1 Introduction

The concept of absolutely p-summing linear operators between Banach spaces for \(0<p\le \infty \) was introduced by Pietsch [13] and the notion of absolutely (pr)-summing operators for \(0<r\le p\le \infty \) is due to Mitjagin and Pełczyński [11] though the famous factorization theorem for (pr)-dominated operators was proved by Kwapień [9].

In his famous monograph about operator ideals [13], Pietsch introduced a more general multi-index concept with the definition of (prs)-summing operators for \(0<p,r,s\le \infty \) and \(1/p\le 1/r+1/s\). The study of the duality of these operator spaces was addressed with the introduction of suitable norms on the tensor product of Banach spaces by Chevet [5], Saphar [15] and Lapresté [10].

In other settings, (prs)-summing maps have been dealed by some authors as, for example, Chávez-Domínguez [4] for Lipschitz maps, and Achour [1], Bernardino, Pellegrino, Seoane-Sepúlveda and Souza [2] and Fernández-Unzueta and García-Hernández [7] for multilinear operators and polynomials.

Our main purpose in this paper is to introduce and establish the most notable properties of a notion of (prs)-summing Bloch maps from the complex open unit disc \(\mathbb {D}\) into a complex Banach space X.

Let \(\mathcal {H}(\mathbb {D},X)\) be the space of all holomorphic maps from \(\mathbb {D}\) into X. Let us recall that a map \(f\in \mathcal {H}(\mathbb {D},X)\) is called Bloch if

$$\begin{aligned} \rho _{\mathcal {B}}\left( f\right) =\sup \left\{ (1-|z|^{2})\left\| f^{\prime }(z)\right\| :z\in \mathbb {D}\right\} <\infty . \end{aligned}$$

The linear space of all Bloch maps from \(\mathbb {D}\) into X, under the Bloch seminorm \(\rho _{\mathcal {B}}\), is denoted by \(\mathcal {B}(\mathbb {D},X)\). The normalized Bloch space \(\widehat{\mathcal {B}}(\mathbb {D},X)\) is the closed subspace of \(\mathcal {B}(\mathbb {D},X)\) formed by all those maps f for which \(f(0)=0\), under the Bloch norm \(\rho _{\mathcal {B}}\). For simplicity, we write \(\widehat{\mathcal {B}}(\mathbb {D})\) instead of \(\widehat{\mathcal {B}}(\mathbb {D},\mathbb {C})\). We denote by \(\widehat{\mathcal {B}}(\mathbb {D},\mathbb {D})\) the set of all holomorphic functions \(h:\mathbb {D}\rightarrow \mathbb {D}\) for which \(h(0)=0\).

We now introduce some notation. For Banach spaces X and Y, \(\mathcal {L}(X,Y)\) denotes the Banach space of all continuous linear operators from X into Y, equipped with the operator canonical norm. As usual, \(X^*\) denotes the dual space \(\mathcal {L}(X,\mathbb {K})\), and \(J_X\) the canonical injection of X into \(X^{**}\). \(B_{X}\) stands for the closed unit ball of X. Given \(1\le p\le \infty \), \(p^*\) denotes the conjugate index of p defined by \(p^*=p/(p-1)\) if \(p\ne 1\), \(p^*=\infty \) if \(p=1\), and \(p^*=1\) if \(p=\infty \).

Let X be a Banach space, \(n\in \mathbb {N}\) and a finite set of vectors \((x_i)_{i=1}^n\) in X. For any \(1\le p\le \infty \), the strong p-norm of \((x_i)_{i=1}^n\) is defined by

$$\begin{aligned} \left\| (x_i)_{i=1}^n\right\| _p=\left\{ \begin{array}{lll} \left( \displaystyle \sum _{i=1}^n\left\| x_i\right\| ^p\right) ^{\frac{1}{p}}&{} \text {if} &{} 1\le p<\infty , \\ &{} &{}\\ \displaystyle \max _{1\le i\le n}\left\| x_i\right\| &{} \text {if} &{} p=\infty , \end{array}\right. \end{aligned}$$

and the weak p-norm of \((x_i)_{i=1}^n\) by

$$\begin{aligned} \omega _p\left( (x_i)_{i=1}^n\right) =\sup _{x^*\in \mathcal {B}_{X^*}}\left\| (x^*(x_i))_{i=1}^n\right\| _p. \end{aligned}$$

According to Pietsch [14, 17.1.1], given Banach spaces XY and \(0<p,r,s\le \infty \) such that \(1/p\le 1/r+1/s\), an operator \(T\in \mathcal {L}(X,Y)\) is (prs)-summing if there exists a constant \(C\ge 0\) such that

$$\begin{aligned} \left\| (y^*_i(T(x_i)))_{i=1}^n\right\| _p\le C \omega _r\left( (x_i)_{i=1}^n\right) \omega _s\left( (y^*_i)_{i=1}^n\right) \end{aligned}$$

for any \(n\in \mathbb {N}\), \((x_i)_{i=1}^n\) in X and \((y^*_i)_{i=1}^n\) in \(Y^*\). The least of all constants C for which such an inequality holds is denoted by \(\pi _{(p,r,s)}(T)\), and the linear space of all such operators is represented by \(\Pi _{(p,r,s)}(X,Y)\).

We now propose a Bloch version of the notion of (prs)-summing linear operators. Towards this end, we introduce a third norm: given two finite sets of points \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\) and \((z_i)_{i=1}^n\) in \(\mathbb {D}\), the weak Bloch p-norm of \((\lambda _i,z_i)_{i=1}^n\) is defined by

$$\begin{aligned} \omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) =\sup _{g\in \mathcal {B}_{\widehat{\mathcal {B}}(\mathbb {D})}}\left\| (\lambda _i g'(z_i))_{i=1}^n\right\| _p. \end{aligned}$$

In particular, we write \(\omega ^{\widehat{\mathcal {B}}}_p\left( (z_i)_{i=1}^n\right) \) instead of \(\omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \) if \(\lambda _i=1\) for all \(i\in \{1,\ldots ,n\}\).

Definition 0.1

Let X be a complex Banach space and let \(1\le p,r,s\le \infty \) such that \(1/p\le 1/r+1/s\). We say that a map \(f\in \mathcal {H}(\mathbb {D},X)\) is (prs)-summing Bloch if there is a constant \(C\ge 0\) such that for any \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\), \((z_i)_{i=1}^n\) in \(\mathbb {D}\) and \((x^*_i)_{i=1}^n\) in \(X^*\), we have

$$\begin{aligned} \left\| (\lambda _ix^*_i(f'(z_i)))_{i=1}^n\right\| _p\le C \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (x^*_i)_{i=1}^n\right) . \end{aligned}$$

The smallest such constants C is denoted by \(\pi _{(p,r,s)}^{\mathcal {B}}(f)\). The linear space of all such maps is denoted by \(\Pi _{(p,r,s)}^{\mathcal {B}}(\mathbb {D},X)\), and \(\Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) stands for its subspace formed by all those maps f for which \(f(0)=0\). A map (prs)-summing Bloch map f from \(\mathbb {D}\) into X is called (rs)-dominated Bloch whenever \(1/p=1/r+1/s\).

We now describe the contents of this paper. In parallelism with the theory of absolutely (prs)-summing operators, we prove that \([\Pi ^{\widehat{\mathcal {B}}}_{(p,r,s)},\pi ^{\mathcal {B}}_{(p,r,s)}]\) is a Banach ideal of normalized Bloch maps. We also show that the space \((\Pi ^{\mathcal {B}}_{(p,r,s)}(\mathbb {D},X),\pi ^{\mathcal {B}}_{(p,r,s)})\) is Möbius-invariant in an approach to Complex Analysis.

For \(1\le p,r,s<\infty \) such that \(1/p=1/r+1/s\), our main result in this paper gathers both variants for (rs)-dominated Bloch maps of Pietsch’s domination and Kwapień’s factorization theorems for (rs)-dominated linear operators (see [14, Theorems 7.4.2 and 7.4.3]).

In order to address the duality of the \(\Pi ^{\widehat{\mathcal {B}}}_{(p,r,s)}\)-spaces, we introduce Bloch analogues of Lapresté norms [10] on the space of X-valued Bloch molecules of \(\mathbb {D}\), denoted by \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}\). For \(1\le p,r,s\le \infty \) and \(1/\theta :=1/p+1/r+1/s\ge 1\), we prove that \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}\) is a Bloch reasonable \(\theta \)-crossnorm on such a space so that, whenever \(1/p^*\le 1/r+1/s\), \((\Pi _{(p^*,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X^*),\pi _{(p^*,r,s)}^{\mathcal {B}})\) is isometrically isomorphic to \((\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X,\mu _{(p,r,s)}^{\widehat{\mathcal {B}}})^*\), where \(\mathcal {G}(\mathbb {D})\) is the Bloch-free Banach space of \(\mathbb {D}\).

In order to give examples of (prs)-summing Bloch maps, the concept of (prs)-nuclear Bloch maps from \(\mathbb {D}\) into X for \(1\le p,r,s\le \infty \) such that \(1+1/p\ge 1/r+1/s\) is introduced and it is proved that the space formed by such Bloch maps is an \(\theta \)-Banach normalized Bloch ideal where \(1/\theta :=1/p+1/r^*+1/s^*\).

2 Results

From now on and unless otherwise stated, we will suppose that X is a complex Banach space and \(1\le p,r,s\le \infty \) with \(1/p\le 1/r+1/s\).

2.1 Inclusions

We first show that the new functions introduced are actually Bloch functions.

Given semi-normed spaces \((X,\rho _X)\) and \((Y,\rho _Y)\), we will write \((X,\rho _X)\le (Y,\rho _Y)\) to point out that \(X\subseteq Y\) and \(\rho _Y(x)\le \rho _X(x)\) for all \(x\in X\).

Proposition 1.1

\((\Pi ^{\mathcal {B}}_{(p,r,s)}(\mathbb {D},X),\pi ^{\mathcal {B}}_{(p,r,s)})\le (\mathcal {B}(\mathbb {D},X),\rho _\mathcal {B})\).

Proof

Let \(f\in \Pi ^{\mathcal {B}}_{(p,r,s)}(\mathbb {D},X)\). For each \(z\in \mathbb {D}\), Hahn–Banach Theorem provides a functional \(x^*_z\in B_{X^*}\) such that \(\left| x^*_z(f'(z))\right| =\left\| f'(z)\right\| \). Taking \(n=1\), \(\lambda _1=(1-|z|^2)\), \(z_1=z\) and \(x^*_1=x^*_z\), we have

$$\begin{aligned} (1-|z|^2)\left\| f'(z)\right\|&=(1-|z|^2)\left| x^*_z(f'(z))\right| \\&\le \pi ^{\mathcal {B}}_{(p,r,s)}(f)\omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (x^*_i)_{i=1}^n\right) \\&\le \pi ^{\mathcal {B}}_{(p,r,s)}(f). \end{aligned}$$

Hence \(f\in \mathcal {B}(\mathbb {D},X)\) with \(\rho _\mathcal {B}(f)\le \pi ^{\mathcal {B}}_{(p,r,s)}(f)\). \(\square \)

We now prove that the concept of (prs)-summing Bloch maps extends that of p-summing Bloch maps introduced in [3].

For any \(1\le p\le \infty \), let us recall that a map \(f\in \mathcal {H}(\mathbb {D},X)\) is p-summing Bloch if there is a constant \(C\ge 0\) such that

$$\begin{aligned} \left\| (\lambda _i f'(z_i))_{i=1}^n\right\| _p\le C \omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \end{aligned}$$

for any \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\) and \((z_i)_{i=1}^n\) in \(\mathbb {D}\). The infimum of all constants C for which such an inequality holds, denoted by \(\pi ^{\mathcal {B}}_p(f)\), defines a seminorm on the linear space, denoted by \(\Pi ^{\mathcal {B}}_p(\mathbb {D},X)\), of all p-summing Bloch maps from \(\mathbb {D}\) into X. Furthermore, \(\pi ^{\mathcal {B}}_p\) is a norm on the subspace \(\Pi ^{\widehat{\mathcal {B}}}_p(\mathbb {D},X)\) formed by all those maps \(f\in \Pi ^{\mathcal {B}}_p(\mathbb {D},X)\) for which \(f(0)=0\).

Proposition 1.2

\((\Pi ^{\mathcal {B}}_{p,p,\infty }(\mathbb {D},X),\pi ^{\mathcal {B}}_{p,p,\infty })=(\Pi ^{\mathcal {B}}_p(\mathbb {D},X),\pi ^{\mathcal {B}}_p)\).

Proof

Let \(f\in \Pi ^{\mathcal {B}}_{(p,p,\infty )}(\mathbb {D},X)\). Given \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\) and \((z_i)_{i=1}^n\) in \(\mathbb {D}\), we have

$$\begin{aligned} \left\| (\lambda _if'(z_i))_{i=1}^n\right\| _p&=\left\| (\lambda _ix^*_i(f'(z_i)))_{i=1}^n\right\| _p\\&\le \pi ^{\mathcal {B}}_{(p,p,\infty )}(f)\omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _\infty \left( (x^*_i)_{i=1}^n\right) \\&\le \pi ^{\mathcal {B}}_{(p,p,\infty )}(f)\omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \end{aligned}$$

where we have taken \(x^{*}_i\in B_{X^*}\) such that \(\left| x^*_i(f'(z_i))\right| =\left\| f'(z_i)\right\| \) for each \(i\in \{1,\ldots ,n\}\) by Hahn–Banach Theorem. Hence \(f\in \Pi ^{\mathcal {B}}_p(\mathbb {D},X)\) with \(\pi ^{\mathcal {B}}_p(f)\le \pi ^{\mathcal {B}}_{(p,p,\infty )}(f)\).

Conversely, let \(f\in \Pi ^{\mathcal {B}}_p(\mathbb {D},X)\). Let \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\), \((z_i)_{i=1}^n\) in \(\mathbb {D}\) and \((x^*_i)_{i=1}^n\) in \(X^*\). For each \(i\in \{1,\ldots ,n\}\), Hahn–Banach Theorem provides a functional \(y^{**}_i\in B_{X^{**}}\) such that \(\left| y_i^{**}(x^*_i)\right| =\left\| x^*_i\right\| \). We obtain

$$\begin{aligned} \left\| (\lambda _ix^*_i(f'(z_i)))_{i=1}^n\right\| _p&\le \left\| (\lambda _i\left\| x^*_i\right\| f'(z_i))_{i=1}^n\right\| _p\\&\le \left\| (\lambda _if'(z_i))_{i=1}^n\right\| _p\left\| (x^*_i)_{i=1}^n\right\| _\infty \\&\le \pi ^{\mathcal {B}}_p(f)\omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \left\| (x^*_i)_{i=1}^n\right\| _\infty \\&=\pi ^{\mathcal {B}}_p(f)\omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \left\| (y_i^{**}(x^*_i))_{i=1}^n\right\| _\infty \\&\le \pi ^{\mathcal {B}}_p(f)\omega ^{\widehat{\mathcal {B}}}_p\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _\infty \left( (x^*_i)_{i=1}^n\right) , \end{aligned}$$

and thus \(f\in \Pi ^{\mathcal {B}}_{(p,p,\infty )}(\mathbb {D},X)\) with \(\pi ^{\mathcal {B}}_{(p,p,\infty )}(f)\le \pi ^{\mathcal {B}}_p(f)\). \(\square \)

2.2 Banach Bloch ideal property

Given \(\theta \in (0,1]\) and a linear space X over \(\mathbb {K}\), recall that a \(\theta \)-norm on X is a function \(\mu :X\rightarrow \mathbb {R}\) satisfying that \(x=0\) whenever \(\mu (x)=0\), \(\mu (\lambda x)=|\lambda |\mu (x)\) for all \(\lambda \in \mathbb {K}\) and \(x\in X\), and \(\mu (x+y)^\theta \le \mu (x)^\theta +\mu (y)^\theta \) for all \(x,y\in X\). We say that \((X,\mu )\) is an \(\theta \)-normed space, and it is said that \((X,\mu )\) is an \(\theta \)-Banach space if every Cauchy sequence in \((X,\mu )\) converges in \((X,\mu )\).

Following [8, Definition 5.11], a \(\theta \)-normed (\(\theta \)-Banach) normalized Bloch ideal, denoted as \([\mathcal {I}^{\widehat{\mathcal {B}}},\left\| \cdot \right\| _{\mathcal {I}^{\widehat{\mathcal {B}}}}]\), is a subclass \(\mathcal {I}^{\widehat{\mathcal {B}}}\) equipped with a \(\theta \)-norm \(\left\| \cdot \right\| _{\mathcal {I}^{\widehat{\mathcal {B}}}}\) of the class of all normalized Bloch maps \(\widehat{\mathcal {B}}\) endowed with the Bloch norm \(\rho _{\mathcal {B}}\) such that for each complex Banach space X, the components \(\mathcal {I}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) satisfy the following properties:

  1. (P1)

    \((\mathcal {I}^{\widehat{\mathcal {B}}}(\mathbb {D},X),\left\| \cdot \right\| _{\mathcal {I}^{\widehat{\mathcal {B}}}})\) is a \(\theta \)-normed (\(\theta \)-Banach) space and \(\rho _{\mathcal {B}}(f)\le \left\| f\right\| _{\mathcal {I}^{\widehat{\mathcal {B}}}}\) for \(f\in \mathcal {I}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\).

  2. (P2)

    For any \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x\in X\), the map \(g\cdot x:\mathbb {D}\rightarrow X\), given by \((g \cdot x)(z) = g(z)x\) if \(z\in \mathbb {D}\), is in \(\mathcal {I}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) and \(\left\| g\cdot x\right\| _{\mathcal {I}^{\widehat{\mathcal {B}}}}=\rho _{\mathcal {B}}(g)\left\| x\right\| \).

  3. (P3)

    The ideal property: if \(f\in \mathcal {I}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\), \(h\in \widehat{\mathcal {B}}(\mathbb {D},\mathbb {D})\) and \(T\in \mathcal {L}(X,Y)\) where Y is a complex Banach space, then \(T\circ f\circ h\) belongs to \(\mathcal {I}^{\widehat{\mathcal {B}}}(\mathbb {D},Y)\) and \(\Vert T\circ f\circ h\Vert _{\mathcal {I}^{\widehat{\mathcal {B}}}}\le \Vert T\Vert \,\Vert f\Vert _{\mathcal {I}^{\widehat{\mathcal {B}}}}\).

In the case \(\theta =1\), we remove any reference to \(\theta \).

Proposition 1.3

\(\left[ \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}},\pi _{(p,r,s)}^{\mathcal {B}}\right] \) is a Banach normalized Bloch ideal.

Proof

Let X be a complex Banach space and let \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\), \(z_i\in \mathbb {D}\) and \(x^*_i\in X^*\) for all \(i\in \{1,\ldots ,n\}\).

(P1) Given \(f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\), it is clear that \(\pi _{(p,r,s)}^{\mathcal {B}}(f)\ge 0\). If \(\pi ^{\mathcal {B}}_{(p,r,s)}(f)=0\), then \(\rho _{\mathcal {B}}(f)=0\) by Proposition 1.1, and so \(f=0\). For any \(\lambda \in \mathbb {C}\), we have

$$\begin{aligned} \left\| (\lambda _ix^*_i((\lambda f)'(z_i)))_{i=1}^n\right\| _p&=\left| \lambda \right| \left\| (\lambda _ix^*_i(f'(z_i)))_{i=1}^n\right\| _p\\&\le \left| \lambda \right| \pi _{(p,r,s)}^{\mathcal {B}}(f)\omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (x^*_i)_{i=1}^n\right) , \end{aligned}$$

and thus \(\lambda f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) with \(\pi _{(p,r,s)}^{\mathcal {B}}(\lambda f)\le \left| \lambda \right| \pi _{(p,r,s)}^{\mathcal {B}}(f)\). If \(\lambda =0\), this implies that \(\pi _{(p,r,s)}^{\mathcal {B}}(\lambda f)=0=\left| \lambda \right| \pi _{(p,r,s)}^{\mathcal {B}}(f)\). If \(\lambda \ne 0\), we have \(\pi _{(p,r,s)}^{\mathcal {B}}(f)=\pi _{(p,r,s)}^{\mathcal {B}}(\lambda ^{-1}(\lambda f))\le \left| \lambda ^{-1}\right| \pi _{(p,r,s)}^{\mathcal {B}}(\lambda f)\), hence \(\left| \lambda \right| \pi _{(p,r,s)}^{\mathcal {B}}(f)\le \pi _{(p,r,s)}^{\mathcal {B}}(\lambda f)\), and so \(\pi _{(p,r,s)}^{\mathcal {B}}(\lambda f)=\left| \lambda \right| \pi _{(p,r,s)}^{\mathcal {B}}(f)\).

For any \(f_1,f_2\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\), we have

$$\begin{aligned} \left\| (\lambda _ix^*_i((f_1+f_2)'(z_i)))_{i=1}^n\right\| _p&\le \left\| (\lambda _ix^*_i(f_1'(z_i)))_{i=1}^n\right\| _p+\left\| (\lambda _ix^*_i(f_2'(z_i)))_{i=1}^n\right\| _p\\&\le \left( \pi _{(p,r,s)}^{\mathcal {B}}(f_1)+\pi _{(p,r,s)}^{\mathcal {B}}(f_2)\right) \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \\&\quad \times \omega _s\left( (x^*_i)_{i=1}^n\right) , \end{aligned}$$

and thus \(f_1+f_2\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) with \(\pi _{(p,r,s)}^{\mathcal {B}}(f_1+f_2)\le \pi _{(p,r,s)}^{\mathcal {B}}(f_1)+\pi _{(p,r,s)}^{\mathcal {B}}(f_2)\). Consequently, \((\Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X),\pi _{(p,r,s)}^{\mathcal {B}})\) is a normed space.

To show its completeness, let \((f_i)\) be a sequence in \(\Pi _{(p,r,s)}^{\mathcal {B}}(\mathbb {D},X)\) such that \(\sum _{i=1}^{\infty }\pi _{(p,r,s)}^{\mathcal {B}}(f_i)<\infty \). Since \(\rho _{\mathcal {B}}\le \pi _{(p,r,s)}^{\mathcal {B}}\) on \(\Pi ^{\mathcal {B}}_{(p,r,s)}(\mathbb {D},X)\) by Proposition 1.1, and \((\widehat{\mathcal {B}}(\mathbb {D},X),\rho _{\mathcal {B}})\) is a Banach space, there exists \(f=\sum _{i=1}^\infty f_i\in \widehat{\mathcal {B}}(\mathbb {D},X)\) in the norm \(\rho _{\mathcal {B}}\). We will prove that \(\sum _{i=1}^\infty f_i=f\) in the norm \(\pi _{(p,r,s)}^{\mathcal {B}}\). Given \(m\in \mathbb {N}\), \(\lambda _k\in \mathbb {C}\), \(z_k\in \mathbb {D}\) and \(x_k^*\in X^*\) for all \(k\in \{1,\ldots ,m\}\), we have

$$\begin{aligned} \left\| \left( \lambda _kx^*_k\left( \left( \sum _{i=1}^nf_i\right) '(z_k)\right) \right) _{k=1}^m\right\| _p&\le \pi _{(p,r,s)}^{\mathcal {B}}\left( \sum _{i=1}^nf_i\right) \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _k,z_k)_{k=1}^m\right) \\&\quad \times \omega _s\left( (x^*_k)_{k=1}^m\right) \\&\le \left( \sum _{i=1}^n\pi _{(p,r,s)}^{\mathcal {B}}(f_i)\right) \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _k,z_k)_{k=1}^m\right) \\&\quad \times \omega _s\left( (x^*_k)_{k=1}^m\right) \end{aligned}$$

for all \(n\in \mathbb {N}\), and by taking limits with \(n\rightarrow \infty \) yields

$$\begin{aligned} \left\| \left( \lambda _kx^*_k\left( \left( \sum _{i=1}^\infty f_i\right) '(z_k)\right) \right) _{k=1}^m\right\| _p&\le \left( \sum _{i=1}^\infty \pi _{(p,r,s)}^{\mathcal {B}}(f_i)\right) \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _k,z_k)_{k=1}^m\right) \\&\quad \times \omega _s\left( (x^*_k)_{k=1}^m\right) . \end{aligned}$$

Hence \(f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) with \(\pi _{(p,r,s)}^{\mathcal {B}}(f)\le \sum _{n=1}^{\infty }\pi _{(p,r,s)}^{\mathcal {B}}(f_n)\). Moreover,

$$\begin{aligned} \pi _{(p,r,s)}^{\mathcal {B}}\left( f-\sum _{i=1}^{n}f_{i}\right) =\pi _{(p,r,s)}^{\mathcal {B}}\left( \sum _{i=n+1}^{\infty }f_{i}\right) \le \sum _{i=n+1}^{\infty }\pi _{(p,r,s)}^{\mathcal {B}}\left( f_{i}\right) \end{aligned}$$

for all \(n\in \mathbb {N}\), and therefore \(\sum _{i=1}^{\infty }f_i=f\) in the norm \(\pi _{(p,r,s)}^{\mathcal {B}}\).

(P2) Let \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x\in X\). It is immediate that \(g\cdot x\in \widehat{\mathcal {B}}(\mathbb {D},X)\) with \(\rho _{\mathcal {B}}(g\cdot x)=\rho _{\mathcal {B}}(g)\left\| x\right\| \). For \(g=0\) or \(x=0\), (P2) is clear. If \(g\ne 0\) and \(x\ne 0\), the generalized Hölder’s inequality gives

$$\begin{aligned}&||(\lambda _ix^*_i((g\cdot x)'(z_i)))_{i=1}^n||_p=\rho _{\mathcal {B}}(g)\left\| x\right\| \left\| \left( \lambda _i\left( \frac{g}{\rho _{\mathcal {B}}(g)}\right) '(z_i)x^*_i\left( \frac{x}{\left\| x\right\| }\right) \right) _{i=1}^n\right\| _p\\&\quad =\rho _{\mathcal {B}}(g)\left\| x\right\| \left\| \left( \lambda _i\left( \frac{g}{\rho _{\mathcal {B}}(g)}\right) '(z_i)J_X\left( \frac{x}{\left\| x\right\| }\right) (x^*_i)\right) _{i=1}^n\right\| _p\\&\quad \le \rho _{\mathcal {B}}(g)\left\| x\right\| \left\| \left( \lambda _i\left( \frac{g}{\rho _{\mathcal {B}}(g)}\right) '(z_i)\right) _{i=1}^n\right\| _r\left\| \left( J_X\left( \frac{x}{\left\| x\right\| }\right) (x^*_i)\right) _{i=1}^n\right\| _s\\&\quad \le \rho _{\mathcal {B}}(g)\left\| x\right\| \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (x^*_i)_{i=1}^n\right) , \end{aligned}$$

and thus \(g\cdot x\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) with \(\pi _{(p,r,s)}^{\mathcal {B}}(g\cdot x)\le \rho _{\mathcal {B}}(g)\left\| x\right\| \). Conversely,

$$\begin{aligned} \rho _{\mathcal {B}}(g)\left\| x\right\| =\rho _{\mathcal {B}}(g\cdot x)\le \pi _{(p,r,s)}^{\mathcal {B}}(g\cdot x) \end{aligned}$$

by using Proposition 1.1.

(P3) Let \(f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\), \(T\in \mathcal {L}(X,Y)\) and \(h\in \widehat{\mathcal {B}}(\mathbb {D},\mathbb {D})\). Clearly, \((T\circ f\circ h)(0)=0\) and \(T\circ f\circ h\in \mathcal {H}(\mathbb {D},Y)\) with

$$\begin{aligned} (T\circ f\circ h)'=T\circ (f\circ h)'=T\circ [h'\cdot (f'\circ h)]. \end{aligned}$$

Let \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\), \((z_i)_{i=1}^n\) in \(\mathbb {D}\) and \((y^*_i)_{i=1}^n\) in \(Y^*\). We have

$$\begin{aligned}&\Vert (\lambda _iy^*_i((T\circ f\circ h)'(z_i)))_{i=1}^n\Vert _p=\left\| (\lambda _iy^*_i(T(h'(z_i)f'(h(z_i)))))_{i=1}^n\right\| _p\\&\quad \le \left\| T\right\| \left\| (\lambda _ih'(z_i)y^*_i(f'(h(z_i))))_{i=1}^n\right\| _p\\&\quad \le \left\| T\right\| \pi _{(p,r,s)}^{\mathcal {B}}(f)\omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _ih'(z_i),h(z_i))_{i=1}^n\right) \omega _s\left( (y^*_i)_{i=1}^n\right) \\&\quad \le \left\| T\right\| \pi _{(p,r,s)}^{\mathcal {B}}(f)\omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (y^*_i)_{i=1}^n\right) , \end{aligned}$$

where it is applied that \(\rho _{\mathcal {B}}(g\circ h)\le \rho _{\mathcal {B}}(g)\) for all \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) by the Pick–Schwarz Lemma. So \(T\circ f\circ h\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) with \(\pi _{(p,r,s)}^{\mathcal {B}}(T\circ f\circ h)\le \left\| T\right\| \pi _{(p,r,s)}^{\mathcal {B}}(f)\). \(\square \)

2.3 Pietsch’s domination and Kwapień’s factorization

For \(1\le p,r,s<\infty \) such that \(1/p=1/r+1/s\), we present a result gathering both variants for (prs)-summing Bloch maps of Pietsch’s domination theorem [14, Theorem 7.4.2] and Kwapień’s factorization theorem [14, Theorem 7.4.3] for (rs)-dominated linear operators.

Given a Banach space X, we will denote by \(\mathcal {P}(B_{X^{*}})\) the set of all regular Borel probability measures \(\mu \) on \(B_{X^{*}}\) with the topology \(w^*\).

Theorem 1.4

Let \(1\le p,r,s<\infty \) be with \(1/p=1/r+1/s\) and \(f\in \widehat{\mathcal {B}}(\mathbb {D},X)\). The following statements are equivalent:

  1. (i)

    \(f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\).

  2. (ii)

    (Pietsch’s domination). There exist a constant \(C>0\) and measures \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\) and \(\nu \in \mathcal {P}(B_{X^{**}})\) such that

    $$\begin{aligned} \left| x^*(f'(z))\right| \le C\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| g'(z)\right| ^{r}d\mu (g)\right) ^{\frac{1}{r}}\left( \int _{B_{X^{**}}}\left| x^{**}(x^*)\right| ^{s}d\nu (x^{**})\right) ^{\frac{1}{s}} \end{aligned}$$

    for all \(z\in \mathbb {D}\) and \(x^*\in X^*\).

  3. (iii)

    (Kwapień’s factorization). There exist a Banach space Z, a closed subspace \(Y\subseteq Z\), a map \(h\in \Pi ^{\widehat{\mathcal {B}}}_r(\mathbb {D},Z)\) with \(h'(\mathbb {D})\subseteq Y\) and an operator \(T\in \mathcal {L}(Y,X)\) with \(T^*\in \Pi _s(X^*,Y^*)\) such that \(f'=T\circ h'\).

In this case,

$$\begin{aligned} \pi _{(p,r,s)}^{\mathcal {B}}(f)=\inf \{C :C\text { as in }(ii)\}=\inf \left\{ \pi _s(T^*)\pi _{r}^{\mathcal {B}}(h):f'=T\circ h'\right\} \end{aligned}$$

and, in addition, both infimums are attained.

Proof

\((i)\Leftrightarrow (ii)\): We will apply a general Pietsch domination theorem (see [12, Theorem 4.6]). Define the functions

$$\begin{aligned} R_{1}&:B_{\widehat{\mathcal {B}}(\mathbb {D})}\times \mathbb {D}\times \mathbb {C}\rightarrow [0,\infty [,\qquad R_1(g,z,\lambda )=\left| \lambda \right| \left| g'(z)\right| ,\\ R_2&:B_{X^{**}}\times X^*\rightarrow [0,\infty [,\qquad R_2(x^{**},x^*)=\left| x^{**}(x^*)\right| ,\\ S&:\widehat{\mathcal {B}}(\mathbb {D},X)\times \mathbb {D}\times \mathbb {C}\times X^*\rightarrow [0,\infty [,\qquad S(f,z,\lambda ,x^*)=\left| \lambda \right| \left| x^*(f'(z))\right| . \end{aligned}$$

Note that \(R_1\), \(R_2\) and S satisfy the properties (1)–(2) preceding to [12, Definition 4.4]:

  1. 1.

    For each \(z\in \mathbb {D}\), \(\lambda \in \mathbb {C}\) and \(x^*\in X^*\), the maps

    $$\begin{aligned} (R_1)_{z,\lambda }&:B_{\widehat{\mathcal {B}}(\mathbb {D})}\rightarrow [0,\infty [\qquad (R_1)_{z,\lambda }(g)=R_1(g,z,\lambda ),\\ (R_2)_{x^*}&:B_{X^{**}}\rightarrow [0,\infty [\qquad (R_2)_{x^*}(x^{**})=R_2(x^{**},x^*), \end{aligned}$$

    are continuous.

  2. 2.

    The equalities

    $$\begin{aligned} R_1(g,z,\beta _1\lambda )&=\beta _1 R_1(g,z,\lambda ),\\ R_2(x^{**},\beta _2 x^*)&=\beta _2 R_2(x^{**},x^*),\\ S(f,z,\beta _1\lambda ,\beta _2x^*)&=\overline{\beta }_1 \beta _2 S(f,z,\lambda ,x^*), \end{aligned}$$

    hold for all \(g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}\), \(x^{**}\in B_{X^{**}}\), \(z\in \mathbb {D}\), \(\lambda \in \mathbb {C}\), \(x^*\in X^*\), \(\beta _1,\beta _2\in [0,1]\) and \(f\in \widehat{\mathcal {B}}(\mathbb {D},X)\).

Now, in view of Definition 4.4 and Theorem 4.6 in [12], we have that f is (prs)-summing Bloch if and only if f is \(R_1,R_2\)-S abstract (rs)-summing if and only if there is a constant \(C>0\) and measures \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\) and \(\nu \in \mathcal {P}(B_{X^{**}})\) such that

$$\begin{aligned} S(f,z,\lambda ,x^*)\le C\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}R_1(g,z,\lambda )^rd\mu (g)\right) ^{\frac{1}{r}}\left( \int _{B_{X^{**}}}R_2(x^{**},x^*)^{s}d\nu (x^{**})\right) ^{\frac{1}{s}} \end{aligned}$$

for all \(z\in \mathbb {D}\), \(\lambda \in \mathbb {C}\) and \(x^*\in X^*\), and this means that

$$\begin{aligned} \left| x^*(f'(z))\right| \le C\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| g'(z)\right| ^rd\mu (g)\right) ^{\frac{1}{r}}\left( \int _{B_{X^{**}}}\left| x^{**}(x^*)\right| ^{s}d\nu (x^{**})\right) ^{\frac{1}{s}} \end{aligned}$$

for all \(z\in \mathbb {D}\) and \(x^*\in X^*\). In this case, \(\pi _{(p,r,s)}^{\mathcal {B}}(f)=\min \{C :C\text { as in }(ii)\}\).

\((ii)\Rightarrow (iii)\): Let \(\iota _\mathbb {D}:\mathbb {D}\rightarrow C(B_{\widehat{\mathcal {B}}(\mathbb {D})})\) be defined by \(\iota _{\mathbb {D}}(z)(g)=g'(z)\) for all \(z\in \mathbb {D}\) and \(g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}\), and let \(j_r:C(B_{\widehat{\mathcal {B}}(\mathbb {D})})\rightarrow L_r(\mu )\) be the canonical injection. In the light of [3, Lemma 1.5], we can find a map \(h\in \widehat{\mathcal {B}}(\mathbb {D},L_r(\mu ))\) with \(\rho _{\mathcal {B}}(h)=1\) such that \(h'=j_{r}\circ \iota _\mathbb {D}\). Moreover, \(h\in \Pi ^{\widehat{\mathcal {B}}}_r(\mathbb {D},L_r(\mu ))\) with \(\pi _{r}^{\mathcal {B}}(h)=1\). Consider the linear subspace \(Y=\overline{\textrm{lin}}(h'(\mathbb {D}))\subseteq L_r(\mu )\) and the operator \(T\in \mathcal {L}(Y,X)\) defined by \(T(h'(z))=f'(z)\) for all \(z\in \mathbb {D}\). Using (ii), we have

$$\begin{aligned} \left\| T^*(x^*)\right\|&=\sup \left\{ \left| T^*(x^*)(h'(z))\right| :z\in \mathbb {D},\; \left\| h'(z)\right\| \le 1\right\} \\&=\sup \left\{ \left| x^*(T(h'(z)))\right| :z\in \mathbb {D},\;\left\| h'(z)\right\| \le 1\right\} \\&=\sup \left\{ \left| x^*(f'(z))\right| :z\in \mathbb {D},\;\left\| h'(z)\right\| \le 1\right\} \\&\le C\left( \int _{B_{X^{**}}}\left| x^{**}(x^*)\right| ^{s}d\nu (x^{**})\right) ^{\frac{1}{s}} \end{aligned}$$

for all \(x^*\in X^*\), and thus \(T^*\in \Pi _s(X^*,Y^*)\) with \(\pi _s(T^*)\le C\). Hence (iii) holds and \(\pi _s(T^*)\pi _{r}^{\mathcal {B}}(h)\le C\). Taking the infimum over all such constants C, it follows that \( \pi _s(T^*)\pi _{r}^{\mathcal {B}}(h)\le \inf \{C :C\text { as in }(ii)\}\).

\((iii)\Rightarrow (ii)\): Suppose there exist maps h and T as in (iii). For any \(z\in \mathbb {D}\) and \(x^*\in X^*\), we have

$$\begin{aligned} \left| x^*(f'(z))\right| =\left| x^*((T\circ h')(z))\right| =\left| T^*(x^*)(h'(z))\right| \le \left\| T^*(x^*)\right\| \left\| h'(z)\right\| . \end{aligned}$$

By both Pietsch domination theorems for p-summing linear operators [14, Theorem 7.3.2] and p-summing Bloch maps [3, Theorem 1.4], there are measures \(\nu \in \mathcal {P}(B_{X^{**}})\) and \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\) such that

$$\begin{aligned} \left\| T^*(x^*)\right\| \le \pi _s(T^*)\left( \int _{B_{X^{**}}}\left| x^{**}(x^*)\right| ^{s}d\nu (x^{**})\right) ^{\frac{1}{s}} \end{aligned}$$

and

$$\begin{aligned} \left\| h'(z)\right\| \le \pi ^{\mathcal {B}}_r(h)\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| g'(z)\right| ^{r}d\mu (g)\right) ^{\frac{1}{r}}. \end{aligned}$$

Hence we have

$$\begin{aligned} \left| x^*(f'(z))\right|&\le \pi _s(T^*)\pi ^{\mathcal {B}}_r(h)\\&\quad \times \left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| g'(z)\right| ^{r}d\mu (g)\right) ^{\frac{1}{r}}\left( \int _{B_{X^{**}}}\left| x^{**}(x^*)\right| ^{s}d\nu (x^{**})\right) ^{\frac{1}{s}}, \end{aligned}$$

and this proves (ii) with \(\pi _s(T^*)\pi ^{\mathcal {B}}_r(h)\in \{C :C\text { as in }(ii)\}\). It follows that \(\inf \{C :C\text { as in }(ii)\}\le \inf \left\{ \pi _s(T^*)\pi _{r}^{\mathcal {B}}(h):f'=T\circ h'\right\} \). \(\square \)

2.4 Möbius invariance

The Möbius group of \(\mathbb {D}\), denoted by \(\textrm{Aut}(\mathbb {D})\), consists of all biholomorphic bijections \(\phi :\mathbb {D}\rightarrow \mathbb {D}\). Each \(\phi \in \textrm{Aut}(\mathbb {D})\) has the form \(\phi =\lambda \phi _a\) with \(\lambda \in \mathbb {T}\) and \(a\in \mathbb {D}\), where

$$\begin{aligned} \phi _a(z)=\frac{a-z}{1-\overline{a}z}\qquad (z\in \mathbb {D}). \end{aligned}$$

Given a complex Banach space X, let us recall that a linear space \(\mathcal {A}(\mathbb {D},X)\subseteq \mathcal {H}(\mathbb {D},X)\) endowed with a seminorm \(p_\mathcal {A}\) is Möbius-invariant if:

  1. (i)

    \(\mathcal {A}(\mathbb {D},X)\subseteq \mathcal {B}(\mathbb {D},X)\) and there exists \(C\ge 0\) such that \(\rho _\mathcal {B}(f)\le Cp_\mathcal {A}(f)\) for all \(f\in \mathcal {A}(\mathbb {D},X)\),

  2. (ii)

    \(f\circ \phi \in \mathcal {A}(\mathbb {D},X)\) with \(p_\mathcal {A}(f\circ \phi )=p_\mathcal {A}(f)\) for all \(\phi \in \textrm{Aut}(\mathbb {D})\) and \(f\in \mathcal {A}(\mathbb {D},X)\).

We have the following interesting fact.

Proposition 1.5

The space \((\Pi ^{\mathcal {B}}_{(p,r,s)}(\mathbb {D},X),\pi ^{\mathcal {B}}_{(p,r,s)})\) is Möbius-invariant.

Proof

By Proposition 1.1, \(\Pi ^\mathcal {B}_{(p,r,s)}(\mathbb {D},X)\subseteq \mathcal {B}(\mathbb {D},X)\) and \(\rho _\mathcal {B}(f)\le \pi ^{\mathcal {B}}_{(p,r,s)}(f)\) for all \(f\in \Pi ^\mathcal {B}_{(p,r,s)}(\mathbb {D},X)\). On the other hand, a proof similar to that of (P3) in Proposition 1.3 yields that if \(f\in \Pi ^\mathcal {B}_{(p,r,s)}(\mathbb {D},X)\) and \(\phi \in \textrm{Aut}(\mathbb {D})\), then \(f\circ \phi \in \Pi ^\mathcal {B}_{(p,r,s)}(\mathbb {D},X)\) with \(\pi ^{\mathcal {B}}_p(f\circ \phi )\le \pi ^{\mathcal {B}}_p(f)\), and from this fact it is inferred that \(\pi ^{\mathcal {B}}_p(f)=\pi ^{\mathcal {B}}_p((f\circ \phi )\circ \phi ^{-1})\le \pi ^{\mathcal {B}}_p(f\circ \phi )\). \(\square \)

2.5 Lapresté norms on Bloch molecules

Our approach on the duality of the spaces \((\Pi ^{\widehat{\mathcal {B}}}_{(p,r,s)},\pi ^{\mathcal {B}}_{(p,r,s)})\) requires the introduction of Bloch analogues of Lapresté norms [10] on the tensor product of Banach spaces (a generalization of the Chevet–Saphar norms [5, 15] on such tensor products). Given two linear spaces E and F, the tensor product space \(E\otimes F\) equipped with a norm \(\alpha \) will be denoted by \(E\otimes _\alpha F\), and the completion of \(E\otimes _\alpha F\) by \(E\widehat{\otimes }_\alpha F\).

Towards this end, we first recall some concepts and results borrowed from [8]. For each \(z\in \mathbb {D}\), a Bloch atom of \(\mathbb {D}\) is the functional \(\gamma _{z}\in \widehat{\mathcal {B}}(\mathbb {D})^*\) given by \(\gamma _{z}(f)=f'(z)\) for all \(f\in \widehat{\mathcal {B}}(\mathbb {D})\). The called Bloch molecules of \(\mathbb {D}\) are the elements of the space

$$\begin{aligned} \textrm{lin}(\{\gamma _{z}:z\in \mathbb {D}\})\subseteq \widehat{\mathcal {B}}(\mathbb {D})^*, \end{aligned}$$

and the Bloch-free Banach space of \(\mathbb {D}\) is the space

$$\begin{aligned} \mathcal {G}(\mathbb {D})=\overline{\textrm{lin}}(\{\gamma _{z}:z\in \mathbb {D}\})\subseteq \widehat{\mathcal {B}}(\mathbb {D})^*. \end{aligned}$$

Theorem 1.6

[8]

  1. (i)

    The map \(\Gamma :z\in \mathbb {D}\mapsto \gamma _{z}\in \mathcal {G}(\mathbb {D})\) is holomorphic with \(\left\| \gamma _{z}\right\| =1/(1-|z|^{2})\).

  2. (ii)

    The map \(\Lambda :\widehat{\mathcal {B}}(\mathbb {D})\rightarrow \mathcal {G}(\mathbb {D})^*\), given by \(\Lambda (g)(\gamma _z)=g'(z)\) for all \(z\in \mathbb {D}\) and \(g\in \widehat{\mathcal {B}}(\mathbb {D})\), is an isometric isomorphism.

  3. (iii)

    For each \(h\in \widehat{\mathcal {B}}(\mathbb {D},\mathbb {D})\), there exists a unique \(\widehat{h}\in \mathcal {L}(\mathcal {G}(\mathbb {D}),\mathcal {G}(\mathbb {D}))\) such that \(\widehat{h}\circ \Gamma =h^{\prime }\cdot (\Gamma \circ h)\). Furthermore, \(||\widehat{h}||\le 1\).

  4. (iv)

    For each complex Banach space X and each \(f\in \widehat{\mathcal {B}}(\mathbb {D},X)\), there is a unique \(S_f\in \mathcal {L}(\mathcal {G}(\mathbb {D}),X)\) such that \(S_f\circ \Gamma =f'\) and \(\Vert S_f\Vert = p_\mathcal {B}(f)\).

  5. (v)

    \(f \mapsto S_f\) is an isometric isomorphism of \(\widehat{\mathcal {B}}(\mathbb {D},X)\) onto \(\mathcal {L}(\mathcal {G}(\mathbb {D}),X)\). \(\square \)

Given a complex Banach space X, the space of X-valued Bloch molecules of \(\mathbb {D}\) is defined as

$$\begin{aligned} \textrm{lin}(\Gamma (\mathbb {D}))\otimes X=\textrm{lin}(\left\{ \gamma _{z}\otimes x:z\in \mathbb {D},\,x\in X\right\} ) \subseteq \widehat{\mathcal {B}}(\mathbb {D},X^{*})^{*}, \end{aligned}$$

where \(\gamma _{z}\otimes x:\widehat{\mathcal {B}}(\mathbb {D},X^{*})\rightarrow \mathbb {C}\) is the functional given by

$$\begin{aligned} \left( \gamma _{z}\otimes x\right) (f)=\left\langle f^{\prime }(z),x\right\rangle \qquad \left( f\in \widehat{\mathcal {B}}(\mathbb {D},X^{*})\right) . \end{aligned}$$

Each element \(\gamma \in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) can be expressed as \(\gamma =\sum _{i=1}^{n}\lambda _{i}\gamma _{z_{i}}\otimes x_{i}\) for some n in \(\mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\), \((z_i)_{i=1}^n\) in \(\mathbb {D}\) and \((x_i)_{i=1}^n\) in X, and its action is

$$\begin{aligned} \gamma (f)=\sum _{i=1}^{n}\lambda _i\left\langle f'(z_i),x_i\right\rangle . \end{aligned}$$

Definition 1.7

Let \(1\le p,r,s\le \infty \) and \(\gamma \in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\). Define

$$\begin{aligned} \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )=\inf \left\{ \left\| (\lambda _i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) \right\} , \end{aligned}$$

the infimum being taken over all the representations of \(\gamma \) as \(\sum _{i=1}^{n}\lambda _{i}\gamma _{z_i}\otimes x_i\) with n in \(\mathbb {N}\), \(\left( \lambda _i\right) _{i=1}^{n}\) in \(\mathbb {C}\), \(\left( z_{i}\right) _{i=1}^{n}\) in \(\mathbb {D}\) and \(\left( x_i\right) _{i=1}^{n}\) in X.

Following [3, Definition 2.5], we say that a \(\theta \)-norm \(\alpha \) on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) with \(\theta \in (0,1]\) is a Bloch reasonable crossnorm if:

  1. (i)

    \(\alpha (\gamma _z\otimes x)\le \left\| \gamma _z\right\| \left\| x\right\| \) for all \(z\in \mathbb {D}\) and \(x\in X\),

  2. (ii)

    For \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x^*\in X^*\), the linear functional \(g\otimes x^*\) on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) given by \((g\otimes x^*)(\gamma _z\otimes x)=g'(z)x^*(x)\) is bounded on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes _\alpha X\) with \(\left\| g\otimes x^*\right\| \le \rho _\mathcal {B}(g)\left\| x^*\right\| \).

The proof of the following result is based on [10, Theorem 1.1].

Theorem 1.8

Let \(1\le p,r,s\le \infty \) and \(1/\theta :=1/p+1/r+1/s\ge 1\). Then \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}\) is a Bloch reasonable \(\theta \)-crossnorm on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\).

Proof

Let \(\gamma \in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) and let \(\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\) be a representation of \(\gamma \). Clearly, \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )\ge 0\). Given \(\lambda \in \mathbb {C}\), we have

$$\begin{aligned} \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda \gamma )&\le \left\| (\lambda \lambda _i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) \\&=\left| \lambda \right| \left\| (\lambda _i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) \end{aligned}$$

If \(\lambda =0\), we obtain \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda \gamma )=0=\left| \lambda \right| \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )\). For \(\lambda \ne 0\), since the preceding inequality holds for every representation of \(\gamma \), we deduce that \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda \gamma )\le \left| \lambda \right| \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )\). For the converse inequality, note that

$$\begin{aligned} \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )=\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda ^{-1}(\lambda \gamma ))\le |\lambda ^{-1}|\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda \gamma ), \end{aligned}$$

thus \(\left| \lambda \right| \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )\le \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda \gamma )\) and hence \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\lambda \gamma )=\left| \lambda \right| \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )\).

We now prove that \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )=0\) implies \(\gamma =0\). Applying that \(\theta \le 1\) and the generalized Hölder’s inequality, we obtain

$$\begin{aligned} \left| \sum _{i=1}^n \lambda _i h'(z_i)y^*(x_i)\right|&\le \left| \sum _{i=1}^n \left| \lambda _i\right| ^\theta \left| h'(z_i)\right| ^\theta \left| y^*(x_i)\right| ^\theta \right| ^{\frac{1}{\theta }}\\&\le \left( \sum _{i=1}^{n}\left| \lambda _i\right| ^p\right) ^{\frac{1}{p}}\left( \sum _{i=1}^{n}\left| h'(z_i)\right| ^r\right) ^{\frac{1}{r}}\left( \sum _{i=1}^{n}\left| y^*(x_i)\right| ^s\right) ^{\frac{1}{s}}\\&\le \left\| (\lambda _i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) \end{aligned}$$

for any \(h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}\) and \(y^*\in B_{X^*}\). Since the quantity \(\left| \sum _{i=1}^n \lambda _i h'(z_i)y^*(x_i)\right| \) does not depend on the representation of \(\gamma \) since

$$\begin{aligned} \sum _{i=1}^n \lambda _i h'(z_i)y^*(x_i)=\left( \sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\right) (h\cdot y^*)=\gamma (h\cdot y^*), \end{aligned}$$

taking the infimum over all representations of \(\gamma \) we deduce that

$$\begin{aligned} \left| \sum _{i=1}^n \lambda _i h'(z_i)y^*(x_i)\right| \le \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma ) \end{aligned}$$

for any \(h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}\) and \(y^*\in B_{X^*}\). Now, if \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )=0\), we have

$$\begin{aligned} \left( \sum _{i=1}^n \lambda _i y^*(x_i)\gamma _{z_i}\right) (h)=\sum _{i=1}^n \lambda _i h'(z_i)y^*(x_i)=0 \end{aligned}$$

for all \(h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}\) and \(y^*\in B_{X^*}\). For each \(y^*\in B_{X^*}\), it is \(\sum _{i=1}^n\lambda _i y^*(x_i)\gamma _{z_i}=0\), and since \(\Gamma (\mathbb {D})\) is linearly independent in \(\mathcal {G}(\mathbb {D})\) by [8, Remark 2.8], it follows that \(\lambda _iy^*(x_i)=0\) for all \(i\in \{1,\ldots ,n\}\), hence \(\lambda _ix_i=0\) for all \(i\in \{1,\ldots ,n\}\) since \(B_{X^*}\) separates the points of X, and thus \(\gamma =\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i=0\).

To prove the triangular inequality of \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}\), let \(\gamma _j\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) for \(j=1,2\) and \(\varepsilon >0\). For \(j=1,2\), by homogeneity we can choose a representation

$$\begin{aligned} \gamma _j=\sum _{i=1}^n\lambda _{j,i}\gamma _{z_{j,i}}\otimes x_{j,i} \end{aligned}$$

for some n in \(\mathbb {N}\), \(\left( \lambda _{j,i}\right) _{i=1}^{n}\) in \(\mathbb {C}\), \(\left( z_{j,i}\right) _{i=1}^{n}\) in \(\mathbb {D}\) and \(\left( x_{j,i}\right) _{i=1}^{n}\) in X, so that

$$\begin{aligned} \left\| (\lambda _{j,i})_{i=1}^n\right\| _p&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _j)^\theta +\varepsilon \right) ^{\frac{1}{p}},\\ \omega ^{\widehat{\mathcal {B}}}_r\left( (z_{j,i})_{i=1}^n\right)&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _j)^\theta +\varepsilon \right) ^{\frac{1}{r}},\\ \omega _s\left( (x_{j,i})_{i=1}^n\right)&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _j)^\theta +\varepsilon \right) ^{\frac{1}{s}}. \end{aligned}$$

We can joint these representations of \(\gamma _1\) and \(\gamma _2\) to obtain a representation of \(\gamma _1+\gamma _2\) in the form \(\sum _{i,j=1}^n\lambda _{j,i}\gamma _{z_{j,i}}\otimes x_{j,i}\) such that

$$\begin{aligned} \left\| (\lambda _{j,i})_{i,j=1}^n\right\| _p&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1)^\theta +\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _2)^\theta +2\varepsilon \right) ^{\frac{1}{p}},\\ \omega ^{\widehat{\mathcal {B}}}_r\left( (z_{j,i})_{i,j=1}^n\right)&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1)^\theta +\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _2)^\theta +2\varepsilon \right) ^{\frac{1}{r}},\\ \omega _s\left( (x_{j,i})_{i,j=1}^n\right)&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1)^\theta +\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _2)^\theta +2\varepsilon \right) ^{\frac{1}{s}}. \end{aligned}$$

Hence

$$\begin{aligned} \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1+\gamma _2)&\le \left\| (\lambda _{j,i})_{i,j=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_{j,i})_{i,j=1}^n\right) \omega _s\left( (x_{j,i})_{i,j=1}^n\right) \\&\le \left( \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1)^\theta +\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _2)^\theta +2\varepsilon \right) ^{\frac{1}{\theta }}, \end{aligned}$$

and since \(\varepsilon \) was arbitrary, we deduce that

$$\begin{aligned} \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1+\gamma _2)^\theta \le \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _1)^\theta +\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _2)^\theta . \end{aligned}$$

To finish, we will show that \(\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}\) is a Bloch reasonable crossnorm on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\). First, given \(z\in \mathbb {D}\) and \(x\in X\), taking \(n=1\), \(\lambda _1=1\), \(z_1=z\) and \(x_1=x\), we have

$$\begin{aligned} \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma _z\otimes x)&\le \left\| (\lambda _i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) \\&\le \frac{1}{1-|z|^2}\left\| x\right\| =\left\| \gamma _z\right\| \left\| x\right\| . \end{aligned}$$

Second, given \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x^*\in X^*\) with \(g\ne 0\ne x^*\), using that \(\theta \le 1\) and the generalized Hölder’s inequality, one has

$$\begin{aligned}&\left| (g\otimes x^*)(\gamma )\right| =\left| \sum _{i=1}^n\lambda _i(g\otimes x^*)(\gamma _{z_i}\otimes x_i)\right| =\left| \sum _{i=1}^n\lambda _i g'(z_i)x^*(x_i)\right| \\&\quad \le \rho _\mathcal {B}(g)\left\| x^*\right\| \left\| \left( \lambda _i\left( \frac{g}{\rho _\mathcal {B}(g)}\right) '(z_i)\left( \frac{x^*}{\left\| x^*\right\| }\right) (x_i)\right) _{i=1}^n\right\| _1\\&\quad \le \rho _\mathcal {B}(g)\left\| x^*\right\| \left\| \left( \lambda _i\left( \frac{g}{\rho _\mathcal {B}(g)}\right) '(z_i)\left( \frac{x^*}{\left\| x^*\right\| }\right) (x_i)\right) _{i=1}^n\right\| _{\theta }\\&\quad \le \rho _\mathcal {B}(g)\left\| x^*\right\| \left\| \left( \lambda _i\right) _{i=1}^n\right\| _p\left\| \left( \left( \frac{g}{\rho _\mathcal {B}(g)}\right) '(z_i)\right) _{i=1}^n\right\| _r\left\| \left( \left( \frac{x^*}{\left\| x^*\right\| }\right) (x_i)\right) _{i=1}^n\right\| _s\\&\quad \le \rho _\mathcal {B}(g)\left\| x^*\right\| \left\| (\lambda _i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) . \end{aligned}$$

It follows that \(\left| (g\otimes x^*)(\gamma )\right| \le \rho _\mathcal {B}(g)\left\| x^*\right\| \mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma )\) by taking infimum over all the representations of \(\gamma \). Hence \(g\otimes x^*\in (\textrm{lin}(\Gamma (\mathbb {D}))\otimes _{\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}} X)^*\) with \(\left\| g\otimes x^*\right\| \le \rho _\mathcal {B}(g)\left\| x^*\right\| \). \(\square \)

2.6 Duality

We will prove that the dual of \(\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X\) can be canonically identified as the space \(\Pi _{(p^*,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X^*)\) with the norm \(\pi _{(p^*,r,s)}^{\mathcal {B}}\) whenever \(1\le p,r,s\le \infty \) such that \(1/p^*\le 1/r+1/s\).

The following easy lemma will be needed.

Lemma 1.9

Let X be a Banach space, \(n\in \mathbb {N}\), \((x_i^*)_{i=1}^n\) in \(X^*\) and \(1\le p\le \infty \). Then

$$\begin{aligned} \sup _{x^{**}\in \mathcal {B}_{X^{**}}}\left\| (x^{**}(x^*_i))_{i=1}^n\right\| _p=\sup _{x\in \mathcal {B}_X}\left\| (x^*_i(x))_{i=1}^n\right\| _p. \end{aligned}$$

Proof

Since \(x^*_i(x)=J_X(x)(x^*_i)\) for \(i=1,\ldots ,n\), the inequality \(\ge \) is immediate. Conversely, let \(\varepsilon >0\). For each \(x^{**}\in \mathcal {B}_{X^{**}}\), Helly’s Lemma gives an \(y\in X\) such that \(\left\| y\right\| \le 1+\varepsilon \) and \(x^*_i(y)=x^{**}(x_i^*)\) for all \(i\in \{1,\ldots ,n\}\), and therefore

$$\begin{aligned} \left\| (x^{**}(x_i^*))_{i=1}^n\right\| _p&=(1+\varepsilon )\left\| \left( x^*_i\left( \frac{y}{1+\varepsilon }\right) \right) _{i=1}^n\right\| _p\\&\le (1+\varepsilon )\sup _{x\in \mathcal {B}_X}\left\| (x^*_i(x))_{i=1}^n\right\| _p. \end{aligned}$$

It follows that

$$\begin{aligned} \sup _{x^{**}\in \mathcal {B}_{X^{**}}}\left\| (x^{**}(x^*_i))_{i=1}^n\right\| _p\le (1+\varepsilon )\sup _{x\in \mathcal {B}_X}\left\| (x^*_i(x))_{i=1}^n\right\| _p \end{aligned}$$

and since \(\varepsilon \) was arbitrary, we obtain the inequality \(\le \). \(\square \)

Theorem 1.10

Let \(1\le p,r,s\le \infty \) such that \(1/p^*\le 1/r+1/s\). Then the spaces \((\Pi _{(p^*,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X^*),\pi _{(p^*,r,s)}^{\mathcal {B}})\) and \((\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X)^*\) are isometrically isomorphic via the canonical pairing

$$\begin{aligned} \Lambda (f)(\gamma )=\sum _{i=1}^{n}\lambda _{i}\left\langle f'(z_{i}),x_{i}\right\rangle \end{aligned}$$

for all \(f\in \Pi _{p^{*},r,s}^{\widehat{\mathcal {B}}}(\mathbb {D},X^*)\) and \(\gamma =\sum _{i=1}^{n}\lambda _{i}\gamma _{z_i}\otimes x_i\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\). Moreover, on the closed unit ball of \((\Pi _{(p^*,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X^*),\pi _{(p^*,r,s)}^{\mathcal {B}})\), the weak* topology coincides with the topology of pointwise \(\sigma (X^*,X)\)-convergence.

Proof

We will only prove the result whenever \(1<p<\infty \), and the other cases can be proved similarly.

Let \(f\in \Pi _{(p^*,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X^*)\) and let \(\Lambda _{0}(f):\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\rightarrow \mathbb {C}\) be the linear functional given by

$$\begin{aligned} \Lambda _{0}(f)(\gamma )=\sum _{i=1}^{n}\lambda _i\left\langle f'(z_i),x_i\right\rangle \end{aligned}$$

for any \(\gamma =\sum _{i=1}^{n}\lambda _i\gamma _{z_i}\otimes x_i\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\). We claim that \(\Lambda _{0}(f)\in (\textrm{lin}(\Gamma (\mathbb {D}))\otimes _{\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}}X)^*\) with \(\left\| \Lambda _0(f)\right\| \le \pi _{(p^*,r,s)}^{\mathcal {B}}(f)\). Indeed, Hölder’s inequality and an application of Lemma 1.9 yield

$$\begin{aligned} \left| \Lambda _0(f)(\gamma )\right|&\le \sum _{i=1}^{n}\left| \lambda _i\right| \left| \left\langle f'(z_i),x_i\right\rangle \right| \\&\le \left( \sum _{i=1}^{n}\left| \lambda _i\right| ^{p}\right) ^{\frac{1}{p}}\left( \sum _{i=1}^{n}\left| \left\langle f'(z_i),x_i\right\rangle \right| ^{p^*}\right) ^{\frac{1}{p^*}}\\&=\left( \sum _{i=1}^{n}\left| \lambda _i\right| ^{p}\right) ^{\frac{1}{p}}\left( \sum _{i=1}^{n}\left| \left\langle J_X(x_i),f'(z_i)\right\rangle \right| ^{p^*}\right) ^{\frac{1}{p^*}}\\&\le \left\| (\lambda _i)_{i=1}^n\right\| _p\pi _{(p^*,r,s)}^{\mathcal {B}}(f)\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (J_X(x_i))_{i=1}^n\right) \\&=\left\| (\lambda _i)_{i=1}^n\right\| _p\pi _{(p^*,r,s)}^{\mathcal {B}}(f)\omega ^{\widehat{\mathcal {B}}}_r\left( (z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) . \end{aligned}$$

Taking infimum over all the representations of \(\gamma \), we deduce that

$$\begin{aligned} \left| \Lambda _{0}(f)(\gamma )\right| \le \pi _{(p^*,r,s)}^{\mathcal {B}}(f)\mu _{(p,r,s)}^{\widehat{\mathcal {B}}}(\gamma ), \end{aligned}$$

and since \(\gamma \) was arbitrary, this proves our claim.

Since \(\textrm{lin}(\Gamma (\mathbb {D}))\) is a norm-dense linear subspace of \(\mathcal {G}(\mathbb {D})\) and \(\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}\) is a \(\theta \)-norm on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\), then \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) is a norm-dense linear subspace of \(\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X\). Hence there is a unique continuous map \(\Lambda (f)\) from \(\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X\) into \(\mathbb {C}\) extending \(\Lambda _0(f)\). Further, \(\Lambda (f)\) is linear and \(\left\| \Lambda (f)\right\| =\left\| \Lambda _0(f)\right\| \).

Let \(\Lambda :\Pi ^{\widehat{\mathcal {B}}}_{(p^*,r,s)}(\mathbb {D},X^*)\rightarrow (\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X)^*\) be so defined. In view of [3, Corollary 2.3], \(\Lambda _0\) is injective and linear from \(\Pi ^{\widehat{\mathcal {B}}}_{(p^*,r,s)}(\mathbb {D},X^*)\) into \((\mathcal {G}(\mathbb {D})\otimes X)^*\), and therefore so is \(\Lambda \). To prove that \(\Lambda \) is a surjective isometry, let \(\varphi \in (\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X)^*\) and define \(F_\varphi :\mathbb {D}\rightarrow X^*\) by

$$\begin{aligned} \left\langle F_\varphi (z),x\right\rangle =\varphi (\gamma _z\otimes x)\qquad \left( z\in \mathbb {D},\; x\in X\right) . \end{aligned}$$

As in the proof of [3, Proposition 2.4], there exists \(f_\varphi \in \widehat{\mathcal {B}}(\mathbb {D},X^*)\) with \(\rho _{\mathcal {B}}(f_\varphi )\le \left\| \varphi \right\| \) such that \(f_\varphi '=F_\varphi \).

We now prove that \(f_\varphi \in \Pi ^{\widehat{\mathcal {B}}}_{(p^*,r,s)}(\mathbb {D},X^*)\). Fix \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\), \((z_i)_{i=1}^n\) in \(\mathbb {D}\) and \((x^{**}_i)_{i=1}^n\) in \(X^{**}\). Let \(\varepsilon >0\). By Helly’s Lemma, for each \(i\in \{1,\ldots ,n\}\), we can find \(x_i\in X\) with \(\left\| x_i\right\| \le (1+\varepsilon )\left\| x^{**}_i\right\| \) and \(\left\langle f_\varphi '(z_i),x_i\right\rangle =\left\langle x^{**}_i,f_\varphi '(z_i)\right\rangle \). Clearly, the map \(T:\mathbb {C}^n\rightarrow \mathbb {C}\), defined by

$$\begin{aligned} T(t_1,\ldots ,t_n)=\sum _{i=1}^n t_i \lambda _i\left\langle x^{**}_i,f_\varphi '(z_i)\right\rangle ,\quad \forall (t_1,\ldots ,t_n)\in \mathbb {C}^n, \end{aligned}$$

is linear and continuous on \((\mathbb {C}^n,||\cdot ||_p)\) with

$$\begin{aligned} \left\| T\right\| =\left( \sum _{i=1}^n\left| \lambda _i\right| ^{p^*}\left| \left\langle x^{**}_i,f_\varphi '(z_i)\right\rangle \right| ^{p^*}\right) ^{\frac{1}{p^*}}. \end{aligned}$$

For any \((t_1,\ldots ,t_n)\in \mathbb {C}^n\) with \(||(t_1,\ldots ,t_n)||_p\le 1\), we have

$$\begin{aligned} \left| T(t_1,\ldots ,t_n)\right|&=\left| \varphi \left( \sum _{i=1}^n t_i\lambda _i\gamma _{z_i}\otimes x_i\right) \right| \\&\le \left\| \varphi \right\| \mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}\left( \sum _{i=1}^nt_i\lambda _i\gamma _{z_i}\otimes x_i\right) \\&\le \left\| \varphi \right\| \left\| (t_i)_{i=1}^n\right\| _p\omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (x_i)_{i=1}^n\right) . \end{aligned}$$

For each \(i\in \{1,\ldots ,n\}\), Hahn–Banach Theorem provides \(x^{***}_i\in B_{X^{***}}\) such that \(\left| x^{***}_i(x^{**}_i)\right| =\left\| x^{**}_i\right\| \). Note that \(\omega _s\left( (x_i)_{i=1}^n\right) \le \omega _s\left( (x^{**}_i)_{i=1}^n\right) \) because

$$\begin{aligned} \left\| (x^*(x_i))_{i=1}^n\right\| _s&\le (1+\varepsilon )\left\| (x_i^{**})_{i=1}^n\right\| _s=(1+\varepsilon )\left\| (x_i^{***}(x_i^{**}))_{i=1}^n\right\| _s\\&\le (1+\varepsilon )\omega _s\left( (x^{**}_i)_{i=1}^n\right) \end{aligned}$$

for all \(x^*\in B_{X^*}\). Therefore we can write

$$\begin{aligned} \left( \sum _{i=1}^n\left| \lambda _i\right| ^{p^*}\left| \left\langle x^{**}_i,f_\varphi '(z_i)\right\rangle \right| ^{p^*}\right) ^{\frac{1}{p^*}} \le (1+\varepsilon )\left\| \varphi \right\| \omega ^{\widehat{\mathcal {B}}}_r\left( (\lambda _i,z_i)_{i=1}^n\right) \omega _s\left( (x^{**}_i)_{i=1}^n\right) . \end{aligned}$$

By letting \(\varepsilon \) tend to zero gives \(f_\varphi \in \Pi ^{\widehat{\mathcal {B}}}_{(p^*,r,s)}(\mathbb {D},X^*)\) with \(\pi ^{\mathcal {B}}_{(p^*,r,s)}(f_\varphi )\le \left\| \varphi \right\| \).

Finally, for any \(\gamma =\sum _{i=1}^n \lambda _i\gamma _{z_i}\otimes x_i\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\), we get

$$\begin{aligned} \Lambda (f_\varphi )(\gamma )&=\sum _{i=1}^n\lambda _i\left\langle f'_\varphi (z_i),x_i\right\rangle =\sum _{i=1}^n\lambda _i\varphi (\gamma _{z_i}\otimes x_i)\\&=\varphi \left( \sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\right) =\varphi (\gamma ). \end{aligned}$$

Hence \(\Lambda (f_\varphi )=\varphi \) on a dense subspace of \(\mathcal {G}(\mathbb {D})\widehat{\otimes }_{\mu ^{\widehat{\mathcal {B}}}_{(p,r,s)}} X\) and, consequently, \(\Lambda (f_\varphi )=\varphi \). Moreover, \(\pi ^{\mathcal {B}}_{(p^*,r,s)}(f_\varphi )\le \left\| \varphi \right\| =\left\| \Lambda (f_\varphi )\right\| \).

The assertion about the weak* topology can be proved with the same argument as in the proof of Theorem 2.8 in [3]. \(\square \)

3 (prs)-Nuclear Bloch maps

In order to present examples of (prs)-summing Bloch maps, we introduce the class of (prs)-nuclear Bloch maps.

Let X be a complex Banach space and \(1\le p\le \infty \). Let \(\ell _p(X)\) be the Banach space of all p-summable sequences \((x_n)_{n=1}^\infty \) in X, with the norm

$$\begin{aligned} \left\| (x_n)_{n=1}^\infty \right\| _p=\left\{ \begin{array}{lll} \left( \displaystyle \sum _{n=1}^\infty \left\| x_n\right\| ^p\right) ^{\frac{1}{p}}&{} \text {if} &{} 1\le p<\infty , \\ &{} &{}\\ \displaystyle \max _{n\in \mathbb {N}}\left\| x_n\right\| &{} \text {if} &{} p=\infty , \end{array}\right. \end{aligned}$$

and let \(\ell _p^\omega (X)\) be the Banach space of all weakly p-summable sequences \((x_n)_{n=1}^\infty \) in X, with the norm

$$\begin{aligned} \omega _p\left( (x_n)_{n=1}^\infty \right) =\sup _{x^*\in \mathcal {B}_{X^*}}\left\| (x^*(x_n))_{n=1}^\infty \right\| _p. \end{aligned}$$

As usual, we will write \(\ell _p\) and \(\ell _p^\omega \) instead of \(\ell _p(\mathbb {C})\) and \(\ell _p^\omega (\mathbb {C})\), respectively.

By [14, Definition 18.1.1], given Banach spaces XY and \(0<p,r,s\le \infty \) with \(1+1/p\ge 1/r+1/s\), an operator \(T\in \mathcal {L}(X,Y)\) is (prs)-nuclear if \(T=\sum _{n=1}^\infty \lambda _n x_n^*\cdot y_n\) in the operator canonical norm of \(\mathcal {L}(X,Y)\), where \((\lambda _n)_{n=1}^\infty \in \ell _p\), \((x_n^*)_{n=1}^\infty \in \ell _{s^*}^\omega (X^*)\) and \((y_n)_{n=1}^\infty \in \ell _{r^*}^\omega (Y)\). In the case \(p=\infty \), we take \((\lambda _n)_{n=1}^\infty \in c_0\). It is said that \(\sum _{n=1}^\infty \lambda _n x_n^* \cdot y_n\) is a (prs)-nuclear representation of T. Define

$$\begin{aligned} \nu _{(p,r,s)}(T)=\inf \{\Vert (\lambda _n)_{n=1}^\infty \Vert _p\omega _{s^*}((x^*_n)_{n=1}^\infty )\omega _{r^*}((y_n)_{n=1}^\infty )\}, \end{aligned}$$

where the infimum is taken over all (prs)-nuclear representations of T. Let \(\mathcal {N}_{(p,r,s)}(X,Y)\) be the set of all (prs)-nuclear operators from X into Y.

The corresponding version for Bloch maps could be the following.

Definition 2.1

Let \(1\le p,r,s\le \infty \) such that \(1+1/p\ge 1/r+1/s\). A map \(f\in \mathcal {H}(\mathbb {D},X)\) is said to be (prs)-nuclear Bloch if \(f=\sum _{n=1}^\infty \lambda _n g_n\cdot x_n\) in the Bloch norm \(\rho _\mathcal {B}\), where \((\lambda _n)_{n=1}^\infty \in \ell _p\), \((g_n)_{n=1}^\infty \in \ell _{s^*}^\omega (\widehat{\mathcal {B}}(\mathbb {D}))\) and \((x_n)_{n=1}^\infty \in \ell _{r^*}^\omega (X)\). For \(p=\infty \), we choose \((\lambda _n)_{n=1}^\infty \in c_0\). We say that \(\sum _{n=1}^\infty \lambda _n g_n\cdot x_n\) is a (prs)-nuclear Bloch representation of f and we set

$$\begin{aligned} \nu _{(p,r,s)}^\mathcal {B}(f)=\inf \{\Vert (\lambda _n)_{n=1}^\infty \Vert _p\omega _{s^*}((g_n)_{n=1}^\infty )\omega _{r^*}((x_n)_{n=1}^\infty )\}, \end{aligned}$$

where the infimum is taken over all (prs)-nuclear Bloch representations of f. Let \(\mathcal {N}_{(p,r,s)}^\mathcal {B}(\mathbb {D},X)\) be the set of all (prs)-nuclear Bloch maps from \(\mathbb {D}\) into X, and let \(\mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) be its subset formed by all those maps f for which \(f(0)=0\).

Putting \(1/\theta :=1/p+1/r^*+1/s^*\), \(\mathcal {N}_{(p,r,s)}(X,Y)\) is a \(\theta \)-Banach operator ideal under the norm

$$\begin{aligned} \nu _{(p,r,s)}(T)=\inf \{\Vert (\lambda _n)_{n=1}^\infty \Vert _p\omega _{s^*}((x_n^*)_{n=1}^\infty )\omega _{r^*}((y_n)_{n=1}^\infty )\}, \end{aligned}$$

by taking the infimum is taken over all (prs)-nuclear representations of T (see [14, Theorem 18.1.2]).

In order to establish a Bloch variant of this result, we first study the linearization of (prs)-summing Bloch maps and (prs)-nuclear Bloch maps.

Proposition 2.2

Let \(f\in \widehat{\mathcal {B}}(\mathbb {D},X)\) and assume that \(S_f\in \Pi _{(p,r,s)}(\mathcal {G}(\mathbb {D}),X)\). Then \(f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) and \(\pi _{(p,r,s)}^{\mathcal {B}}(f)\le \pi _{(p,r,s)}(S_f)\).

Proof

Given \(n\in \mathbb {N}\), \((\lambda _i)_{i=1}^n\) in \(\mathbb {C}\), \((z_i)_{i=1}^n\) in \(\mathbb {D}\) and \((x^*_i)_{i=1}^n\) in \(X^*\), using Theorem 1.6 we have

$$\begin{aligned} \left\| (\lambda _i x^*_i(f'(z_i)))_{i=1}^n\right\| _p&=\left\| (x^*_i(S_f(\lambda _i\gamma _{z_i})))_{i=1}^n\right\| _p\\&\le \pi _{(p,r,s)}(S_f)\omega _r\left( (\lambda _i\gamma _{z_i})_{i=1}^n\right) \omega _s\left( (x^*_i)_{i=1}^n\right) \end{aligned}$$

and since

$$\begin{aligned} \omega _r\left( (\lambda _i\gamma _{z_i})_{i=1}^n\right)&=\sup _{\phi \in B_{\mathcal {G}(\mathbb {D})^*}}\left\| (\phi (\lambda _i\gamma _{z_i}))_{i=1}^n\right\| _r\\&=\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left\| (\Lambda (g)(\lambda _i\gamma _{z_i}))_{i=1}^n\right\| _r\\&=\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left\| (\lambda _i g'(z_i))_{i=1}^n\right\| _r=\omega ^{\widehat{\mathcal {B}}}_r((\lambda _i,z_i)_{i=1}^n), \end{aligned}$$

the result is proven. \(\square \)

Theorem 2.3

Let \(1\le p,r,s\le \infty \) such that \(1+1/p\ge 1/r+1/s\) and let \(f\in \widehat{\mathcal {B}}(\mathbb {D},X)\). The following assertions are equivalent:

  1. (i)

    \(f:\mathbb {D}\rightarrow X\) is a (prs)-nuclear Bloch map.

  2. (ii)

    \(S_f:\mathcal {G}(\mathbb {D})\rightarrow X\) is a (prs)-nuclear linear operator.

In this case, \(\nu _{(p,r,s)}^{\mathcal {B}}(f)=\nu _{(p,r,s)}(S_f)\).

Proof

\((i)\Rightarrow (ii)\): Assume that \(f\in \mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) and let \(\sum _{n=1}^\infty \lambda _n g_n\cdot x_n\) be a (prs)-nuclear Bloch representation of f. First, note that if \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x\in X\), we have that \(\Lambda (g)\cdot x\in \mathcal {L}(\mathcal {G}(\mathbb {D}),X)\) and

$$\begin{aligned} (g\cdot x)'(z)=g'(z)x=\Lambda (g)(\gamma _z)x=(\Lambda (g)\cdot x)(\gamma _z)=(\Lambda (g)\cdot x\circ \Gamma )(z) \end{aligned}$$

for all \(z\in \mathbb {D}\), and thus Theorem 1.6 gives \(S_{g\cdot x}=\Lambda (g)\cdot x\). Since

$$\begin{aligned} \rho _\mathcal {B}\left( f-\sum _{k=1}^n\lambda _kg_k\cdot x_k\right) =\left\| S_f-\sum _{k=1}^n\lambda _kS_{g_k\cdot x_k}\right\| =\left\| S_f-\sum _{k=1}^n\lambda _k\Lambda (g_k)\cdot x_k\right\| \end{aligned}$$

for all \(n\in \mathbb {N}\), it follows that \(S_f=\sum _{n=1}^\infty \lambda _n\Lambda (g_n)\cdot x_n\) in the operator norm. Moreover, note that

$$\begin{aligned} \omega _{s^*}((\Lambda (g_n))_{n=1}^\infty )&=\sup _{\phi \in B_{\mathcal {G}(\mathbb {D})^{**}}}\left\| (\phi (\Lambda (g_n)))_{n=1}^\infty \right\| _{s^*}\\&=\sup _{\phi \in B_{\mathcal {G}(\mathbb {D})^{**}}}\left\| (\Lambda ^*(\phi )(g_n))_{n=1}^\infty \right\| _{s^*}\\&=\sup _{\varphi \in B_{\widehat{\mathcal {B}}(\mathbb {D})^*}}\left\| (\varphi (g_n))_{n=1}^\infty \right\| _{s^*}=\omega _{s^*}((g_n)_{n=1}^\infty ), \end{aligned}$$

where \(\Lambda ^*:\mathcal {G}(\mathbb {D})^{**}\rightarrow \widehat{\mathcal {B}}(\mathbb {D})^*\) is the adjoint operator of \(\Lambda :\widehat{\mathcal {B}}(\mathbb {D})\rightarrow \mathcal {G}(\mathbb {D})^*\). Hence \(S_f\in \mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),X)\) with

$$\begin{aligned} \nu _{(p,r,s)}(S_f)\le \Vert (\lambda _n)_{n=1}^\infty \Vert _p\omega _{s^*}((g_n)_{n=1}^\infty )\omega _{r^*}((x_n)_{n=1}), \end{aligned}$$

and passing to the infimum over all (prs)-nuclear Bloch decompositions of f, we conclude that \(\nu _{(p,r,s)}(S_f)\le \nu _{(p,r,s)}^{\mathcal {B}}(f)\).

\((ii)\Rightarrow (i)\) is proven with a reasoning similar to the previous one. \(\square \)

We are ready to establish a Bloch version of Theorem 18.1.2 in [14].

Corollary 2.4

Let \(1\le p,r,s\le \infty \) such that \(1+1/p\ge 1/r+1/s\) and let \(1/\theta :=1/p+1/r^*+1/s^*\). Then \([\mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}},\nu _{(p,r,s)}^{\mathcal {B}}]\) is a \(\theta \)-Banach normalized Bloch ideal.

Proof

Let X be a complex Banach space.

(P1): Let \(\lambda \in \mathbb {C}\) and \(f,g\in \mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\). Using Theorems 1.6, 2.3 and [14, Theorem 18.1.2], we obtain that \(\nu _{(p,r,s)}^{\mathcal {B}}\) is a norm on \(\mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\):

$$\begin{aligned} \nu _{(p,r,s)}^{\mathcal {B}}(\lambda f)&=\nu _{(p,r,s)}(S_{\lambda f})=\nu _{(p,r,s)}(\lambda S_f)=\left| \lambda \right| \nu _{(p,r,s)}(S_f)=\left| \lambda \right| \nu _{(p,r,s)}^{\mathcal {B}}(f),\\ \nu _{(p,r,s)}^{\mathcal {B}}(f+g)^\theta&=\nu _{(p,r,s)}(S_{f+g})^\theta =\nu _{(p,r,s)}(S_f+S_g)^\theta \\&\le \nu _{(p,r,s)}(S_f)^\theta +\nu _{(p,r,s)}(S_g)^\theta =\nu _{(p,r,s)}^{\mathcal {B}}(f)^\theta +\nu _{(p,r,s)}^{\mathcal {B}}(g)^\theta ,\\ \nu _{(p,r,s)}^{\mathcal {B}}(f)&=0\Rightarrow \nu _{(p,r,s)}(S_f)=0 \Rightarrow S_f=0\Rightarrow f'=S_f\circ \Gamma =0\Rightarrow f=0. \end{aligned}$$

To see that the norm \(\nu _{(p,r,s)}^{\mathcal {B}}\) is complete, note that another application of those theorems assures that \(f\mapsto S_f\) is an isometric isomorphism of \((\mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X),\nu _{(p,r,s)}^{\mathcal {B}})\) onto \((\mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),X),\nu _{(p,r,s)})\), and moreover

$$\begin{aligned} \rho _{\mathcal {B}}(f)=\left\| S_f\right\| \le \nu _{(p,r,s)}(S_f)=\nu _{(p,r,s)}^{\mathcal {B}}(f). \end{aligned}$$

(P2): Let \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x\in X\). By the operator ideal property of \([\mathcal {N}_{(p,r,s)},\nu _{(p,r,s)}]\) and Theorem 1.6, \(S_{g\cdot x}=\Lambda (g)\cdot x\in \mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),X)\) with \(\nu _{(p,r,s)}(S_{g\cdot x})=\left\| \Lambda (g)\right\| \left\| x\right\| =\rho _{\mathcal {B}}(g)\left\| x\right\| \). Hence \(g\cdot x\in \mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) with \(\nu _{(p,r,s)}^{\mathcal {B}}(g\cdot x)=\rho _{\mathcal {B}}(g)\left\| x\right\| \) by Theorem 2.3.

(P3): Let \(f\in \mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\), \(T\in \mathcal {L}(X,Y)\) and \(h\in \widehat{\mathcal {B}}(\mathbb {D},\mathbb {D})\). Since \(T\circ S_f\circ \widehat{h}\in \mathcal {L}(\mathcal {G}(\mathbb {D}),Y)\) and

$$\begin{aligned} (T\circ f\circ h)'&=T\circ [h'\cdot (f'\circ h)]=T\circ [h'\cdot (S_f\circ \Gamma \circ h)]\\&=T\circ [S_f(h'\cdot (\Gamma \circ h))]=T\circ [S_f\circ (\widehat{h}\circ \Gamma )]\\&=(T\circ S_f\circ \widehat{h})\circ \Gamma , \end{aligned}$$

one has that \(S_{T\circ f\circ h}=T\circ S_f\circ \widehat{h}\) by Theorem 1.6. Since \(S_f\in \mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),X)\) by Theorem 2.3, we get that \(S_{T\circ f\circ h}\in \mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),Y)\) with \(\nu _{(p,r,s)}(S_{T\circ f\circ h})\le \left\| T\right\| \nu _{(p,r,s)}(S_f)||\widehat{h}||\) by the operator ideal property of \([\mathcal {N}_{(p,r,s)},\nu _{(p,r,s)}]\), and thus \(T\circ f\circ h\in \mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},Y)\) with \(\nu _{(p,r,s)}^{\mathcal {B}}(T\circ f\circ h)\le \left\| T\right\| \nu _{(p,r,s)}^{\mathcal {B}}(f)\) by Theorems 1.6 and 2.3. \(\square \)

We conclude arriving at the objective of this section.

Corollary 2.5

Let \(1\le p,r,s\le \infty \) such that \(1/p\le 1/r+1/s\le 1+1/p\). Then \((\mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X),\nu _{(p,r,s)}^{\mathcal {B}})\le (\Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X),\pi _{(p,r,s)}^\mathcal {B})\).

Proof

Let \(f\in \mathcal {N}_{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\). Then \(S_f\in \mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),X)\) with \(\nu _{(p,r,s)}(S_f)=\nu _{(p,r,s)}^{\mathcal {B}}(f)\) by Theorem 2.3. Since

$$\begin{aligned} (\mathcal {N}_{(p,r,s)}(\mathcal {G}(\mathbb {D}),X),\nu _{(p,r,s)})\le (\Pi _{(p,r,s)}(\mathcal {G}(\mathbb {D}),X),\pi _{(p,r,s)}), \end{aligned}$$

it follows that \(S_f\in \Pi _{(p,r,s)}(\mathcal {G}(\mathbb {D}),X)\) with \(\pi _{(p,r,s)}(S_f)\le \nu _{(p,r,s)}(S_f)\). By Proposition 2.2, \(f\in \Pi _{(p,r,s)}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) and \(\pi _{(p,r,s)}^\mathcal {B}(f)\le \pi _{(p,r,s)}(S_f)\le \nu _{(p,r,s)}^{\mathcal {B}}(f)\). \(\square \)