Skip to main content

Mechanism of Microbial Biodegradation: Secrets of Biodegradation

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Microbes are the magic solution to solve most environmental problems. Those microbes that you cannot see with the naked eye have amazing tools inside them. One of the tools they have is digestive enzymes that can digest anything you would not think of. There is no organic substance found in nature that can not be decomposed by microorganisms. Microbes heal the environment naturally. The biodegradation action of these amazing creatures is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koukkou, Anna-Irini, ed. (2011). Microbial Bioremediation of Non-metals: Current Research. Caister Academic Press. ISBN 978-1-904455-83-7.

    Google Scholar 

  2. Mani, S., Chowdhary, P. and Zainith, S., (2020). Microbes mediated approaches for environmental waste management. Microorganisms for Sustainable Environment and Health, pp.17 36. https://www.sciencedirect.com/science/article/pii/B9780128190012000024

  3. Marinescu M, Dumitru M, Lacatusu A. (2009) Biodegradation of Petroleum Hydrocarbons in an Artificial Polluted Soil. Research Journal of Agricultural Science; 41(2).

    Google Scholar 

  4. Catherine N Mulligan, M. Kamali (2003) Bioleaching of copper and other metals from low-grade oxidized mining ores by Aspergillus niger, J. Chem. Technol. Biotechnol., 78, pp. 497–503, https://doi.org/10.1002/jctb.830

    Article  CAS  Google Scholar 

  5. Ariamalar Selvakumar (1988), Adsorption of organic compounds by microbial biomass, Spring 12-31-1988, New Jersey Institute of Technology, Electronic thesis and dissertation

    Google Scholar 

  6. Kumar A, Bisht BS, Joshi VD, Dhewa T. ( 2011) Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences.;1(6):1079

    Google Scholar 

  7. Sharma S. (2012) Bioremediation: Features, strategies and applications. Asian Journal of Pharmacy and Life Science; 2231:4423

    Google Scholar 

  8. H. Srichandan, S. Mishra. (2019) Bioleaching approach for extraction of metal values from secondary solid wastes: a critical review. H. Srichandan, S. Mishra. Hydrometallurgy, 189, Article 105122, https://doi.org/10.1016/j.hydromet.2019.105122

  9. Lloyd JR and Lovley DR ( 2001) Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology; 12 248–253.

    Google Scholar 

  10. Doaa A.R. Mahmoud (2010), Potential Application of Egyptian Black Yeast in Melanin Production for Remediation of Heavy Metals, Doaa A. R. Mahmoud, Journal of Biotechnology Research Vol. 10,:57–70

    Google Scholar 

  11. X. Deng Y. Shi J. Hazard. Mater et al., ( 2013) Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1, 248–249, pp. 107–114, https://doi.org/10.1016/j.jhazmat.2012.12.051

  12. I. Khan et al., I. Touseef (2019), Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates, Environ. Monit. Assess., 191, https://doi.org/10.1007/s10661-019-7769-5

  13. B. Huerta-Rosas, J.F. Gutiérrez-Corona, (2020), Aerobic processes for bioleaching manganese and silver using microorganisms indigenous to mine tailings. World J. Microbiol. Biotechnol., 36, https://doi.org/10.1007/s11274-020-02902-6

  14. D. Borja, H. Kim, (2016). Experiences and future challenges of bioleaching research in South Korea, Minerals, 6, pp. 1–21, https://doi.org/10.3390/min6040128

    Article  Google Scholar 

  15. Mulligan and Galvez-Cloutier, 2000 Bioleaching of copper mining residues by aspergillus niger C.N. Mulligan and R. Galvez-Cloutier Water Sci. Technol., 41 (2000), p 255–262, https://doi.org/10.2166/wst.2000.0280

  16. S. Ilyas, R. Chi and J.-C. Lee, (2013) Fungal bioleaching of metals from mine tailing Miner. Process. Extr. Metall. Rev. An Int. J., pp. 37–41, https://doi.org/10.1080/08827508.2011.623751

  17. https://doi.org/10.4018/978-1-5225-3126-5.ch006

  18. Arora, P.K. (2015) Bacterial degradation of monocyclic aromatic amines. Front Microbiol 6: 820.

    Article  Google Scholar 

  19. Haddock J.D. (2010) Aerobic Degradation of Aromatic Hydrocarbons: Enzyme Structures and Catalytic Mechanisms. In: Timmis K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_74

    Google Scholar 

  20. Alfan-Guzman, R., Ertan, H., Manefield, M., and Lee, M. (2017) Isolation and characterization of Dehalobacter sp. strain TeCB1 including identification of TcbA: a novel tetra- and trichlorobenzene reductive dehalogenase. Front Microbiol 8: 558.

    Article  Google Scholar 

  21. Bilal M, Rasheed T, Iqbal HMN, Yan Y. (2018) Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Sci Total Environ. 10; 644:1–13. Epub 2018 Jul 3.

    Article  Google Scholar 

  22. Wu K, Ling Y, Sun N, Hu B, Shen Z, Jin L, Hu X. (2021), Ni-catalyzed reductive decyanation of nitriles with ethanol as the reductant Chem Commun (Camb). 2; 57(18):2273–2276.

    Google Scholar 

  23. David S. B. Daniels, Robert Crook, Olivier Dirat, Steven J. Fussell, Adam Gymer, Michael Hawksworth, Craig J. Knight, Daniel Laity, Suju P. Mathew, Samantha V. Oke, Philip Peach, Samantha Prior. (2021) Development of an Intrinsically Safer Methanolysis/Aromatic Nitro Group Reduction for Step 1 and 2 of Talazoparib Tosylate. Organic Process Research & Development, 25 (12), 2686–2692. https://doi.org/10.1021/acs.oprd.1c00259

    Article  CAS  Google Scholar 

  24. Brajesh K. Singh, Allan Walker, (2006) Microbial degradation of organophosphorus compounds, FEMS Microbiology Reviews, Volume 30, Issue 3,, Pages 428–471, https://doi.org/10.1111/j.1574-6976.2006.00018.x

    Article  CAS  Google Scholar 

  25. Björdal, C.G., Dayton, P.K. (2020). First evidence of microbial wood degradation in the coastal waters of the Antarctic. Sci Rep 10, 12774 https://doi.org/10.1038/s41598-020-68613-y

    Article  Google Scholar 

  26. Björdal, C. G. & Fors, Y. (2019). Correlation between sulfur accumulation and microbial wood degradation on shipwreck timbers. Int. Biodeterior. Biodegrad. 140, 37–42. https://doi.org/10.1016/j.ibiod.2019.03.010

  27. A.L. Pometto, B.T. Lee, K.E. Johnson. (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species, Appl. Environ. Microbiol., 58, pp. 731–733

    Article  CAS  Google Scholar 

  28. J.S. Seo, Y.S. Keum, Q.X. Li, (2009), Bacterial degradation of aromatic compounds Int. J. Environ. Res., 6, pp. 278–279

    CAS  Google Scholar 

  29. A. Amobonye, P. Bhagwat, S. Singh, S. Pillai, (2021) Plastic biodegradation: frontline microbes and their enzymes Sci. Total Environ., 759. 143536

    Article  CAS  Google Scholar 

  30. A.K. Urbanek, A.M. Mirończuk, A. García, Martín, A. Saborido, I. Mata, M. Arroyo (2020), Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics BBA - Proteins and Proteomics, 1868, p. 140315

    Google Scholar 

  31. Abhishek Negi, Indira P Sarethy, (2019), Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses. Microb Ecol. 78(4):1014–1029. https://doi.org/10.1007/s00248-019-01366-y

  32. Liu, X., Koestler, R.J., Warscheid, T. (2020). Microbial deterioration and sustainable conservation of stone monuments and buildings. Nat Sustain 3, 991–1004. https://doi.org/10.1038/s41893-020-00602-5

  33. Xu, H.-B. et al. (2018), Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. Int. Biodeterior. Biodegrad. 126, 95–102

    Google Scholar 

  34. Das, A. & Mishra, S. (2017), Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study. J. Environ. Chem. Eng. 5, 612 627. https://doi.org/10.1016/j.jece.2016.10.005

  35. Shah, P. D., Dave, S. R. & Rao, M. S. (2012). Enzymatic degradation of textile dye reactive orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int. Biodeterior. Biodegrad. 69, 41–50. https://doi.org/10.1016/j.ibiod.2012.01.002

  36. Archibald AT, Folberth G, Wade DC, Scott D (2017) A world avoided: impacts of changes in anthropogenic emissions on the burden and effects of air pollutants in Europe and North America. Faraday Discuss. 2017 Aug 24; :475–500.

    Google Scholar 

  37. Müller T., Ruppel S. (2014). Progress in cultivation-indedependent phyllosphere microbiology. FEMS Microbiol. Ecol. 87, 2–17. https://doi.org/10.1111/1574-6941.12198

    Article  CAS  Google Scholar 

  38. Anita Verma (September 14th 2021). Bioremediation Techniques for Soil Pollution: An Introduction [Online First], IntechOpen, https://doi.org/10.5772/intechopen.99028. Available from: https://www.intechopen.com/online-first/78227

  39. Narayanan, C.M., Narayan, V. (2019) Biological wastewater treatment and bioreactor design: a review. Sustain Environ Res 29, 33. https://doi.org/10.1186/s42834-019-0036-1 http://www.polimernet.com

  40. A.H. Neilson, A.-S. Allard(2008) Environmental Degradation and Transformationof Organic Chemicals, CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  41. Reineke W. (2001) Aerobic and Anaerobic Biodegradation Potentials of Microorganisms. In: Beek B. (eds) Biodegradation and Persistence. The Handbook of Environmental Chemistry (Vol. 2 Series: Reactions and Processes), vol 2 / 2K. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10508767_1

  42. C.M. Bethke, R.A. Sanford, M.F. Kirk, Q. Jin, T.M. Flynn(2011), The thermodynamic ladder in geomicrobiology, Am. J. Sci., 311 (3), pp. 183–210

    Article  CAS  Google Scholar 

  43. P.P. Bosshard, (2011) Incubation of fungal cultures: how long is long enough? Mycoses, 54 (5), pp. e539–e545

    Google Scholar 

  44. S. Saroj, S. Dubey, P. Agarwal, R. Prasad, R.P. Singh (2015) Evaluation of the efficacy of a fungal consortium for degradation of azo dyes and simulated textile dye effluents Sustain. Water Resour. Manag., 1 (3), pp. 233–243

    Google Scholar 

  45. Francesc Castellet-Rovira, Daniel Lucas, Marta Villagrasa Montserrat Sarrà(2017) Stropharia rugosoannulata and Gymnopilus luteofolius: Promising fungal species for pharmaceutical biodegradation in contaminated water, Journal of Environmental Management,

    Google Scholar 

  46. Adnan B. Al-Hawash,Xiaoyu Zhang,Fuying Ma, (2016) Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1 https://doi.org/10.1002/mbo3.619

  47. Zhang, J. H., Xue, Q. H., Gao, H., Ma, X., & Wang, P. (2016). Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. Journal of Chemical Technology and Biotechnology, 91(4), 865–875. https://doi.org/10.1002/jctb.4650

    Article  CAS  Google Scholar 

  48. Al-Hawash, A. B., Alkooranee, J. T., Abbood, H. A., Zhang, J., Sun, J., Zhang, X., & Ma, F. (2017). Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnology Reports, 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.0

    Article  Google Scholar 

  49. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: A review. Journal of Environmental 457 Management, 92: 407–418.

    CAS  Google Scholar 

  50. N. Abdel-Raouf A.A. Al-Homaidan I.B.M. Ibraheem, (2012) Microalgae and wastewater treatment, Sciences Volume 19, Issue 3, Pages 257–275

    CAS  Google Scholar 

  51. Duan, W.; Meng, F.; Lin, Y.; Wang, G. Toxicological Effects of Phenol on Four Marine Microalgae. Environ. Toxicol. Pharm. 2017, 52, 170–176.

    Article  CAS  Google Scholar 

  52. Al-Jabri, H.; Das, P.; Khan, S.; Thaher, M.; AbdulQuadir, M. (2020) Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water, 13, 27.

    Article  Google Scholar 

  53. Van Schie, P.M.; Young, L.Y. (2000) Biodegradation of Phenol: Mechanisms and Applications. Bioremediation J., 4, 1–18

    Article  Google Scholar 

  54. Sood, N. and B. Lal, (2009). Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions. J. Environ. Manage., 90: 1728–1736.

    Article  CAS  Google Scholar 

  55. Fatma Karray, Fathi Aloui, and Sami Sayadi, BioMed Research International Volume (2015), Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater Boutheina Gargouri, Najla Mhiri, Article ID 929424, 11 pages https://doi.org/10.1155/2015/929424

  56. D. Humelnicu, G. Drochioiu, K. Poda, (2004), Bioaccumulation of thorium and uranyl ions on Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry, 60, 291–293.

    Article  Google Scholar 

  57. C. A. Dumitras-Hutanu, A. Pul, Ş. Jurcoane, E. Rusu, G. Drochioiu(2009), Biological effect and the toxicity mechanisms of some dinitrophenyl ethers. Rom. Biotechnol. Lett. 14(6) 4893–4899

    CAS  Google Scholar 

  58. Tahri Joutey N, Sayel H, Bahafid W, El Ghachtouli N. (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Reviews of Environmental Contamination and Toxicology.; 233:45–69. https://doi.org/10.1007/978-3-319_10479-9_2

    Article  Google Scholar 

  59. Kordialik-Bogacka E. (2011), Studies on surface properties of yeast cells during heavy metal biosorption. Central European Journal of Chemistry. ;9:348–351

    CAS  Google Scholar 

  60. Siddique S,Rovina K, Al Azad S, Naher L, Suryani S, Chaikaew P. (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. Journal of Microbial and Biochemical Technology.7:384–393. https://doi.org/10.4172/1948-5948.1000243

    Article  CAS  Google Scholar 

  61. Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The Role of Microorganisms in Bioremediation- A Review. Open J Environ Biol 2(1): 038–046.

    Article  Google Scholar 

  62. Macaulay BM (2014) Understanding the behavior of oil-degrading microorganisms to enhance the microbial remediation of spilled petroleum. Appl Ecol Environ Res 13: 247–262. Link: https://goo.gl/JfFVWd

  63. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol Res Int 2011: 1–13. Link: https://goo.gl/jt4THZ

  64. Qing Cao, Alan D. Steinman, Lei Yao, LX, (2018), Effects of light, microorganisms, farming chemicals and water content on the degradation of microcystin-LR in agricultural soils, Ecotoxicology and Environmental Safety, Volume 156, Pages 141–147

    Article  CAS  Google Scholar 

  65. Hennecke, D., Hassink, J., Klein, J. et al. (2020) Impact of simulated sunlight on the degradation of pendimethalin in surface water in a scale-up experiment in accordance to OECD TG 309. Environ Sci Eur 32, 127. https://doi.org/10.1186/s12302-020-00402-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa A. R. Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahmoud, D.A.R. (2023). Mechanism of Microbial Biodegradation: Secrets of Biodegradation. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_6

Download citation

Publish with us

Policies and ethics