Skip to main content

Biodegradation of anionic surfactants and related molecules

  • Chapter
Biochemistry of microbial degradation

Abstract

The term surfactant is used to describe a large group of structurally-diverse molecules, whose common feature is that they possess (as their name indicates) surface-active properties, i.e. they tend to concentrate at the surfaces and interfaces between aqueous solutions and gases or solids or non-aqueous liquid phases. This property results from the fact that they are amphiphiles, containing polar and non-polar moieties; there is a certain balance of the polar (hydrophilic) and non-polar (hydrophobic) parts of the molecule, which together with their specific chemical identity, gives different surfactants particular properties. As such, surfactants have a broad range of uses as cleaning, wetting and emulsifying agents in a large variety of domestic and industrial situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

CoA :

coenzymeA

MBAS :

methylene-blue active substance

LAS :

linear alkylbenzene sulphonate

SDS :

sodium dodecyl sulphate

SDTES :

sodium dodecyltriethoxy sulphate

References

  • Anderson DJ, Day MJ, Russell NJ and White GF (1988) Temporal and geographical distributions of epilithic sodium dodecyl sulfate SDS-degrading bacteria in a polluted South Wales river. Appl. Environ. Microbiol. 54: 555–560.

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Day MJ, Russell NJ and White GF (1990) Die-away kinetic analysis of the capacity of epilithic and planktonic bacteria from clean and polluted river water to biodegrade sodium dodecyl sulfate. Appl. Environ. Microbiol. 56: 758–763.

    PubMed  CAS  Google Scholar 

  • Assinder SJ and Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microbial Physiol. 31: 1–69.

    Article  CAS  Google Scholar 

  • Barrett CH, Dodgson KS and White GF (1980) Further studies on the substrate specificity and inhibition of the stereospecific CS2 secondary alkylsulphohydrolase of Comamonas terrigena. Biochem. J. 191: 467–473.

    PubMed  CAS  Google Scholar 

  • Bartholomew B, Dodgson KS, Matcham GWJ, Shaw DJ and White GF (1977) A novel mechanism of enzymic ester hydrolysis. Inversion of configuration and carbon-oxygen bond cleavage by secondary alkylsulphohydrolases from detergent-degrading micro-organisms. Biochem. J. 167: 575–580.

    Google Scholar 

  • Bartholomew B, Dodgson KS and Gorham SG (1978) Purification and properties of the S1 secondary alkylsulphohydrolase of the detergent-degrading microorganism Pseudomonas C12B. Biochem. J. 169: 659–667.

    PubMed  CAS  Google Scholar 

  • Bateman TJ (1985) Primary alkylsulphatase activity in the detergent-degrading bacterium Pseudomonas C12B. PhD thesis, University of Wales.

    Google Scholar 

  • Bateman TJ, Dodgson KS and White GF (1986) Primary alkylsulphatase activities of the detergent-degrading bacterium Pseudomonas C12B. Purification and properties of the P1 enzyme. Biochem. J. 236: 401–408.

    PubMed  CAS  Google Scholar 

  • Biedlingmaier S and Schmidt A (1983) Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca. Arch. Microbiol. 136: 124–130.

    Article  CAS  Google Scholar 

  • Blackwell CML and Turner JM (1978) Microbial metabolism of amino alcohols: formation of coenzyme B12-dependent ethanolamine-ammonia lyase and its concerted induction in Escherichia coli. Biochem. J. 76: 751–757.

    Google Scholar 

  • Brilon C, Beckmann W, Hellwig M and Knackmuss H-J (1981a) Enrichment and isolation of naphthalenesulfonic acid-utilizing Pseudomonads. Appl. Environ. Microbiol. 42: 39–43.

    PubMed  CAS  Google Scholar 

  • Brilon C, Beckmann W and Knackmuss H-J (1981b) Catabolism of naphthalene sulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl. Environ. Microbiol. 42: 44–55.

    PubMed  CAS  Google Scholar 

  • Burlage RS, Hooper SW and Sayler GS (1989) The TOL (pWWO) catabolic plasmid. Appl. Environ. Microbiol. 55: 1323–1328.

    PubMed  CAS  Google Scholar 

  • Cain RB (1987) Biodegradation of anionic surfactants. Biochem. Soc. (UK) Trans. 15: 7S–22S.

    CAS  Google Scholar 

  • Cain RB and Farr DR (1968) Metabolism of arylsulphonates by micro-organisms. Biochem. J. 106: 859–877.

    PubMed  CAS  Google Scholar 

  • Cardini G, Catelani D, Sorlini C and Trecanni V (1966) La degradazione microbica dei detergenti di sintesi. Ann. Microbiol. Enzimol. 16: 217–223.

    CAS  Google Scholar 

  • Cloves JM, Dodgson KS, Games DE, Shaw DJ and White GF (1977) The mechanism of action of primary alkylsulphohydrolase and arylsulphohydrolase from a detergent degrading microorganism. Biochem. J. 167: 843–846.

    PubMed  CAS  Google Scholar 

  • Cloves JM, Dodgson KS, White GF and Fitzgerald JW (1980a) Purification and properties of the P2 primary alkylsulphohydrolase of the detergent-degrading bacterium Pseudomonas C12B. Biochem. J. 185: 23–31.

    PubMed  CAS  Google Scholar 

  • Cloves JM, Dodgson KS, White GF and Fitzgerald JW (1980b) Specificity of P2 primary alkylsulphohydrolase induction in the detergent-degrading bacterium Pseudomonas C12B. Biochem. J. 185: 13–21.

    PubMed  CAS  Google Scholar 

  • Cordon TC, Maurer EW and Stirton AJ (1970) Course of biodegradation of anionic detergents by analyses for carbon, methylene blue active substance and sulfate ion. J. Am. Oil Chem. Soc. 47: 203–206.

    Article  CAS  Google Scholar 

  • Cornish-Bowden A and Wharton CW (1988) Enzyme Kinetics. IRL Press, Oxford.

    Google Scholar 

  • Crescenzi AMV, Dodgson KS and White GF (1984) Purification and some properties of the D-lactate-2-sulphatase of Pseudomonas syringae GG. Biochem. J. 223: 487–494.

    PubMed  CAS  Google Scholar 

  • Crescenzi AMV, Dodgson KS, White GF and Payne WJ (1985) Initial oxidation and subsequent desulphation of propan-2-yl sulphate by Pseudomonas syringae GG. J. Gen. Microbiol. 131: 469–477.

    CAS  Google Scholar 

  • Davies I, White GF and Payne WJ (1990) Oxygen-dependent desulphation of monomethyl sulphate by Agrobacterium sp. M3C. Biodegradation 1: 229–241.

    Article  CAS  Google Scholar 

  • Davison J, Brunei F and Phanopoulos A (1990) The genetics of vanillate and sodium dodecyl sulphate degradation in Pseudomonas. In: S Silver and AM Chakrabarty (eds) Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 159–164). American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Davison J, Brunei F, Phanopoulos A, Prozzi D and Terpstra P (1992) Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodegradation. Gene 114: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Dodgson KS and White GF (1983) Some microbial enzymes involved in the biodegradation of sulphated surfactants. Top. Enz. Ferment. Biotechnol. 7: 90–155.

    CAS  Google Scholar 

  • Dodgson KS, Fitzgerald JW and Payne WJ (1974) Chemically defined inducers of alkylsulphatases present in Pseudomonas C12B. Biochem. J 138: 53–62.

    PubMed  CAS  Google Scholar 

  • Dodgson KS, White GF and Fitzgerald JW (1982) Sulfatases of Microbial Origin, Vols 1 and 2. CRC Press, Boca Raton.

    Google Scholar 

  • EEC (1973) Directive on the biodegradability of anionic surfactants. Directive number 73/405/ EEC, EEC, Brussels.

    Google Scholar 

  • Feigel BJ and Knackmuss H-J (1988) Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol. Lett. 55: 113–118.

    Article  CAS  Google Scholar 

  • Feigel BJ and Knackmuss H-J (1990) Catabolic pathway of sulfanilic acid. Forum Mikrobiol. 13:75.

    Google Scholar 

  • Fitzgerald JW (1974) Hydrolysis of hexan-1-yl sulphate by the P2 electrophoretic form of primary alkylsulphatase. Microbios 11: 153–158.

    CAS  Google Scholar 

  • Fitzgerald JW and Kight LC (1977) Physiological control of alkylsulfatase synthesis in Pseudomonas aeruginosa: effects of glucose, glucose analogs, and sulfur. Can. J. Microbiol. 23: 1456–1464.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald JW and Payne WJ (1972) Induction in a Pseudomonas species of a sulphatase active on short-chain alkyl sulphates. Microbios 5: 87–100.

    PubMed  CAS  Google Scholar 

  • Fitzgerald JW, Kight-Olliff LC, Stewart GJ and Beauchamp NF (1978) Reversal of succinate-mediated catabolite repression of alkylsulfatase in Pseudomonas aeruginosa by 2,4-dinitrophenol and by sodium malonate. Can J. Microbiol. 24: 1567–1573.

    Article  PubMed  CAS  Google Scholar 

  • Focht DD and Williams FD (1970) The degradation of p-toluenesulphonate by a Pseudomonas. Can. J. Microbiol. 16: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert PA and Watson GK (1977) Biodegradability testing and its relevance to environmental acceptability. Tenside Deterg. 14: 171–177.

    CAS  Google Scholar 

  • Griffiths ET, Hales SG, Russell NJ, Watson GK and White GF (1986) Metabolite production during the biodegradation of the surfactant sodium dodecyltriethoxy sulphate under mixed-culture die-away conditions. J. Gen. Microbiol. 132: 963–972.

    PubMed  CAS  Google Scholar 

  • Griffiths ET, Hales SG, Russell NJ and White GF (1987) Identification of hydrophobic metabolites formed during biodegradation of alkyl ethoxylate and alkyl ethoxy sulphate surfactants by Pseudomonas sp. DES1. Biotechnol. Appl. Biochem. 9: 217–229.

    CAS  Google Scholar 

  • Haines JR and Alexander M (1975) Microbial degradation of polyethylene glycols. Appl. Microbiol. 29: 621–625.

    PubMed  CAS  Google Scholar 

  • Hales SG (1981) Microbial degradation of linear ethoxylate sulphates. PhD thesis, University of Wales.

    Google Scholar 

  • Hales SG, Dodgson KS, White GF, Jones N and Watson GK (1982) Initial stages in the biodegradation of the surfactant sodium dodecyltriethoxy sulfate by Pseudomonas sp. strain DESl. Appl. Environ. Microbiol. 44: 790–800.

    CAS  Google Scholar 

  • Hales SG, White GF, Dodgson KS and Watson GK (1986) A comparative study of the biodegradation of the surfactant sodium dodecyltriethoxy sulphate by four detergent-degrading bacteria. J. Gen. Microbiol. 132: 953–961.

    PubMed  CAS  Google Scholar 

  • Hammerton C (1956) Synthetic detergents and water supplies. II. Chemical constitution of anionic surface active compounds and their susceptibility to biochemical oxidation. Proc. Soc. Water Treatment Exam. 5: 160–174.

    CAS  Google Scholar 

  • Hrsak D, Bosnjak M and Johanides V (1982) Enrichment of linear alkylbenzenesulphonate (LAS) degrading bacteria in continuous culture. J. Appl. Bacteriol. 53: 413–422.

    Article  Google Scholar 

  • Hsu Y-C (1963) Detergent (sodium lauryl sulphate)-splitting enzyme from bacteria. Nature 200: 1091–1092.

    Article  PubMed  CAS  Google Scholar 

  • Hsu Y-C (1965) Detergent-splitting enzyme from Pseudomonas. Nature 207: 385–388.

    Article  PubMed  CAS  Google Scholar 

  • Huddleston RL and Allred RC (1963) Microbial oxidation of sulfonated alkylbenzenes. Dev. Ind. Microbiol. 4: 24–38.

    Google Scholar 

  • Humphreys PGM, Shaw DJ, Dodgson KS and White GF (1986) Concerted induction of the S3. alkylsulphatase of Pseudomonas C12B by combinations of alkyl sulphates and alcohols. J. Gen. Microbiol. 132: 727–736.

    CAS  Google Scholar 

  • Jimenez L, Breen A, Thomas N, Federle TW and Sayler G (1991) Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium. Appl. Environ. Microbiol. 57: 1566–1569.

    PubMed  CAS  Google Scholar 

  • Kawai F and Yamanak H (1986) Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch. Microbiol. 146: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Kawai F, Kimura T, Fukaya T, Tani Y, Ogata K, Ueno T and Fukami H (1978) Bacterial oxidation of polyethylene glycol. Appl. Environ. Microbiol. 35: 679–684.

    PubMed  CAS  Google Scholar 

  • Kawai F, Kimura T, Tani Y, Yamada H and Kurachi M (1980) Purification and characterisation of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl. Environ. Microbiol. 40: 701–705.

    PubMed  CAS  Google Scholar 

  • Kight-Olliff LC and Fitzgerald JW (1978) Inhibition of enzyme induction in Pseudomonas aeruginosa by exogenous nucleotides. Can. J. Microbiol. 24: 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Lijmbach GWM and Brinkhuis E (1973) Microbial degradation of secondary n-alkyl sulfates and secondary alcohols. Antonie van Leeuwenhoek 39: 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Lillis V, Dodgson KS and White GF (1983) Initiation of activation of a pre-emergent herbicide by a novel alkylsulfatase of Pseudomonas putida FLA. Appl. Environ. Microbiol. 46: 988–994.

    PubMed  CAS  Google Scholar 

  • Locher HH, Leisinger T and Cook AM (1989) Degradation of p-toluenesulphonic acid via sidechain oxidation, desulphonation and meta ring cleavage in Pseudomonas (Comamonas) testosteroni T-2. J. Gen. Microbiol. 135: 1969–1978.

    PubMed  CAS  Google Scholar 

  • Locher HH, Leisinger T and Cook AM (1991) 4-Sulphobenzoate 3,4-dioxygenase. Biochem. J. 274: 833–842.

    PubMed  CAS  Google Scholar 

  • Lotzsch K, Neufahrt A and Taeuber G (1979) Comparative study of the biodegradation of secondary alkanesulfonates using 14C-labelled preparations. Tenside Deterg. 16: 150–155.

    Google Scholar 

  • Mandrand-Berthelot M-A, Novel G and Novel M (1977) L’induction gratuite de la β-glucuronidase d’Escherichia coli K12 et son double mecanisme de repression. Biochemie 59: 163–170.

    Article  CAS  Google Scholar 

  • Markus A, Klages U, Krauss S and Lingens F (1984) Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. CBS3. J. Bacteriol. 160: 618–621.

    CAS  Google Scholar 

  • Markus A, Krekel D and Lingens F (1986) Purification and some properties of component A of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS. J. Biol. Chem. 261:12883–12888.

    PubMed  CAS  Google Scholar 

  • Matcham GJW, Bartholomew B, Dodgson KS, Payne WJ and Fitzgerald JW (1977) Stereospecificity and complexity of microbial sulphohydrolases involved in the biodegradation of secondary alkyl sulphate detergents. FEMS Microbiol. Lett. 1: 197–200.

    Article  CAS  Google Scholar 

  • Maurer EW, Weil JK and Linfield WM (1977) The biodegradation of esters of α-sulfo fatty acids. J. Am. Oil Chem. Soc. 54: 582–584.

    Article  CAS  Google Scholar 

  • Obradors N and Aguilar J (1991) Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzen. Appl. Environ. Microbiol. 57: 2383–2388.

    PubMed  CAS  Google Scholar 

  • Payne WJ (1963) Pure culture studies of the degradation of detergent compounds. Biotechnol. Bioeng. 5: 355–365.

    Article  CAS  Google Scholar 

  • Payne WJ and Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecylbenzene sulfonate. Appl. Microbiol. 11: 339–344.

    PubMed  CAS  Google Scholar 

  • Payne WJ and Wiebe WJ (1978) Growth yield and efficiency in chemosynthetic microrganisms. Annu. Rev. Microbiol. 32: 155–183.

    Article  PubMed  CAS  Google Scholar 

  • Payne WJ, Williams JP and Mayberry WR (1965) Primary alcohol sulfatase in a Pseudomonas species. Appl. Microbiol. 13: 698–701.

    PubMed  CAS  Google Scholar 

  • Payne WJ, Williams JP and Mayberry WR (1967) Hydrolysis of secondary alcohol sulphate by a bacterial enzyme. Nature 214: 623–624.

    Article  CAS  Google Scholar 

  • Payne WJ, Fitzgerald JW and Dodgson KS (1974) Methods for visualization of enzymes in Polyacrylamide gels. Appl. Microbiol. 27: 154–158.

    PubMed  CAS  Google Scholar 

  • Quick A, Hales S, Russell NJ and White GF (1993) Desulphonation of a secondary alkane sulphonate: bacterial biodegradation of sulphosuccinate. In preparation.

    Google Scholar 

  • Ripin MJ, Noon KF and Cook TM (1971) Bacterial metabolism of aryl sulfonates. 1. Benzene sulfonate as growth substrate for Pseudomonas testosteronii H-8. Appl. Microbiol. 21:495–499.

    PubMed  CAS  Google Scholar 

  • Rotmistrov MN, Stavskaya SS, Krivetz IA and Samoylenko LS (1978) Microorganisms which decompose alkyl sulphates. Mikrobiologiya 47: 338–341.

    CAS  Google Scholar 

  • Schlegel, HG (1986) General Microbiology. University Press, Cambridge.

    Google Scholar 

  • Schoberl P and Bock KJ (1980) Surfactant degradation and its metabolites. Tenside Deterg. 17: 262–266.

    Google Scholar 

  • Setzkorn EA, Huddleston RL and Allred RC (1964) An evaluation of the river die-away technique for studying detergent biodegradability. J. Am. Oil Chem. Soc. 41: 826–830.

    Article  CAS  Google Scholar 

  • Shaw DJ, Dodgson KS and White GF (1980) Substrate specificity and other properties of the inducible S3 secondary alkylsulphohydrolase from the detergent degrading bacterium Pseudomonas C12B. Biochem. J. 187: 181–190.

    PubMed  CAS  Google Scholar 

  • Shimamoto G and Berk RS (1980) Taurine catabolism. II. Biochemical and genetic evidence for sulfoacetaldehyde sulfolyase involvement. Biochim. Biophys. Acta 632: 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Sigoillot JC and Nguyen MH (1990) Isolation and characterisation of surfactant-degrading bacteria in a marine environment. FEMS Microbiol. Ecol. 73: 59–68.

    Article  CAS  Google Scholar 

  • Smith MR and Ratledge C (1989) Catabolism of alkylbenzenes by Pseudomonas sp. NCIB 10643. Appl. Microbiol. Biotechnol. 32: 68–75.

    Article  CAS  Google Scholar 

  • Soap and Detergents Association U.S. (1965) A procedure and standards for the determination of the biodegradability of alkylbenzene sulfonate and linear alkylate sulfonate. J. Am. Oil Chem. Soc. 42: 986–993.

    Article  Google Scholar 

  • Steber J and Wierich P (1985) Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants. Appl. Environ. Microbiol. 49: 530–537.

    PubMed  CAS  Google Scholar 

  • Steber J and Wierich P (1989) The environmental fate of fatty acid α-sulfomethyl esters. Tenside Deterg. 26:406–411.

    CAS  Google Scholar 

  • Swisher RD (1987) Surfactant Biodegradation. Surfactant Science Series, Vol 18, 2nd edition. Marcel Dekker, New York.

    Google Scholar 

  • Thelu J, Medina L and Pelmont J (1980) Oxidation of poly(oxethylene) oligomers by an inducible enzyme from Pseudomonas P400. FEMS Microbiol. Lett. 8: 187–190.

    Article  CAS  Google Scholar 

  • Thomas ORT and White GF (1989) Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol. Appl. Biochem. 11: 318–327.

    CAS  Google Scholar 

  • Thomas ORT and White GF (1990) Immobilization of the surfactant-degrading bacterium Pseudomonas C12B in polacrylamide gel beads: II. Optimizing SDS-degrading activity and stability. Enzyme Microb. Technol. 12: 969–975.

    Article  CAS  Google Scholar 

  • Thomas ORT, Matts PJ and White GF (1988) Localisation of alkylsulphatases in bacteria by electron microscopy. J. Gen. Microbiol. 134: 1229–1236.

    CAS  Google Scholar 

  • Thurnheer T, Zurrer D, Hoglinger O, Leisinger T and Cook AM (1990) Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acid, and orthanilic acid in Alcaligenes sp. strain O-1. Biodegradation 1: 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Thysse GJE and Wanders TH (1972) Degradation of n-alkane-1-sulfonates by Pseudomonas. Antonie van Leeuwenhoek 38: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Thysse GJE and Wanders TH (1974) Initial steps in the degradation of n-alkane-1-sulfonates by Pseudomonas. Antonie van Leeuwenhoek 40: 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Wagner FC and Reid EE (1931) The stability of the carbon-sulphur bond in some aliphatic sulphonic acids. J. Am. Chem. Soc. 53: 3407–3413.

    Article  CAS  Google Scholar 

  • Werdelmann BW (1984) Tenside in unserer Weite — heute und morgen. Second World Surfactants Congress, Vol 1 (pp 3–21). Syndicat National des Fabricants d’Agents de Surface et de Produits Auxiliares Industriels, Paris.

    Google Scholar 

  • White GF and Matts PJ (1992) Biodegradation of short-chain alkyl sulphates by a coryneform species. Biodegradation 3: 83–91.

    Article  CAS  Google Scholar 

  • White GF and Russell NJ (1988) Mechanisms of bacterial biodegradation of alkyl sulphate and alkylpolyethoxy sulphate surfactants. In: DR Houghton, RN Smith and HOW Eggins (eds) Biodeterioration 7 (pp 325–332). Elsevier Applied Science, London.

    Chapter  Google Scholar 

  • White GF, Russell NJ and Day MJ (1985) A survey of sodium dodecyl sulphate SDS-resistance alkylsulphatase production in bacteria from clean and polluted river sites. Environ. Pollut. A37: 1–11.

    Google Scholar 

  • White GF, Dodgson KS, Davies I, Matts PJ, Shapleigh JP and Payne WJ (1987) Bacterial utilization of short-chain primary alkyl sulphate esters. FEMS Microbiol. Lett. 40: 173–177.

    Article  CAS  Google Scholar 

  • White GF, Anderson DJ, Day MJ and Russell NJ (1989) Distribution of planktonic bacteria capable of degrading sodium dodecyl sulphate SDS in a polluted South Wales river. Environ. Pollut. A57: 103–115.

    Article  Google Scholar 

  • Willetts AJ (1973) Microbial metabolism of alkylbenzene sulphonates. Fungal metabolism of 1-phenylundecane-p-sulphonate and 1-phenyldodecane-p-sulphonate. Antonie van Leeuwenhoek 39: 585–597.

    Article  PubMed  CAS  Google Scholar 

  • Willetts AJ and Cain RB (1972) Microbial metabolism of alkylbenzene sulfonates. Bacterial metabolism of undecylbenzene-p-sulphonate and dodecylbenzene-p-sulphonate. Biochem. J. 129: 389–402.

    PubMed  CAS  Google Scholar 

  • Zamanian M and Mason JR (1987) Benzene dioxygenase in Pseudomonas putida. Sub-unit composition and immuno-cross-reactivity with other aromatic dioxygenases. Biochem. J. 244: 611–616.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

White, G.F., Russell, N.J. (1994). Biodegradation of anionic surfactants and related molecules. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics