, McDonough S, Philip PA, Cardin D, Wang-Gillam A, Hui L, et al. Effect of selumetinib and MK-2206 vs oxaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy. JAMA Oncol. 2017;3:51.

    Article  Google Scholar 

  55. Bodoky G, Timcheva C, Spigel DR, La Stella PJ, Ciuleanu TE, Pover G, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest New Drugs. 2012;30:1216–12.

    Article  CAS  PubMed  Google Scholar 

  56. Primrose JN, Fox RP, Palmer DH, Malik HZ, Prasad R, Mirza D, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol Lancet. 2019;20:663–7.

    Article  CAS  Google Scholar 

  57. Bridgewater JA, Goodman KA, Kalyan A, Mulcahy MF. Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Educ B [Internet]. 2016;35:e194-20.

    Article  Google Scholar 

  58. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JSW, et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J Clin Oncol. 2011;29:2357–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–13.

    Article  PubMed  Google Scholar 

  60. Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, Kamel IR, Ghasebeh MA, Pawlik TM. Hepatocellular carcinoma: from diagnosis to treatment. Surg Oncol. 2016;25:74–85.

    Article  PubMed  Google Scholar 

  61. Tai WM, Yong WP, Lim C, Low LS, Tham CK, Koh TS, et al. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). Ann Oncol Off J Eur Soc Med Oncol. 2016;27:2210–5.

    Article  CAS  Google Scholar 

  62. O’Neil BH, Goff LW, Kauh JSW, Strosberg JR, Bekaii-Saab TS, Lee RM, et al. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2011;29:2350–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem Bentham Science. 2017;17:152–63.

    Article  CAS  Google Scholar 

  64. Mokhlis HA, Bayraktar R, Kabil NN, Caner A, Kahraman N, Rodriguez-Aguayo C, et al. The modulatory role of MicroRNA-873 in the Progression of KRAS-driven cancers. Mol Ther - Nucleic Acids. 2019;14:301–17. https://doi.org/10.1016/j.omtn.2018.11.019.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou Y, Lin S, Tseng KF, Han K, Wang Y, Gan Z, hua, et al. Selumetinib suppresses cell proliferation, migration and trigger apoptosis, G1 arrest in triple-negative breast cancer cells. BMC Cancer. 2016;16:1–9. https://doi.org/10.1186/s12885-016-2773-4.

    Article  CAS  Google Scholar 

  66. Bosma NA, Singla AK, Downey CM, Jirik FR. Selumetinib produces a central core of apoptosis in breast cancer bone metastases in mice. Oncoscience. 2014;1:821–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ray-Coquard I, Serre D, Reichardt P, Martín-Broto J, Bauer S. Options for treating different soft tissue sarcoma subtypes. Futur Oncol. 2018;14:25–49.

    Article  CAS  Google Scholar 

  68. Sabnis GJ, Kazi A, Golubeva O, Shah P, Brodie A. Effect of selumetinib on the growth of anastrozole-resistant tumors. Breast Cancer Res Treat. 2013;138:699–708.

    Article  CAS  PubMed  Google Scholar 

  69. Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann Oncol. 2017;28(8):61–5.

    Article  Google Scholar 

  70. Farley J, Brady WE, Vathipadiekal V, Lankes HA, Coleman R, Morgan MA, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, Single-arm, Phase 2 study. Lancet Oncol. 2013;14:134–40. https://doi.org/10.1016/S1470-2045(12)70572-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bartholomeusz C, Oishi T, Saso H, Akar U, Liu P, Kondo K, et al. MEK1/2 Inhibitor Selumetinib (AZD6244) inhibits growth of ovarian clear Cell Carcinoma in a PEA-15–dependent manner in a mouse Xenograft Model. Mol Cancer Ther. 2012;11:360–9.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y-P, Chan ATC, Le Q-T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80.

    Article  PubMed  Google Scholar 

  73. Ma BBY, Lui VWY, Cheung CS, Lau CPY, Ho K, Hui EP, et al. Activity of the MEK inhibitor selumetinib (AZD6244; ARRY-142886) in nasopharyngeal cancer cell lines. Invest New Drugs. 2013;31:30–8.

    Article  CAS  PubMed  Google Scholar 

  74. Wilson BN, John AM, Handler MZ, Schwartz RA. Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol. 2021;84:1667–76. https://doi.org/10.1016/j.jaad.2020.07.105.

    Article  CAS  PubMed  Google Scholar 

  75. Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, et al. Activity of selumetinib in neurofibromatosis type 1–related plexiform neurofibromas. N Engl J Med. 2016;375:2550–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139–21.

    Article  CAS  PubMed  Google Scholar 

  77. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sohal DPS, Shrotriya S, Abazeed M, Cruise M, Khorana A. Molecular characteristics of biliary tract cancer. Crit Rev Oncol Hematol. 2016;107:111–8. https://doi.org/10.1016/j.critrevonc.2016.08.013.

    Article  PubMed  Google Scholar 

  79. Delire B, Stärkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest. 2015;45:609–62.

    Article  CAS  PubMed  Google Scholar 

  80. Hicks JK, Henderson-Jackson E, Duggan J, Joyce DM, Brohl AS. Identification of a novel MTAP-RAF1 fusion in a soft tissue sarcoma. Diagn Pathol Diagnostic Pathology. 2018;13:1–4.

    Google Scholar 

  81. Liu H, Nazmun N, Hassan S, Liu X, Yang J. BRAF mutation and its inhibitors in sarcoma treatment. Cancer Med. 2020;9:4881–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caumanns JJ, van Wijngaarden A, Kol A, Meersma GJ, Jalving M, Bernards R, et al. Low-dose triple drug combination targeting the PI3K/AKT/mTOR pathway and the MAPK pathway is an effective approach in ovarian clear cell carcinoma. Cancer Lett. 2019;461:102–11. https://doi.org/10.1016/j.canlet.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  83. Kun E, Tsang YTM, Ng CW, Gershenson DM, Wong KK. MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treat Rev. 2021;92:102137.

    Article  CAS  PubMed  Google Scholar 

  84. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nature. 2015;15:577–59. https://doi.org/10.1038/nrc4000.

    Article  CAS  Google Scholar 

  85. Kozar I, Margue C, Rothengatter S, Haan C, Kreis S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim Biophys Acta - Rev Cancer. 2019;1871:313–22. https://doi.org/10.1016/j.bbcan.2019.02.002.

    Article  CAS  PubMed  Google Scholar 

  86. Mek C, Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-kalabis M, et al. Article acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome. Cancer Cell. 2010;18:683–95. https://doi.org/10.1016/j.ccr.2010.11.023.

    Article  CAS  Google Scholar 

  87. Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. Annal Trans Med. 2017;5:1–12.

    Google Scholar 

  88. Sun C, Hobor S, Bertotti A, Zecchin D, Huang S, Galimi F, et al. Report intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Reports. 2014;7:86–93. https://doi.org/10.1016/j.celrep.2014.02.045.

    Article  CAS  PubMed  Google Scholar 

  89. Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 2015;47:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vitiello PP, Cardone C, Martini G, Ciardiello D, Belli V, Matrone N, et al. Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR / RAS / MAPK pathway in KRAS-mutated human colorectal cancer cell lines. J Exp Clin Cancer Res. 2019;38(1):1–12.

    Article  Google Scholar 

  91. Tsubaki M, Takeda T, Noguchi M, Jinushi M, Seki S. Overactivation of Akt contributes to MEK inhibitor primary and acquired resistance in colorectal cancer cells. Cancer. 2019;11(12):1866. https://doi.org/10.3390/cancers11121866.

    Article  CAS  Google Scholar 

  92. Kauko O, O’Connor CM, Kulesskiy E, Sangodkar J, Aakula A, Izadmehr S, et al. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aaq1093.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Meeusen B, Cortesi EE, Domènech Omella J, Sablina A, Ventura JJ, Janssens V. PPP2R4 dysfunction promotes KRAS-mutant lung adenocarcinoma development and mediates opposite responses to MEK and mTOR inhibition. Cancer Lett. 2021;520:57–67.

    Article  CAS  PubMed  Google Scholar 

  94. Bid HK, Kibler A, Phelps DA, Manap S, Xiao L, Lin J, et al. Development, characterization, and reversal of acquired resistance to the MEK1 Inhibitor Selumetinib (AZD6244) in an in vivo model of childhood astrocytoma. Clin Cancer Res. 2013;19:6716–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Faião-Flores F, Emmons MF, Durante MA, Kinose F, Saha B, Fang B, et al. HDAC inhibition enhances the in vivo efficacy of MEK inhibitor therapy in uveal melanoma. Clin Cancer Res. 2019;25:5686–701.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kemper K, De G PL, Peeper DS. Phenotype switching : tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res. 2014;74(24):5937–59.

    Article  CAS  PubMed  Google Scholar 

  97. Kitai H, Ebi H, Tomida S, Floros KV, Kotani H, Adachi Y, et al. Epithelial-to-mesenchymal transition defines feedback activation of receptor tyrosine Kinase signaling induced by MEK inhibition in KRAS -mutant lung cancer. Cancer Discov. 2016;6:754–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

R J and N M Z were involved in conception and manuscript design and made important revisions and confirmed final revision. M H, R J, and N M Z were involved in collection of data and manuscript writing. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Naime Majidi Zolbanin.

Ethics declarations

Conflicts of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayat, M., Jafari, R. & Majidi Zolbanin, N. Selumetinib: a selective MEK1 inhibitor for solid tumor treatment. Clin Exp Med 23, 229–244 (2023). https://doi.org/10.1007/s10238-021-00783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00783-z

Keywords

Navigation