Skip to main content

Formation and function of biosurfactants for degradation of water-insoluble substrates

  • Chapter
Biochemistry of microbial degradation

Abstract

The degradation of water-immiscible substrates has been intensively studied over the last two decades. Many reports have sought answers to questions of how microorganisms adapt to enable them to metabolize such strongly hydrophobic substrates as n-alkanes. Enzymes involved in the respective metabolisms, their encoding and aspects of their regulation, as well as morphological alterations caused by alkane substrate, are well documented and are discussed in Chapter 1. This interest on alkane metabolism originates partly from commercial applications (Bühler and Schindler 1984; Ratledge 1988). Additionally, increasing environmental pollution by petroleum, its composites or oily derivatives are a new challenge to maintain the environment by biological means. The slow degradation of petroleum composites originates in their chemically inert structure, hydrophobicity and partial toxicity and thereof, special complex mechanisms of cell adaptations have been demanded.

Dedicated to Professor Dr H.-P. Kleber on the occasion of his 55th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asmer HJ, Lang S, Wagner F and Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J. Am. Oil. Chem. Soc. 65: 1460–1466.

    Article  CAS  Google Scholar 

  • Atkit J, Cooper DG, Manninen KI and Zajic JE (1981) Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Current Microbiol. 6: 145–150.

    Article  Google Scholar 

  • Batrakov SG, Rozynov BV, Koronelli TV and Bergelson DL (1981) Two novel types of trehalose lipids. Chem. Phys. Lipids. 29: 241–266.

    Article  CAS  Google Scholar 

  • Bhattacharjee SS, Haskins RH and Gorin PAJ (1970) Location of acyl groups on two partly acylated glycolipids from strains of Ustilago (smut fungi). Carbohydrate Res. 13: 235–246.

    Article  CAS  Google Scholar 

  • Borneleit P, Hermsdorf T, Claus R, Walther P and Kleber H-P (1988) Effect of hexadecaneinduced vesiculation on the outer membrane of Acinetobactercalcoaceticus. J. Gen. Microbiol. 134: 1983–1992.

    PubMed  CAS  Google Scholar 

  • Boulton CA and Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: A Wiseman (ed) Topics Enz. Ferment. Biotechnol., Vol 9 (pp 11–77). John Wiley and Sons, New York, Chichester, Brisbane, Toronto.

    Google Scholar 

  • Breithaupt TB and Light RJ (1982) Affinity chromatography and further characterization of the glycosyltransferases involved in hydroxydocosanoic acid sophoroside production in Candida bogoriensis. J. Biol. Chem. 257: 9622–9628.

    PubMed  CAS  Google Scholar 

  • Bucholtz ML and Light RJ (1976) Acetylation of 13-sophorosyloxydocosanoic acid by an acetyltransferase purified from Candida bogoriensis J. Biol. Chem. 252: 424–430.

    Google Scholar 

  • Bühler M and Schindler J (1984) Aliphatic hydrocarbons. In: H-J Rehm and G Reed (eds) Biotechnology, Vol 6a (pp 329–385). Verlag Chemie, Weinheim.

    Google Scholar 

  • Burger MM, Glaser L and Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem. 238: 2595–2602.

    PubMed  CAS  Google Scholar 

  • Cameotra SS and Singh HD (1990) Uptake of volatile n-alkanes by Pseudomonas PG-1. J. Biosci. 15:313–322.

    Article  CAS  Google Scholar 

  • Cameron DR, Cooper DG and Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 54: 1420–1425.

    PubMed  CAS  Google Scholar 

  • Cirigliano MC and Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 50: 846–850.

    PubMed  CAS  Google Scholar 

  • Claus R, Käppeli O and Fiechter A (1984) Possible role of extra-cellular membrane particles in hydrocarbon utilization by Acinetobacter calcoaceticus 69-V. J. Gen. Microbiol. 130:1035–1039.

    CAS  Google Scholar 

  • Cooper DG (1984) Unusual aspects of biosurfactant production. In: C Ratledge, P Dawson and J Rattray (eds) Biotechnology for the Oils and Fats Industry. Am. Oil. Chem. Soc. Monograph no 11 (pp 281–287). Am. Oil. Chem. Soc, Champaign, Illinois.

    Google Scholar 

  • Cooper DG and Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53: 224–229.

    PubMed  CAS  Google Scholar 

  • Cooper DA and Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol. 47: 173–176.

    PubMed  CAS  Google Scholar 

  • Cooper DA and Zajic JE (1980) Surface active compounds from microorganisms. Adv. Appl. Microbiol. 26: 229–253.

    Article  CAS  Google Scholar 

  • Cutler AJ and Light RJ (1979) Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. J. Biol. Chem. 254: 1944–1950.

    PubMed  CAS  Google Scholar 

  • de Andres C, Espuny MJ, Robert M, Mercade ME, Manresa A and Guinea J (1991) Cellular lipid accumulation by Pseudomonas aeruginosa 44T1. Appl. Microbiol. Biotechnol. 35: 813–816.

    Article  Google Scholar 

  • Deml G, Anke T, Oberwinkler F, Gianetti BM and Steglich W (1980) Schizonellin A and B, new glycolipids from Schizonella melanogramma. Phytochemistry 19: 83–87.

    Article  CAS  Google Scholar 

  • de Roubin MR, Mulligan CN and Gibbs BF (1989) Correlation of enhanced surfactin production with decreased isocitrate dehydrogenase activity. Can. J. Microbiol. 35: 854–859.

    Article  Google Scholar 

  • Duvnjak Z and Kosaric N (1985) Production and release of surfactant by Corynebacterium lepus in hydrocarbon and glucose media. Biotechnol. Lett. 7: 793–796.

    Article  CAS  Google Scholar 

  • Duvnjak Z, Cooper DG and Kosaric N (1982) Production of surfactant by Arthrobacter paraffineus ATCC 19558. Biotechnol. Bioeng. 24: 165–175.

    Article  PubMed  CAS  Google Scholar 

  • Esders TW and Light RJ (1972a) Glycosyl-and acety-transferases involved in the biosynthesis of glycolipids from Candida bogoriensis. J. Biol. Chem. 247: 1375–1386.

    PubMed  CAS  Google Scholar 

  • Esders TW and Light RJ (1972b) Characterization and in vivo production of three glycolipids from Candida bogoriensis. 13-Glucopyranosylglucopyranosyloxydocosanoic acid and its mono-and di-acetylated derivatives. J. Lipid Res. 13: 663–671.

    PubMed  CAS  Google Scholar 

  • Frautz B, Lang S and Wagner F (1986) Formation of cellobiose lipids by growing and resting cells of Ustilago maydis. Biotechnol. Lett. 11: 757–762.

    Article  Google Scholar 

  • Gilewicz M, Monpert G, Acquaviva M, Mille G and Bertrand J-C (1991) Anaerobic oxidation of 1-n-heptedecene by a marine denitrifying bacterium. Appl. Microbiol. Biotechnol. 36: 252–256.

    Article  CAS  Google Scholar 

  • Göbbert U, Lang S and Wagner F (1984) Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol. Letters 6: 225–230.

    Article  Google Scholar 

  • Göbbert U, Schmeichel A, Lang S and Wagner F (1988) Microbial transesterification of sugar corynomycolates. J. Am. Oil. Chem. Soc. 65: 1519–1525.

    Article  Google Scholar 

  • Goclik E, Müller-Hurtig R and Wagner F (1990) Influence of the glycolipid-producing bacterium Rhodococcus erythropolis on the degradation of a hydrocarbon mixture by an original soil population. Appl. Microbiol. Biotechnol. 34: 122–125.

    Article  CAS  Google Scholar 

  • Goswami P and Singh HD (1991) Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol. Bioeng. 37: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Guerra-Santos L, Käppeli O and Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in contiuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301–305.

    PubMed  CAS  Google Scholar 

  • Guerra-Santos LH, Käppeli O and Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24: 443–448.

    Article  CAS  Google Scholar 

  • Gutnick DL, Allon R, Levy C, Petter R and Minas W (1991) Applications of Acinetobacter as an industrial microorganism. In: J Towner, E Bergogne-Berezin and CA Fewson (eds) The Biology of Acinetobacter (pp 411–441). Plenum Press, New York, London.

    Google Scholar 

  • Haferburg D, Hommel R, Claus R and Kleber H-P (1986) Extracellular microbial lipids as biosurfactants. Adv. Biochem. Engin./Biotechnol. 33: 53–93.

    Article  CAS  Google Scholar 

  • Haferburg D, Hommel R and Kleber H-P (1989) Biotechnologie extrazellulärer microbieller Glycolipide. Wiss. Z. Univ. Leipzig, Math.-natwiss. Reihe 38: 303–311.

    CAS  Google Scholar 

  • Heinz E, Tulloch AP and Spencer JFT (1969) Stereospecific hydroxylation of long chain compounds by a species of Torulopsis. J. Biol. Chem. 244: 882–888.

    PubMed  CAS  Google Scholar 

  • Heinz E, Tulloch AP and Spencer JFT (1970) Hydroxylation of oleic acid by cell-free extracts of a species of Torulopsis. Biochim. Biophys. Acta. 202: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Hisatsuka K, Nakahara T, Minoda Y and Yamada K (1977) Formation of protein-like activator for n-alkane oxidation and its properties. Agric. Biol. Chem. 41: 445–450.

    Article  CAS  Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N and Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35: 686–692.

    Article  Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation 1:107–119.

    Article  PubMed  CAS  Google Scholar 

  • Hommel R and Ratledge C (1990) Evidence for two fatty alcohol oxidases in the biosurfactantproducing yeast Candida (Torulopsis) bombicola. FEMS Microbiol.Letters. 70: 183–186.

    CAS  Google Scholar 

  • Hommel R and Ratledge C (1992) Biosynthetic Mechanisms to Low Molecular Weight Surfactants and their Precursor Molecules. In: N Kosaric (ed) Biosurfactants: Production-Properties-Application (pp 3–63). Marcel Dekker, New York.

    Google Scholar 

  • Hommel R, Stüwer O, Stuber W, Haferburg D and Kleber H-P (1987) Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl. Microbiol. Biotechnol. 26: 199–205.

    Article  CAS  Google Scholar 

  • Hommel R, Stegner S, Ziebolz C, Weber L and Kleber H-P (1990) Effect of cerulenin on growth and glycolipid production of Candida apicola. Microbios. Letters 45: 41–47.

    CAS  Google Scholar 

  • Hommel R, Lassner D, Weiss J and Kleber H-P (1992) The microsomal fatty alcohol oxidase of the sophorose lipid producing strain Candida (Torulopsis) apicola, (submitted to Appl. Environ. Microbiol.).

    Google Scholar 

  • Iguchi J, Takeda I and Okasawa H (1969) Emulsifying factor of hydrocarbon assimilating yeast. Agric. Biol. Chem. 33: 1657–1658.

    Article  CAS  Google Scholar 

  • Ioneda T, Silva CL and Gesztesi J-L (1981) Mycolic acid containing glycolipids of Nocardiae and related organisms. Zbl. Bakt. Suppl. 11: 401–406.

    CAS  Google Scholar 

  • Ishigami Y, Kamada T, Gama Y, Kaise M, Iwahasi H and Someya J (1989) Correlation of synthetic corynomycolic acids as biosurfactant between their surface-active properties and its function of biomembranes. J. Jap. Oil Chem. Soc. 38: 1001–1006.

    Article  CAS  Google Scholar 

  • Ito S and Inoue S (1982) Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl. Environ. Microbiol. 43: 1278–1283.

    PubMed  CAS  Google Scholar 

  • Ito S, Kinta M and Inoue S (1980) Growth of yeasts on n-alkanes: inhibition by a iactonic sophorolipid produced by Torulopsis bombicola. Agric. Biol. Chem. 44: 2221–2223.

    Article  CAS  Google Scholar 

  • Itoh S and Suzuki T (1972) Effects of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric. Biol. Chem. 36: 2233–2235.

    Article  CAS  Google Scholar 

  • Itoh S and Suzuki T (1974) Fructose-lipids of Arthrobacter, Corynebacteria, Nocardia and Mycobacteria grown on fructose. Agric. Biol. Chem. 38: 1443–1449.

    Article  CAS  Google Scholar 

  • Itoh S, Honda H, Tomita F, and Suzuki T (1971) Rhamnolipid produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 24: 855–859.

    Article  CAS  Google Scholar 

  • Jenny K, Käppeli O and Fiechter A (1991) Biosurfactants from Bacillus licheniformis: structural analysis and characterization. Appl. Microbiol. Biotechnol. 36: 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Käppeli O and Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter sp. J. Bacteriol. 140: 707–712.

    PubMed  Google Scholar 

  • Kaneda T (1977) Fatty acids of the genus Bacillus: Example of branched chain preference. Bacteriol. Rev. 41: 391–418.

    PubMed  CAS  Google Scholar 

  • Kawashima H, Nakahara T, Oogaki M and Tabuchi T (1983) Extra-cellular production of a mannosyl-erythritol lipid of a mutant of Candida sp. from n-alkanes and triacylglycerols. J. Ferment. Technol. 61: 143–148.

    CAS  Google Scholar 

  • Kirk PW and Gordon AS (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80: 776–782.

    Article  CAS  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C and Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric. Biol. Chem. 54: 31–36.

    Article  CAS  Google Scholar 

  • Kitamoto D, Nakane T, Najao N, Nakahara T and Tabuchi T (1992) Intracellular accumulation of mannosylerythritol lipids as storage materials by Candida antarctica. Appl. Microbiol. Biotechnol. 36: 768–772.

    Article  CAS  Google Scholar 

  • Kleber H-P, Asperger O, Stüwer O, Stüwer B and Hommel R (1989) Occurrence and regulation of cytochrome P-450 in Torulopsis apicola. In: I Schuster (ed) Cytochrome P-450: Biochemistry and Biophysics, (pp 169–172). Taylor and Francis, London, New York, Philadelphia.

    Google Scholar 

  • Kluge B, Vater J, Salnikow J and Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 231: 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ito S and Okamoto K (1987) Production of mannosylerytritol by Candida sp. KSM-1529. Agric. Biol. Chem. 51: 1715–1716.

    Article  CAS  Google Scholar 

  • Koch AK, Käppeli O, Fiechter A and Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173: 4212–4219.

    PubMed  CAS  Google Scholar 

  • Koronelli TV, Komarova TI and Debisov YV (1983) The chemical composition of Pseudomonas aeruginosa proteoglycolipid and its role in the process of hydrocarbon assimilation. Mikrobiologiya 53: 767–770.

    Google Scholar 

  • Kretschmer A and Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Biochim. Biophys. Acta. 753: 306–313.

    Article  CAS  Google Scholar 

  • Kretschmer A, Bock H and Wagner F (1982) Chemical and physical characterization of interfacialactive lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol. 44: 864–870.

    PubMed  CAS  Google Scholar 

  • Lang S and Wagner F (1987) Structure and properties of biosurfactants. In: N Kosaric, WL Cairns and WL Gray (eds) Surfactant Science Series. Biosurfactants and Biotechnology, Vol 25 (pp 21–45). Marcel Dekker, New York, Basel.

    Google Scholar 

  • Lang S, Gilbon A, Syldatk C and Wagner F (1984) Comparison of interfacial active properties of glycolipids from microorganisms. In: KL Mittal and B Lindman (eds) Surfactants in Solution, Vol 2 (pp 1365–1376). Plenum Press, New York.

    Google Scholar 

  • Lang S, Katsiwela E and Wagner F (1989) Antimicrobial effects of biosurfactants. Fat. Sci. Technol. 9: 363–366.

    Google Scholar 

  • Li Z-Y, Lang S, Wagner F, Witte L and Wray V (1984) Formation and identification of interf acial-active glycolipids from resting microbial cells. Appl. Environ. Microbiol. 48: 610–617.

    PubMed  CAS  Google Scholar 

  • Linton JD (1991) Metabolite production and growth efficiency. Antonie van Leewenhoek 60: 293–311.

    Article  CAS  Google Scholar 

  • MacDonald CR, Cooper DG and Zajic JE (1981) Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 41: 117–123.

    PubMed  CAS  Google Scholar 

  • Martin M, Bosch P and Parra JL (1991) Structure and bioconversion of trehalose lipids. Carbohydrate Res. 220: 93–100.

    Article  CAS  Google Scholar 

  • Mattei G, Rembeloarisoa E, Giusti G, Ronatani JF and Bertrand J-C (1986) Fermentation procedure of a crude oil in continuous culture on sea water. Appl. Microbiol. Biotechnol. 23: 302–304.

    Article  CAS  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M, Fujita S and Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J. Gen. Microbiol. 132: 865–875.

    CAS  Google Scholar 

  • Mulligan CN and Gibbs BF (1989) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 55: 3016–3019.

    PubMed  CAS  Google Scholar 

  • Mulligan CN, Mahmourides G and Gibbs BF (1989) Biosurfactant production by a chloramphenicol-tolerant strain of Pseudomonas aeruginosa. J. Biotechnol. 12: 37–44.

    Article  CAS  Google Scholar 

  • Müller-Hurtig R, Matulovic U, Feige I and Wagner F (1987) Comparison of the formation of rhamnolipis with free and immobilized cells of Pseudomonas spec. DSM 2874 with glycerol as C-substrate. Proc. 4th European Congress on Biotechnology, Vol 2 (pp 257-260). Elsevier Sci. Publ., Amsterdam.

    Google Scholar 

  • Nakano MM, Marahiel MA and Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170: 5662–5668.

    PubMed  CAS  Google Scholar 

  • Oberbremer A and Müller-Hurtig R (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 31:582–586.

    Article  CAS  Google Scholar 

  • Oberbremer A, Müller-Hurtig R and Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32: 485–489.

    Article  PubMed  CAS  Google Scholar 

  • Passeri A, Lang S, Wagner F and Wray V (1991) Marine Biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK1. Z. Naturforsch. 46c: 204–209.

    Google Scholar 

  • Peypoux F and Michel G (1992) Controlled biosynthesis of Val7-and Leu7-surfactins. Appl. Microbiol. Biotechnol. 36: 515–517.

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin J-M, Labbe H, Das BC, Ptak M and Michel G (1991) Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur. J. Biochem. 202: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Poremba K, Gunkel W, Lang S and Wagner F (1989) Mikrobieller Ölabbau im Meer. Biologie in unserer Zeit 19: 145–148.

    Article  Google Scholar 

  • Powalla M, Lang S and Wray V (1989) Penta-and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes. Appl. Microbiol. Biotechnol. 31: 473–479.

    Article  CAS  Google Scholar 

  • Ramsay B, McCarthy J, Guerra-Santos L, Käppeli O and Fiechter A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can. J. Microbiol. 34: 1209–1212.

    Article  CAS  Google Scholar 

  • Rapp P, Bock H, Wray V and Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol. 115:491–503.

    Article  CAS  Google Scholar 

  • Ratledge C (1988) Hydrocarbons. Products of hydrocarbon-microorganism interaction. In: DR Houghton, RN Smith and HOW Eggins (eds) Biodeterioration 7 (pp 219–236). Elsevier Applied Science, London, New York.

    Chapter  Google Scholar 

  • Reddy PG, Singh HD, Roy PK and Baruah JN (1983) Isolation and functional characterization of hydrocarbon emulsifying and solubilizing factors produced by a Pseudomonas species. Biotech. Bioeng. 25: 387–401.

    Article  CAS  Google Scholar 

  • Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O and Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 51: 985–989.

    PubMed  CAS  Google Scholar 

  • Rilke O, Baum A, Weiss J, Hommel R and Kleber H-P (1992) Kinetics of enzymatic lysis, formation, and regeneration of protoplasts of Candida (Torulopsis) apicola. World J. Micobiol. Biotechnol. 8:14–20.

    Article  CAS  Google Scholar 

  • Ristau E and Wagner F (1983) Formation of novel anionic trehalose-tetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol. Letters 5: 95–100.

    Article  CAS  Google Scholar 

  • Roy PK, Singh HD, Bhagat SD and Baruah JN (1979) Characterization of hydrocarbon emulsification and solubilization occurring during the growth of Endomycopsis lipolytica on hydrocarbons. Biotechnol. Bioeng. 21: 955–974.

    Article  CAS  Google Scholar 

  • Saadat S and Ballou CE (1983) Pyruvylated glycolipids from Mycobacterium smegmatis J. Biol. Chem. 258: 1813–1818.

    CAS  Google Scholar 

  • Sandrin C, Peypoux F and Michel G (1990) Production of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem. 12: 370–375.

    PubMed  CAS  Google Scholar 

  • Schulz D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V and Gunkel W (1991). Marine biosurfactants. I. Screening for biosurfactants among crude oil degradation marine microorganisms from the north sea. Z. Naturforsch. 46c: 197–230.

    Google Scholar 

  • Singer ME (1985) Microbial biosurfactants. In: JE Zajic and EC Donaldson (eds) Microbes and Oil Recovery. Int. Bioresources J. 1: 19–38.

    Google Scholar 

  • Spencer JFT, Spencer DM and Tulloch AP (1979) Extracellular glycolipids of yeasts. In: AH Rose (ed) Economic Microbiology. Secondary Products of Metabolism, Vol 3 (pp 522–540). Academic Press, London, New York, San Francisco.

    Google Scholar 

  • Stüwer O, Hommel R, Haferburg D and Kleber H-P (1987) Production of crystalline surface-active glycolipids by a strain of Torulopsis apicola. J. Biotechnol. 6: 259–269.

    Article  Google Scholar 

  • Syldatk C and Wagner F (1987) Production of biosurfactants. In: N Kosaric, WL Cairns and WL Gray (eds) Surfactant Sience Series. Biosurfactants and Biotechnology, Vol 25 (pp 21–45). Marcel Dekker, New York, Basel.

    Google Scholar 

  • Syldatk C, Matulovic U and Wagner F (1984) Biotenside — Neue Verfahren zur mikobiellen Herstellung grenzflächenaktiver, anionischer Glycolipide. Biotech. Forum 1: 58–66.

    Google Scholar 

  • Syldatk C, Lang S, Matulovic U and Wagner F (1985a) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z. Naturforschung 40c: 61–67.

    CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V and Witte L (1985b) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z. Naturforschung 40c: 51–60.

    CAS  Google Scholar 

  • Tomiyasu I, Yoshinaga J, Kurano F, Kato Y, Kaneda K, Imaizumi S and Yano I (1986) Occurrence of a novel glycolipid, trehalose 2,3,6′-trimycolate in a psychrophilic, acid-fast bacterium, Rhodococcus aurantianus (Gordona aurantiaca). FEBS Lett. 203: 239–242.

    Article  CAS  Google Scholar 

  • Tulloch AP (1976) Structures of extracellular glycolipids produced by yeasts. In: LA Wittling (ed) Glycolipid Methodology (pp 329–344). Am. Oil Chem. Soc., Champaign, IL.

    Google Scholar 

  • Uchida Y, Tsuchiya R, Chino M, Hirano J and Tabuchi T (1989) Extracellular accumulation of mono-and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric. Biol. Chem. 53: 757–761.

    Article  CAS  Google Scholar 

  • Ullrich C, Kluge B, Palacz Z and Vater J (1991) Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry 30: 6503–6508.

    Article  PubMed  CAS  Google Scholar 

  • Vater J (1986) Lipopeptides, an attractive class of microbial surfactants. Progr. Colloid. and Polymer Sci. 72: 12–18.

    Article  CAS  Google Scholar 

  • Weber L, Stach J, Haufe G, Hommel R and Kleber H-P (1990) Elucidation of the structure of an unusual cyclic glycolipid from Torulopsis apicola. Carbohydrate Res 206: 13–19.

    Article  CAS  Google Scholar 

  • Weber L, Döge C, Haufe G, Hommel R and Kleber H-P (1991) Oxygenation of hexadecane in the biosynthesis of cyclic glycolipids in Torulopsis apicola. Biocatalysis 5: 267–272.

    Article  Google Scholar 

  • Witholt B, de Smert M-J, Kingma J, van Beilen JB, Kok M, Lageveen RG and Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol. 8: 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sato M and Yamada K (1976) Microbial production of sugar lipids. Chemical Ind. 17:741–742.

    Google Scholar 

  • Zang Y and Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58: 3276–3282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hommel, R.K. (1994). Formation and function of biosurfactants for degradation of water-insoluble substrates. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics