Keywords

1 Introduction

Nanotechnology holds great promise to significantly impact the agricultural and food sectors by improving food security and productivity, which are required by the projected growth of the world's population (Husen, 2022, 2023; Husen & Siddiqi, 2023). In reality, the special characteristics of nanoscale materials make them appropriate candidates for the creation of new technologies to help sustainable agriculture (Fraceto et al., 2016). Using nanopesticides and nanofertilizers to boost production, improving soil quality, stimulating plant development using nanomaterials, and managing plant and soil health are just a few uses of nanotechnology in agriculture sectors. Novel nanomaterials based on inorganic and polymer improve plant productivity by immobilizing nutrients and their release as intelligent nanosystems. Zinc (Zn) is an essential micronutrient required for plant growth and development that performs vital metabolic reactions (Awan et al., 2021). In order to boost agricultural output and efficiency and minimize environmental impact, Zn can be administered to the soil in various ways, including zinc and zinc oxide nanoparticles (ZnONPs) as nanofertilizers (Mittal et al., 2020). ZnONPs are non-toxic, environmentally friendly, biologically safe and biocompatible, soluble, and sensitive compared to conventional ZnO fertilizers due to their nanoscale size and precise surface area. These nanofertilizers significantly impact corn's fatty acid profiles, yield, and plant development (Taheri et al., 2016).

ZnONPs improve soybean plants’ total plant growth and root biomass (De la Rosa et al., 2013). In lowland rice, using ZnONPs at sowing dramatically boosted plant height and demonstrated improved responsiveness to shoot length at maturity (Hosseini & Maftoun, 2008). Additionally, exposure to ZnONPs improves germination of seed, maize plant root length, and oat and berseem plant shoot length (Meena et al., 2017). Foliage spray of Zinc NPs can remarkably increase the leaf area and dry mass of maize (Taheri et al., 2016). ZnONPs promote Zn bioavailability to plants and gradually release fertilizer, which raises plant growth and dry matter and fresh and dry matter in the roots. This enhanced plant development by enhancing elemental absorption and nutrient utilization. In order to boost Zn availability for plant nutritional demands in Zn-deficient soils, traditional Zinc fertilizer can be replaced with ZnONPs. This increases fertilizer usage efficiency and can benefit the environment (Adil et al., 2022).

ZnONPs can modify the food and agriculture sector by enhancing productivity globally in reversing oxidative stress symptoms even under stressful conditions. Foliar application of conventional and ZnO nanofertilizers induces morpho-physiological characteristics and harvest index in sunflowers under water deficit stress, and seed treatment with such nanoparticles reduces salt stress in lupine plants (Abdel Latef et al., 2016; Asadazade et al., 2015). Under salt stress, it accelerates plant growth, yield, and antioxidant enzymes in wheat (Triticum aestivum) as foliar nanofertilizers (Babaeia et al., 2017). The positive effects of ZnONPs on the secretion of phosphorus mobilizing enzymes and gum concentrations in beans and the sustainable production of Atriplex halimus in saline habitats were demonstrated (Raliya & Tarafdar, 2013; Tawfik et al., 2017). Furthermore, it alleviates chilling stress and adverse effects of cadmium in Oryza sativa by regulating the antioxidant defense system and chilling response transcription factors, even greatly influencing the rhizospheric environment (Faizan et al., 2021a; Song et al., 2021). Hence, ZnONPs seem to modify interkingdom cell signaling processes relevant to crop performance and production (Anderson et al., 2017). However, the higher concentration of these nanoparticles adversely affects the plants suggesting the toxic effect on plant growth and metabolism in different periods of development (Faizan et al., 2021b; Liu et al., 2022). The high solubility of the particles, which led to cytotoxicity, oxidative stress, and mitochondrial dysfunction, was blamed for these harmful consequences. The degree of ZnONPs’ impact is influenced by increased nanoscale reactivity, dosage, plant species and age, exposure route and duration, and environmental factors, including pH and surface interactions with other soil components (Dimkpa et al., 2019a). Taken together, the present chapter explores the pragmatic and negative effect of ZnO nanofertilizer, its properties, and role in the antioxidant systems, and their efficient utilization in agriculture for future sustainability.

2 Synthesis Methods of Zn and ZnONPs

ZnONPs may be produced using various preparation techniques, including spray pyrolysis, vapor transfer, sol–gel, deposition, and hydrothermal processes. The biogenic production of ZnONPs currently frequently uses diverse plant extracts. Through this procedure, NPs of various sizes and shapes may be produced. Various synthesis methods and their properties are delineated in Fig. 1.

Fig. 1
A chart of Z n O properties includes stability, solubility, photostability, and electron mobility. These properties play a role in chemical and biological synthesis methods. Z n O finds application in agriculture for activities like promoting seed germination and enhancing plant growth.

Synthesis methods and properties of ZnO nanoparticles

2.1 Precipitation Method

Through the direct precipitation method, ZnONPs can be synthesized using zinc nitrate/acetate (0.2 M) and KOH/NaOH (0.4 M) as precursors (Ghorbani et al., 2015). In this method, zinc acetate solution in a beaker is placed on a magnetic stirrer with a hot plate at 30 °C for 40 min, after which NaOH (0.2 M) is added dropwise to the solution with constant stirring. Once the solution became white from the precipitation of ZnO and Zn(OH)2, it was agitated for an additional hour and then allowed to stand for 50 min. The previously synthesized zinc acetate dihydrate (0.1 M) can also be refluxed at 180 or 220 °C in diethylene glycol or trimethylene glycol to produce ZnONPs (Mahamuni et al., 2018). This technique has excellent yield, purity, surface effect, no requirement for organic solvents, simple repeatability, and low cost as its benefits.

2.2 Sol–Gel Method

Chelating chemicals are added after the metal alkoxide has been dissolved in an organic solvent to create a homogenous solution. Coating the substrate, followed by drying, thermal breakdown, and annealing, produces inorganic thin films. By employing zinc acetate dehydrate as a precursor, ethanol as a solvent, sodium hydroxide, and distilled water as a media, ZnONPs can be created (Hasnidawani et al., 2016). High purity and uniformity may be attained by using ethanol at a low temperature. In this liquid-phase synthesis, the dispersion can be stabilized by covering the particles with the appropriate ligands.

2.3 Hydrothermal Process

One of the most popular techniques for creating nanomaterials is this one. This is a solution-reaction strategy. Nanomaterials may be created at various temperatures, from very low to extremely high, regarding hydrothermal synthesis. Depending on the vapor pressure of the base composition in the reaction, either low or high-pressure conditions can influence the materials’ morphology (Bulcha et al., 2021). ZnONPs by hydrothermal method contain Zn(NO3)2⋅6H2O and NaOH precursors. 1 M NaOH aqueous ethanol solution is added dropwise to 0.6 M ethanol Zn(NO3)2⋅6H2O aqueous solution, which is placed in a magnetic stirrer for 45 min (Yong et al., 2020).

2.4 Vapor Transport Method

The following steps make up the synthesis process. First, when the precursor (ZnO:C) and substrate were suitably positioned in the tube furnace, the furnace temperature was increased from 22 °C (room temperature) to 900–1000 °C (growth temperature) over 15 min while maintaining a continuous flow of Ar (carrier gas) of 70–200 cm. The specific growth temperature was then maintained for reaction times varying from 30 to 120 min. The substrates were taken out when the tube furnace had cooled to room temperature. Growth, temperature, reaction time, and Ar flow rate all impact the creation of a product (Yu et al., 2010).

2.5 Spray Pyrolysis Method

When a solution is sprayed over a heated surface, the contents react to produce a chemical product, leaving behind a thin film. This process is known as spray pyrolysis. The chemical reactants are selected to make the target molecule and any additional products volatile at the deposition temperature. Spray pyrolysis may create ZnONPs at different concentrations between 5 and 25 weight percent. Under various atomizing pressures, precursor solution breakdown occurs at 800, 1000, and 1200 ºC (Ghaffariana et al., 2011).

2.6 Green Synthesis

The bioreduction of metal ions into their elemental form in the range of 1–100 nm size is accomplished by using plants or plant parts in ZnONPs green synthesis, which is an environmentally benign process. Zinc nitrate/acetate is added to the produced plant extracts using a magnetic stirrer for 120 min, and then dropwise additions of NaOH solution are made (Haripriya et al., 2018). For the manufacture of biogenic ZnONPs, the metabolites present in the aqueous plant extract serve as oxidizing, reducing, and capping agents (Godeto et al., 2023). By adjusting the reaction conditions, it is possible to optimize the size and form of NPs during their production using microorganisms. Aspergillus aeneus, Pichia kudriavzevii yeast strain, and Lactic acid bacteria are heavily utilized for the microbial-mediated production of ZnONPs for their antibacterial properties (Mohd Yusof et al., 2019, 2020).

3 Properties

ZnONPs are often found in clusters and come in a variety of forms, including rod-, star-, and isometric ones. Among the exceptional qualities are high chemical stability and solubility, high photostability, high electrochemical coupling coefficient, and a broad spectrum of radiation absorption. ZnO will concurrently be present in a formulation as a combination of solubilized Zn ions and a significant portion of undissolved ZnONPs, each exhibiting distinct diffusion and uptake properties. The dissolution rate describes the solubilization of ZnONPs in a certain fluid matrix over time, which is also relevant to nanoparticles. The dissolving rate will vary significantly depending on the fluid composition. ZnONPs have a variety of advantageous optoelectronic characteristics, including strong electron mobility, a broadband gap, and superior transparency. With a broadband gap of 3.37 eV and an exciton binding energy of up to 60 meV even at ambient temperature, ZnONPs are also known as n-type multi-functional semiconductor materials (Haque et al., 2020).

3.1 ZnONPs in Plant Growth, Development, and Productivity

Improving yield was necessary to feed a growing population and, at the same time, reduce the environmental impact of food production. Plant productivity hinges on environmental factors, the availability of nutrients in the soil and water, and the photosynthetic capacity of plants. Inappropriate use of fertilizers degrades the soil and results in poor yield. Replacing traditional Zn fertilizer with ZnONPs can help increase Zn availability for plant nutrient needs in Zn-deficient soils. Nanofertilizer provides the plant with nutrients and restores the soil to an organic state without the harmful factors of chemical fertilizer.

ZnONPs can be used as a fertilizer that is released in a controlled manner so that nutrients only reach plants and are not lost to unwanted targets such as soil, water, and microbes. A nanoscale zinc oxide particle promotes germination, growth, and yield in peanut and wheat plants (Prasad et al., 2012; Rizwan et al., 2019). Zinc nanoparticle delivery in maize boosts the plant's grain development, yield, and zinc content (Subbaiah et al., 2016). Different concentrations ZnONPs were applied to peanut seeds to promote germination of seed, seedling vigor, and plant growth. These ZnONPs also effectively promote stem and root growth in peanuts. The average particle size was 25 nm at 1000 ppm concentration.

Nanoparticles are introduced into the pores of the seed coat to increase the penetration of water molecules and stimulate the activity of starch-degrading and ROS-producing enzymes, which physiologically increase the germination of seeds (Javed et al., 2022). An organic synthesized cow dung-based nanomaterial has recently been reported for future good agricultural practices and seed preparation applications in the agricultural seed sector. Enhancing development and vigor depends heavily on NMs’ capacity to pierce the tough seed and let water inside. Additionally, a promising technique is nanotechnology's seed priming technology, which boosts the potential of high-yielding plants before seeding (Acharya et al., 2020; Anand et al., 2020). An antioxidant system that boosts phytohormones like indoleacetic acid (IAA) in roots as a result of foliar application of ZnONPs to Cicer arietinum promotes growth and root growth (Burman et al., 2013; Pandey et al., 2010). Similarly, applying ZnONPs to rice and pearl millet plants’ leaves boosted plant height, root length, and dry biomass (Song et al., 2021; Tarafdar et al., 2014).

According to a study on Capsicum annuum seeds treated with ZnONPs, germination rates, root length, and stem length, all increased (Afrayeem & Chaurasia, 2017). Researchers (Atteya et al., 2018; Gheith et al., 2018) discovered that jojoba and maize plants’ growth and yield metrics were improved by zinc treatment. The soil components may be impacted by the movement of ZnONPs, which will then impact plant structure. This study demonstrated the synergistic effect of compost and nanoparticles on the growth and yield of flax plants by increasing flax chlorophyll and related molecules, free amino acids, and carbohydrates (Sadak & Bakry, 2020). Treatment of flax plants with ZnO and nano-ZnO improved flax productivity growth, quantity, and quality. The rate of photosynthesis would rise with a more significant concentration of overall photosynthetic pigments and, boosting the process of output, which enhanced growth of plants (Tawfik et al., 2017).

Another study on ZnO-nanorod's impact on the symbiotic connection between P. indica and B. oleracea demonstrates a synergistic effect of P. indica and this nanorod on the growth of B. oleracea as well as the biomass of P. indica. Investigation on Arachis hypogaea has exhibited that exposure of seeds with ZnONPs enhances seed germination percentage and seedling vigor, causing earlier flowering and pod production by 34%. ZnONPs may enter plant cells due to their small size, which helps in seed germination and growth. In order to improve germination of seed and seedling growth, ZnONPs at low dosages can function as a seed priming agent (Srivastav et al., 2021). The ability to use ZnONPs as nanofertilizer in two Brassicaceae family species such as B. napus and Camelina sativa showed a positive effect on seed germination and improves vigor index, rootlet, and plumule growth (Sarkhosh et al., 2022). Venkatachalam et al., (2017a, 2017b) reported the plant growth-promoting role of ZnONPs coated with molecules in cotton with P supplementation. These nanoparticles increase wheat yield, plant height, root fresh and dry weight, and grain weight, indicating that applying ZnNPs is a more effective method of raising agricultural production (Adil et al., 2022). After adding ZnONPs in low and high doses to H. sativum grown in hydroponic systems, Voloshina et al. (2022) looked at the physiological and biochemical responses. The dose, plant species, age, exposure route, length of exposure, and environmental conditions, such as pH and surface interactions with other soil components, all influence the extent of the ZnONPs impact. Exposure route and duration have an impact on nanoscale reactivity as well (Dimkpa et al., 2020a, 2020b). Table 1 shows the effects of zinc and ZnONPs on several plant development metrics.

Table 1 Impact of zinc and zinc oxide nanoparticles in plant growth and development

3.2 Impact of ZnONPs on Antioxidant Enzymes

Based on the plant type, the dose, and duration, the antioxidant activity of enzymes in plants subjected to the harmful effects of ZnONPs varies substantially. Depending on the formation of ZnONPs, the comparative activity of antioxidant enzymes may cause the plant to begin a robust antioxidant response. According to studies, there is an increase in low-molecular-weight antioxidants. ZnONPs exhibit antioxidant capabilities because of the electron density transfer at the O atoms, which depends on the atomic arrangement (Zeghoud et al., 2022). Under stress, the concentration of proline, free amino acids, and total soluble sugars is essential for osmotic adjustment, protecting the structure of macromolecules and cell membranes. Increased levels of H2O2, MDA, and proline, as well as antioxidant enzyme activity (superoxide dismutase, catalase, and peroxidase) in rice plants, resulted in significantly higher levels of superoxide dismutase, catalase, and peroxidase gene expression (Song et al., 2021). The formation of O2 and OH radicals from hydrogen peroxide is catalyzed by superoxide dismutase (SOD), significantly reducing the toxicity caused by superoxide. It regulates ROS damage in addition to controlling ROS signaling. The direct or indirect effects of NPs on the SOD gene expression or ROS level might be due to an increase or reduction in superoxide dismutase activity (Voloshina et al., 2022). Because of its well-known function as a cofactor of SOD, zinc serves as an antioxidant and aids plants in quenching ROS. This element functions as a crucial cofactor or a part of the oxidative reactions in several enzymes. ZnONPs have been shown to affect tomato plant development, photosynthetic properties, and antioxidative enzymes, according to Wang et al. (2018).

The ascorbate–glutathione detoxification cycle for H2O2 and metal chelation include Glutathione (GSH), an essential non-enzymatic antioxidant. The quantity of synthesis and degradation of plants’ balance throughout development scenarios make up GSH's component part, which is a critical redox buffer for plant activity. Hordeum vulgare cultivated in hydroponic systems showed higher glutathione in roots and shoots by nanozinc oxide controlling plant growth indices (Voloshina et al., 2022). High Zn concentrations, however, primarily cause plants to impede root development, thicken, and disturb cell division. Superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase are antioxidant enzymes that help wheat and maize plants develop more successfully (Srivastav et al., 2021). High Zn concentrations, however, primarily cause plants to impede root development, thicken, and disturb cell division. Superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase are antioxidant enzymes that help wheat and maize plants develop more successfully.

3.3 Impact of ZnONPs Under Stress Situations

By modifying important physiological parameters, ZnONPs have been discovered to operate as a natural regulator for plants in both stressed and non-stressed environments, hence promoting plant growth and development. When developing fertilizers using nanotechnology for soil application, product effectiveness in field crop production may be impacted by unavoidable occurrences like dryness, which affects nutrient mobility in soil and, as a result, plant absorption. Indeed, the impact of drought on soil nutrient availability and agricultural yield continue to be disastrous in some parts of the world (Lesk et al., 2016; Moreno-Jiménez et al., 2019). Due to Zn's part in metabolic mechanisms that control water dynamics, it can mechanically minimize the effects of drought on crops (Dimkpa et al., 2017; Karim et al., 2012). For instance, plants create more abscisic acid (ABA) under water stress to maximize stomatal closure and preserve water. Zn is known to boost abscisic acid production in plants, improving its ability to regulate stomata when water is scarce (Karim & Rahman, 2015; Yang et al., 2018; Zengin, 2006).

Adding ZnONPs increased soybean percentage of seed germination and rate, while decreasing seed fresh and dry weight under drought stress. Additionally, when exposed to salt stress, ZnONPs significantly enhance sunflower and wheat plant growth and development (Song et al., 2021). By promoting wheat growth and Zn concentrations while lowering plant Cd concentrations, ZnONPs also reduced wheat's cadmium (Cd) toxicity.

Flag leaf and grain head were delayed by drought; however, Dimpka et al. (2019a) examined the acceleration of sorghum growth by ZnONPs, finding that ZnONPs reduced this delay. As a result, under drought conditions, the start of reproductive development in wheat was sped up in the presence of ZnONPs. The use of nanoscale micronutrients in field applications may be made more accessible, the problem of smaller and larger nutrient particle segregation in bulk fertilizer blends may be solved, and one-time Zn-urea application may be made easier by coating urea or other N-fertilizers with nano-scale micronutrients like Zn. Coating might not have a bigger impact on output than separate Zn and urea treatments. Therefore, increasing the coating effectiveness of ZnONPs by modifying the urea coating method will further enhance crop performance and Zn uptake. Also, Dimpka and coworkers (2019a) exhibited the positive influence of ZnONPs on shoot/root length, plant height, biomass, chlorophyll, grain yield, and uptake in wheat crops, under 40% field capacity of moisture.

The physiological and metabolic processes of rice are negatively impacted by cooling stress, which lowers the yield. However, by controlling the gene expression of transcription factors involved in the chilling reaction, ZnONPs applied topically to rice may effectively reduce the toxicity of chilling stress. This suggests that ZnONPs were crucial in controlling the chilling response. Additionally, ZnONPs exhibited significant and varied impacts on plant development and chlorophyll production, ultimately boosting antioxidant capability and ROS scavenging capabilities under freezing stress (Song et al., 2021).

Increased cropping system resilience, continued food/feed and nutrition security for humans and animals, and a reduction in nutrient losses and environmental pollution brought on by N-fertilizers are all strongly impacted by ZnONPs’ capacity to speed up plant development, increase yield, fortify edible grains with crucial nutrients like Zn, and improve N acquisition under drought stress. The induction of drought tolerance genes by ZnONPs, which effectively facilitated wheat deficiency tolerance, mitigates drought stress's undesirable effects, as reported by Sadati et al. (2022).

3.4 ZnONPs in Crop Protection

Crop plant diseases caused by microorganisms significantly affect productivity and yield loss. Zinc and copper nanoformulations have shown to be the top performers in creating various commercially available agricultural bio-/pesticides used to control weeds and plant diseases. Applying ZnONPs prevents Sclerospora graminicola from causing downy mildew in pearl millet, which is reduced by 35%. The study of defense enzymes revealed that the treatment with NPs noticeably increased the defense enzyme activities, namely, peroxidase, phenylalanine ammonia-lyase, lipoxygenase, and polyphenol oxidase. This showed that the defense enzyme genes were overexpressed in seedlings that had received treatment, indicating that ZnONPs could boost growth and generate systemic resistance in pearl millet against S. gramini (Nandhini et al., 2019). They function similarly to chemical pesticides and transport bioactive pesticide components, host defense-inducing chemicals, to the target pathogens (Khan et al., 2019). Nanoformulated zinc oxide was known for its potential to control citrus canker on sweet orange (Citrus sinensis) and ‘Ruby red’ grapefruit trees. Citrus scab and melanose, two fungal diseases that affect grapefruit, were also successfully treated by it. This success may be attributable to the translaminar transport of Zinkicide (Graham et al., 2016).

A new platform for environmentally friendly and efficient ways to manage plant diseases has been created by the green synthesis of nanoparticles, which enables the creation of nanoparticles containing bioactive compounds from plants and bacteria (Bachheti et al., 2023; Sabir et al., 2014). According to Wagner et al. (2016), zinc and ZnONPs are potent suppressors of spore germination of Peronospora tabacina and infectiousness on tobacco leaves. The growth of Hordeum vulgare L., the antioxidant defense system, and the expression of genes related to oxidative stress are all impacted by ZnONPs and their bulk form (Azarin et al., 2022). According to Thunugunta et al. (2018), ZnONPs can effectively increase aubergine development under greenhouse circumstances by enhancing seed germination, photosynthetic pigments, carbohydrates, protein and raising the activity of antioxidant enzymes. In place of synthetic fungicides, ZnONPs synthesized by Penicillium expansum prevented Fusarium wilt disease in grown aubergine (Solanum melongena), enhanced growth characteristics, and improved metabolic functions (Abdelaziz et al., 2022).

ZnONPs have been used to treat various plant diseases and acceleration of plant growth (Khan & Siddiqui, 2018; Siddiqui et al., 2018). The unique use of Syzygium aromaticum flower bud extract in the fabrication of ZnONPs allows for the control of Fusarium graminearum development and mycotoxins. The effectiveness of ZnONPs as an antifungal and anti-mycotoxin against Fusarium sp. may be attributed to elevated levels of lipid peroxidation, reactive oxygen species (ROS), and shifting ergosterol concentration, which changed the membrane integrity and shape of macroconidia (Lakshmeesha et al., 2019). The synthesis of metal nanoparticles using plant-derived saponins as efficient capping agents and their potential use as antibacterial and anticancer agents are reported in many publications (Nandhini et al., 2019). In order to prevent Tetranychus urticae oviposition, Pavela et al. (2017) created silver nanoparticles with saponin caps made from Saponaria officinalis root extract.

3.5 Impact of ZnONPs on the Environment

It is significant to note that the process utilized to create nanoparticles affects how dangerous they are. It has been demonstrated that ZnONPs have beneficial and adverse impacts on plant growth and metabolism at various developmental stages. They are absorbed, transported, and accumulated by plants depending on their anatomy and the characteristics of the NPs (Singh et al., 2018). The transfer of water and nutrients in plants’ above-ground tissues is halted by the root tissue's ability to absorb nanoparticles, pierce plant cell walls, enter the apoplast, and proceed to the aerial section. By causing cell cycle arrest and inducing apoptosis, which severely damages DNA and protects plants, the accumulation of such ZnONPs in leaf tissues also triggers a plant defense mechanism. Nanofertilizers enter the xylem vessels through the root epidermis and endodermis, then go to the aerial parts of the plant.

Furthermore, the phloem and leaf stomata can carry these nanoparticle nutrients to various plant parts. Arbuscular mycorrhizae have been shown by Wang et al. (2016) to reduce the detrimental effects of ZnONPs and zinc buildup in maize plants. Despite the benefits, studies show that nanoparticles pose potential environmental harm. ZnONPs dramatically decreased the biomass of ryegrass, shrank the root tip, and caused the root epidermal and cortical cells to become extensively vacuolated and collapse, according to toxicology tests. The bulk of ZnONPs remained attached to the root's surface, and particular NPs were also discovered in the root endodermis, stele, and apoplast. Toxic effects of ZnONPs on bacteria, Daphnia magna, and freshwater microalga were also reported (Sabir et al., 2014). The photosynthesis features may be significantly hampered by a highly high NP concentration, which might stunt or even kill plant development. Therefore, there has to be a thorough reexamination of NP release into the environment, NP contact with plants, and NP effects on plants, ecosystems, and the overall environment.

4 Conclusion

The early availability of nutrients to roots and, subsequently, an improvement in crop yield are made possible by metal and metal oxide nano-fertilizers, which offer enormous potential in sustainable agriculture. Excessive amounts of nanoparticles are inadequate for plants, although their traces might benefit them. Therefore, there is a need for further study to comprehend the molecular mechanism of plant nanoparticle interaction in order for nanotechnology to improve agricultural productivity in the future and assure food security.