Skip to main content

Biochemistry of microbial degradation

  • Book
  • © 1994

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Life on the planet depends on microbial activity. The recycling of carbon, nitrogen, sulphur, oxygen, phosphate and all the other elements that constitute living matter are continuously in flux: microorganisms participate in key steps in these processes and without them life would cease within a few short years. The comparatively recent advent of man-made chemicals has now challenged the environment: where degradation does not occur, accumulation must perforce take place. Surprisingly though, even the most recalcitrant of molecules are gradually broken down and very few materials are truly impervious to microbial attack. Microorganisms, by their rapid growth rates, have the most rapid turn-over of their DNA of all living cells. Consequently they can evolve altered genes and therefore produce novel enzymes for handling "foreign" compounds - the xenobiotics - in a manner not seen with such effect in other organisms. Evolution, with the production of micro-organisms able to degrade molecules hitherto intractable to breakdown, is therefore a continuing event. Now, through the agency of genetic manipulation, it is possible to accelerate this process of natural evolution in a very directed manner. The time-scale before a new microorganism emerges that can utilize a recalcitrant molecule has now been considerably shortened by the application of well-understood genetic principles into microbiology. However, before these principles can be successfully used, it is essential that we understand the mechanism by which molecules are degraded, otherwise we shall not know where best to direct these efforts.

Similar content being viewed by others

Keywords

Table of contents (17 chapters)

Editors and Affiliations

  • Department of Applied Biology, University of Hull, Hull, UK

    Colin Ratledge

Bibliographic Information

  • Book Title: Biochemistry of microbial degradation

  • Editors: Colin Ratledge

  • DOI: https://doi.org/10.1007/978-94-011-1687-9

  • Publisher: Springer Dordrecht

  • eBook Packages: Springer Book Archive

  • Copyright Information: Springer Science+Business Media Dordrecht 1994

  • Hardcover ISBN: 978-0-7923-2273-3Published: 31 December 1993

  • Softcover ISBN: 978-94-010-4738-8Published: 25 October 2012

  • eBook ISBN: 978-94-011-1687-9Published: 06 December 2012

  • Edition Number: 1

  • Number of Pages: XIX, 590

  • Topics: Biochemistry, general, Terrestrial Pollution

Publish with us