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Abstract

The theory of (p,r,s)-summing and (p, r, s)-nuclear linear operators on Banach
spaces was developed by Pietsch in his book on operator ideals (Pietsch in Operator
ideals, North-Holland Mathematical Library, North-Holland Publishing Co., Amster-
dam, 1980, Chapters 17 and 18) Due to recent advances in the theory of ideals of
Bloch maps, we extend these concepts to Bloch maps from the complex open unit disc
D into a complex Banach space X. Variants for (r, s)-dominated Bloch maps of clas-
sical Pietsch’s domination and Kwapiefi’s factorization theorems of (r, s)-dominated
linear operators are presented. We define analogues of Lapresté’s tensor norms on
the space of X-valued Bloch molecules on D to address the duality of the spaces of
(p*, r, s)-summing Bloch maps from D into X*. The class of (p, r, s)-nuclear Bloch
maps is introduced and analysed to give examples of (p, r, s)-summing Bloch maps.
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Introduction

The concept of absolutely p-summing linear operators between Banach spaces for
0 < p < oo was introduced by Pietsch [13] and the notion of absolutely (p, r)-
summing operators for 0 < r < p < oo is due to Mitjagin and Pelczynski [11]
though the famous factorization theorem for (p, r)-dominated operators was proved
by Kwapien [9].

In his famous monograph about operator ideals [13], Pietsch introduced a more
general multi-index concept with the definition of (p, r, s)-summing operators for
0 < p,r,s <ooand 1/p < 1/r + 1/s. The study of the duality of these operator
spaces was addressed with the introduction of suitable norms on the tensor product of
Banach spaces by Chevet [5], Saphar [15] and Lapresté [10].

In other settings, (p, r, s)-summing maps have been dealed by some authors as, for
example, Chdvez-Dominguez [4] for Lipschitz maps, and Achour [1], Bernardino,
Pellegrino, Seoane-Sepiilveda and Souza [2] and Ferndndez-Unzueta and Garcia-
Hernandez [7] for multilinear operators and polynomials.

Our main purpose in this paper is to introduce and establish the most notable
properties of a notion of (p, r, s)-summing Bloch maps from the complex open unit
disc D into a complex Banach space X.

Let H(DD, X) be the space of all holomorphic maps from D into X. Let us recall
that amap f € H(D, X) is called Bloch if

pB (f) =SUP{(1 — 12 f @]z GD} < 00

The linear space of all Bloch maps from D into X, under the Bloch seminorm pg, is
denoted by B(D, X). The normalized Bloch space B(D, X) is the closed subspace of
B(D, X) formed by all those maps f for which f(0) = 0, under the Bloch norm pg.
For simplicity, we write B(D) instead of B(]D) C). We denote by B(]D) D) the set of
all holomorphic functions #: D — D for which 4 (0) = 0.

We now introduce some notation. For Banach spaces X and Y, £(X, Y) denotes
the Banach space of all continuous linear operators from X into Y, equipped with
the operator canonical norm. As usual, X* denotes the dual space £(X, K), and Jx
the canonical injection of X into X**. By stands for the closed unit ball of X. Given
1 < p < oo, p* denotes the conjugate index of p defined by p* = p/(p — 1) if
p#l p*=occif p=1,and p* =1if p =00

Let X be a Banach space, n € N and a finite set of vectors (x;)/_; in X. For any
1 < p < o0, the strong p-norm of (x;)7_, is defined by

1
n ?
o] (Z ||x,-||f’> if 1< p <o,
Xi)i—1 P = i=1

max [lx; || if p = oo,
1<i<n
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and the weak p-norm of (x;)!_, by

wp ((x)]_) = sup ||(x*(x,-)),r»’=1”p-
x*GBX*

According to Pietsch [14, 17.1.1], given Banach spaces X, Y and 0 < p,r,s < 0o
such that 1/p < 1/r + 1/s, an operator T € L(X,Y) is (p, r, s)-summing if there
exists a constant C > 0 such that

| OF @ @y, = Cor (GDIZ) ws (D))

forany n € N, (x;)?_, in X and (y;)/_, in Y*. The least of all constants C for which
such an inequality holds is denoted by 7, 5)(T), and the linear space of all such
operators is represented by I, , (X, Y).

We now propose a Bloch version of the notion of (p, r, s)-summing linear operators.
Towards this end, we introduce a third norm: given two finite sets of points ()\,-)l’.’=1 in
C and (z;)7_, in D, the weak Bloch p-norm of (A;, z;)}_, is defined by

B (O aie) = sup [ Gug @iy, -
geBBA(D)

In particular, we write a)§ ((zi)l'.’zl) instead of culp§ ((Ai, Zi ;':]) if A; = 1 for all
ief{l,...,n}.

Definition 0.1 Let X be a complex Banach space and let 1 < p,r,s < oo such that
1/p <1/r+1/s. Wesay thatamap f € H(D, X)is (p, r, s)-summing Bloch if there
is a constant C > 0 such that forany n € N, (4;)7_, in C, (z;)7_, in D and (x})}"_, in
X*, we have

it (7 @i |, = CoB (Gan i) s (GDI).

The smallest such constants C is denoted by n(l; ros) f). The linear space of all such

maps is denoted by H?[M’S) (D, X), and ng’m) (D, X) stands for its subspace formed
by all those maps f for which f(0) = 0. Amap (p, r, s)-summing Bloch map f from
D into X is called (r, s)-dominated Bloch whenever 1/p = 1/r + 1/s.

We now describe the contents of this paper. In parallelism with the theory of abso-

B
(p.r.s)’

of normalized Bloch maps. We also show that the space (I"Ig?’r’s) (D, X), n(lf,,m)) is
Maobius-invariant in an approach to Complex Analysis.

Forl < p,r,s < cosuchthat1/p = 1/r+1/s,our mainresultin this paper gathers
both variants for (7, s)-dominated Bloch maps of Pietsch’s domination and Kwapieii’s
factorization theorems for (7, s)-dominated linear operators (see [ 14, Theorems 7.4.2
and 7.4.3)).

lutely (p, r, s)-summing operators, we prove that [I1 n(lf) syl is a Banach ideal

) Birkhauser
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In order to address the duality of the H 1) SPaces, we introduce Bloch ana-
logues of Lapreste norms [10] on the space of X-valued Bloch molecules of D,

denoted by ,u(p”). For1 < p,r,s <ooand 1/0 := 1/p+1/r+1/s > 1, we
prove that ,u,fg 5 is a Bloch reasonable 9-crossnorm on such a space so that, when-
ever 1/p* < 1/r + l/s (l'[(p s

(Q(D)@)MB X, /L(p . S))*, where G (D) is the Bloch-free Banach space of D.
(p.r.s) Y

In order to give examples of (p, r, s)-summing Bloch maps, the concept of (p, r, s)-
nuclear Bloch maps from D into X for 1 < p,r,s < ocosuchthat1+1/p > 1/r+1/s
is introduced and it is proved that the space formed by such Bloch maps is an 8-Banach

normalized Bloch ideal where 1/6 := 1/p 4+ 1/r* + 1/s*.

)(D, X*), 7157* , X)) is isometrically isomorphic to

1 Results

From now on and unless otherwise stated, we will suppose that X is a complex Banach
spaceand 1 < p,r,s <ocowith1/p < 1/r+1/s.

1.1 Inclusions

We first show that the new functions introduced are actually Bloch functions.
Given semi-normed spaces (X, px) and (Y, py), we will write (X, px) < (Y, py)
to point out that X C Y and py (x) < px(x) forall x € X.

Proposition 1.1 (l'I(p P A)(ID), X), H(Iz,r,x)) < (B, X), pg).
Proof Let f € ng’r’x)(]D), X). For each z € D, Hahn—Banach Theorem provides a
functional x* € By~ such that [x*(f'(2))| = || f/(2)|. Takingn = 1, &1 = (1 —|z[*),
71 = z and x] = xJ, we have
A=z @] =a—1z% |X*(f/(z))|
n(p r A)(f)a) (()”’ Zl)l 1)0)3 ((x )l 1)
= ﬂ(p’r’x)(f)-

Hence f € B(D, X) with pg(f) < n{;rwy)( 1. O

We now prove that the concept of (p, r, s)-summing Bloch maps extends that of
p-summing Bloch maps introduced in [3].

For any 1 < p < oo, let us recall that a map f € H(D, X) is p-summing Bloch if
there is a constant C > 0 such that

|G £ @iy |, < Cof (G ziviy)

foranyn € N, (4;)7_; in Cand (z;)?_, in D. The infimum of all constants C for which
such an inequality holds, denoted by 7 f (f), defines a seminorm on the linear space,

W Birkhauser
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denoted by l'[f (D, X), of all p-summing Bloch maps from D into X. Furthermore,
nf is a norm on the subspace Hf(ID), X) formed by all those maps f € Hf(]D), X)
for which f(0) = 0.

e B B _ B B
Proposition 1.2 (H[,,p’oo(]D), X), ”p,p,oo) = (Hp D, X), Ty, ).

Proof Let f € “33,;:,00) (D, X). Givenn € N, (A;)"_, in C and (z;)"_, in D, we have

i f i, ”p = || xS (f GNi, Hp
<78 oy (DG (G 2y) 000 (051

B B
=< ﬂ(p,p,oo)(f)a)p (()\i, Zi ;'1:1)

where we have taken x* € Byxx such that |xl.*(f’(z,-))| = Hf’(z,')H for each
i € {1,...,n} by Hahn—-Banach Theorem. Hence f € Hf(]D), X) with nf(f) <
T8 ooy (-

Conversely, let [ € Hf(]D), X).Letn € N,(A)i_;inC, (z;);_,; inDand (x])!_, in
X*.Foreachi € {1, ..., n}, Hahn—Banach Theorem provides a functional y;* € By
such that ‘y,.**(xi*)| = ||xl* || We obtain

| Gax? (£ @iz, = @ [ F @i,
< |G f' @i, [eH
< 7p(Hop (i z2)f=y) |6y | o

= 7808 (0, 212) |07 iy o

< 7B (N0f (i 2)=)) w0 () -

and thus f € B, (D, X) with w8 | (f) < 7B(f). o

1.2 Banach Bloch ideal property

Given 6 € (0, 1] and a linear space X over K, recall that a 6-norm on X is a function
w: X — Rsatisfying that x = 0 whenever pu(x) = 0, u(Ax) = |A|u(x) forall A € K
and x € X, and u(x + y)? < u(x)? + u(y)? forall x, y € X. We say that (X, ) is
an -normed space, and it is said that (X, ) is an 0-Banach space if every Cauchy
sequence in (X, p) converges in (X, u).

Following [§, Definition 5.11], a 9-nAormed (0-Banach) normalized Bloch ideal,
denoted as [Z5, I-ll781, is a subclass 78 equipped with a -norm ||-|| 75 of the class
of all normalized Bloch maps B endowed with the Bloch norm pp such that for each
complex Banach space X, the components 78(D, X) satisfy the following properties:

(P1) (ZE(D, X), lI-llz8) is a &-normed (6-Banach) space and pp(f) < || fll;5 for
f e IBD, X).

) Birkhauser
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(P2) Forany g € g(]D)) andx € X,themapg-x: D — X, givenby (g-x)(z) = g(z)x
if z €D, isin IB(]D), X) and ||g - xllz5 = pB(8) lIxIl.

(P3) The ideal property: if f € IE(D, X),h € g(]D), D)and T € L(X,Y) where Y is
acomplex Banach space, then T o f oh belongs to ZB(D, Y)and || Tofohl|;s <
ITN ISl 75

In the case 6 = 1, we remove any reference to 6.

epe B
Proposition 1.3 [H(p rs)?

(lf; - S)] is a Banach normalized Bloch ideal.

Proof Let X be a complex Banach space andletn € N, A; € C, z; € D and x; € X*
foralli € {1,...,n}.

(P1) Given f € H% (ID) X), it is clear that ]T( ” Y)(f) > 0. Ifrr(p . C)(f)
then pp(f) = 0 by Proposmon 1.1,and so f = 0. For any A € C, we have

| Qix () @y ” = A | Qux(f NP 1”
< M7l o (Hef (()»,,zl D os ((6H72)

and thus Af € nﬁ’rys)(n), X) with ng’r’s)()»f) < |)»|71(L;’r’s)(f). If A = 0, this

implies that ng,’r’x)()\ f)=0= |,\|n(’§’,’x)( ). If A # 0, we have JT(K;’M)( f) =

n(Z,m o) §3|/H| 7B O f),hence 7B (f) < 7B O f), and so
Ty ) = 1N L ().

For any f1, f» € H(pr Y)(ID), X), we have

| Qixy (1 + 2 @iz ], < [Gaxf @iz ], + [ Gaxf (e,
< (78 D + 78 ) (12)) B (G201
X W ((xl)k):l:l) ’

and thus /1 + f2 € n{i,,,,s)@, X)ywith5 | (fi+f) <7l (D+RE ().
B

(p.r s)(D’ X), T(p.r.s
To show its completeness, let (f;) be a sequence in H(Lj) p S)(]D), X) such that
Zl | 7T(p p A)(fl) < 00. Since pp < n(p r.s) O I'I(p p A)(ID) X) by Proposition 1.1,
and (B(ID) X), pB) is a Banach space, there exists [ = Y o, fi € B(D X) in the

norm pg. We will prove that >~ f; = f in the norm 7[113; ris) Givenm € N, A € C,

Consequently, (B )) is a normed space.

W Birkhauser
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z € Dand x € X* forall k € {1, ..., m}, we have

(e ((E) )

=t'p

<7, (Z ﬁ) of (G 20fy)
X Wy ((xk)kzl)

= (Zné”,,r,w(ﬁ)) 0B (O 200
i=1

X Wy ((xlf)f:l)

for all n € N, and by taking limits with n — oo yields

(e ((Z) ).

=t'p

< (Zn(‘f,,r,s)(ﬁ)> of (G 20}y)
i=1

x w5 (=) -

Hence f € l'I(p r.5 (D, X) with n(l;r’s)(f) <>, n(li,r,s)(fn)' Moreover,
n o0 o
B B B
T (p.r,s) (f - Zﬁ) = T (p.r.s) < > fi) < D T ()
i=1 i=n+1 i=n+1

for all n € N, and therefore Y i, f; = f in the norm JT( pars)”

(P2)Letg € B(ID) and x € X.Itisimmediate thatg-x € B(ID) X) with pg(g-x) =
pB(g) ||x||. For g = 0 or x = 0, (P2) is clear. If g # 0 and x # 0, the generalized

Holder’s inequality gives
g Y !
(i) 7 ().
(’(ng(g)) el )/ iy
n

(X" (%@)/(Z’) X(n ||>(x )>,:1 ,
((; ()) (Z’)>n 1 ”(1 () o )>n1

< pB(Q x| w, (()m Zi)i— 1) Wy ((x:();;l) s

Hix; (g - ) @iy 1 = pB (@) Il

= pp(g) lIx|l

< pp(g) x|

N

and thus g - x € H(‘;J’s)(ID), X) with n{;m (g - x) < pp(g) |lx||. Conversely,

pB() x|l = p(g - x) <75, (g x)

) Birkhauser
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by using Proposition 1.1.
(P3) Let f € H(Lj)’r’s)(ID), X), T € L(X,Y)and h € B(D, D). Clearly, (T o f o
h)(0)=0and T o f o h € H(D, Y) with

(Tofoh)=To(foh) =Tol[h (f oh).
Letn € N, (4)7_, inC, (z;)7_, in D and (y/)?_, in Y*. We have

1y (T o f o) @iy llp = | iy (TR @) f @i |,
< ITI | G GO (f (GO |,

~

< ITIxE o (NP (k' @), h@))y) o5 (7))

<TI0 (PP (inz)fy) 05 (7)) -

where it is applied that pp(g o h) < pp(g) forall g € g(]DD) by the Pick—Schwarz

Lemma.So T o fohe N (D, X)withwl  (Tofoh) <ITlxf, (f).0

1.3 Pietsch’s domination and Kwapien'’s factorization

For 1 < p,r,s < oo suchthat 1/p = 1/r + 1/s, we present a result gathering
both variants for (p, r, s)-summing Bloch maps of Pietsch’s domination theorem [14,
Theorem 7.4.2] and Kwapien’s factorization theorem [14, Theorem 7.4.3] for (r, s)-
dominated linear operators.

Given a Banach space X, we will denote by P(Bx=) the set of all regular Borel
probability measures  on By with the topology w™.

Theorem 1.4 Let1 < p,r,s <ocobewithl/p=1/r+1/sand f € E(D, X). The
following statements are equivalent:

(i) femng, (D, X).
(ii) (Pietsch’s domination). There exist a constant C > 0 and measures |1 € P(BE(JD)))
and v € P(Bx#) such that

1 1
xX*(f'@)|=C </
B

|g/(z)|r dﬂ«(z?)) (f |X**(x*)|s dv(x**)> 5
BX**
forallz € Dand x* € X*.

(iii) (Kwapien’s factorization). There exist a Banach space Z, a closed subspace Y <
Z,amap h € H?(]D), Z) with h'(D) C Y and an operator T € L(Y, X) with
T* € TIy(X*, Y*) suchthat f' =T oh'.

BD)

In this case,
78, o (f) = inf(C: C asin (i)} = inf {nS(T*)rrrB(h): f'=To h’}

W Birkhauser
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and, in addition, both infimums are attained.

Proof (i) < (ii): We will apply a general Pietsch domination theorem (see [12,
Theorem 4.6]). Define the functions
Ri: Bggy xDx C— 0,00,  Ri(g.2.2) = 1l[g'(@)
Ry: Bxws x X* — [0,00[,  Ry(x™,x*) = |x™*(x")|,

S:BD, X) x D x Cx X*— [0,00[,  S(f,z, 4 x%) = l|x*(f'@)].

’

Note that Ry, R, and S satisfy the properties (1)—(2) preceding to [12, Definition 4.4]:

1. Foreachz € D, A € C and x* € X*, the maps

(RD)znt Bgpy = 10,00l (R1)z5(8) = Ri(g. 2, 1),
(Ro)y+: By — [0, 000 (Ro)ur(x™) = Ro(x™, x¥),

are continuous.
2. The equalities

Ri(g,z, B12) = B1Ri1(g, 2, A),
Roy(x™, Bax™) = BaRp(x™", x™),
S(f, z, Bir, Pax™) = B1B2S(f, 2, A, x¥),

hold for all g € Ba ) x** € Byw,z €D, eC,x*eX* By, B €[0,1]and
f e BD, X).
Now, in view of Definition 4.4 and Theorem 4.6 in [12], we have that f is (p, r, s)-

summing Bloch if and only if f is Ry, Ry-S abstract (7, s)-summing if and only if
there is a constant C > 0 and measures j € P(Bg(D)) and v € P(Byx=*+) such that

S(f,z, A, x) SC(/
B

forall z € D, A € C and x* € X*, and this means that

l.
|x*(f/(z))| <C (/ ‘g/(z)r d'u(g)) (/ ‘x**(x*)"? dl)(x**)) s

for all z € D and x* € X*. In this case, n(li’r’s)(f) =min{C: C asin (ii)}.

(ii) = (iii): Letip: D — C(Bg(D)) be defined by (p(z)(g) = g'(z) for all
z € Dand g € Bg,, and let j-: C(Bgp,)) — Ly (u)l)e the canonical injection. In
the light of [3, Lemma 1.5], we can find a map & € B(D, L,(n)) with pp(h) = 1
such that &’ = j, o tp. Moreover, h € H?(]D), L,(wn)) with JT,.B(h) = 1. Consider the

1

s

Ri(g, 2, k)’du(g)> (/B Ry (x™, x*)de(x**))

BD)

B(D)

) Birkhauser
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linear subspace ¥ = lin(h'(D)) € L, (1) and the operator T € L(Y, X) defined by
T (K (2)) = f/(z) for all z € D. Using (ii), we have

”T*(x*)” = Sup{’T*(x*)(h/(Z))| 1z eD, ”h/(Z)” < 1}
= sup {[x*(T(' @) : z €D, [W ()| <1}
=sup {[x*(f'@)] s z €D, W) <1

1

<C (/ |X**(x*)|sdv(x**)>s
By

for all x* € X*, and thus T* € II,(X™*, Y*) with 7,(T*) < C. Hence (iii) holds
and g (T*)n,B (h) < C. Taking the infimum over all such constants C, it follows that
7 (T*)B(h) < inf{C: C asin (ii)}.

(iii) = (ii): Suppose there exist maps & and T as in (iii). For any z € D and
x* € X*, we have

(' @)] = [x* (T o W) (2)| = |T* MR @)] < |[T*0H | |A' @) -

By both Pietsch domination theorems for p-summing linear operators [14, Theorem
7.3.2] and p-summing Bloch maps [3, Theorem 1.4], there are measures v € P(Bx=)
and u € P(Bg(D)) such that

1

K

[T G| < (T ( / e (et | du(x**>)

and

1
-

|n' @ < =En) (/
B

|§&Wdu@0

Bm)

Hence we have

*(f'(2)| < 2 (TH7E ()
1
X </ |g/(z)|"dy,(g)> (/ |x**(x*)|s dv(X**)> : ,

and this proves (ii) with nS(T*)rrB(h) € {C: Casin (ii)}. It follows that
inf{C: C asin (ii)} < inf {nS(T*)nBr(h): f'=Toh'}. o

r

B(D)

W Birkhauser
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1.4 Mobius invariance

The Mobius group of D, denoted by Aut(ID), consists of all biholomorphic bijections
¢: D — D. Each ¢ € Aut(ID) has the form ¢ = A¢, with A € T and a € D, where

a —

1 (z e D).

$a(z) =

Given a complex Banach space X, let us recall that a linear space A(D, X) € H(D, X)
endowed with a seminorm p 4 is Mdbius-invariant if:

1) AD, X) € B(D, X) and there exists C > 0 such that pg(f) < Cp(f) for all
f e A, X),
(i) fogp € A(D, X) with p4(fop) = pa(f) forall ¢ € Aut(D) and f € A(D, X).

We have the following interesting fact.

B

Proposition 1.5 The space (I1(, . .,

D, X), ng),r’s)) is Mobius-invariant.

Proof By Proposition 1.1, Hfi,r,s)(D’ X) € B(D, X) and pp(f) < n(lj,,r’s)( f) forall

f e Hgy r.s) (D, X). On the other hand, a proof similar to that of (P3) in Proposition 1.3
yields that if f € nﬁ) 1.5, X) and ¢ € Aut(D), then f o ¢ € ng 1.5 (D, X) with
7B (fog) < w85 (f),and from this factitis inferred that w5 (f) = w5 ((fop)ogp™") <

7B (f o). O

1.5 Lapresté norms on Bloch molecules
Our approach on the duality of the spaces (Hg,, r.s) n(i’ . S)) requires the introduction
of Bloch analogues of Lapresté norms [10] on the tensor product of Banach spaces (a
generalization of the Chevet—Saphar norms [5, 15] on such tensor products). Given
two linear spaces E and F, the tensor product space £ ® F equipped with a norm «
will be denoted by E ®, F, and the completion of E ®, F by EQq F.

Towards this end, we first recall some concepts and results borrowed from [8]. For
each z € D, a Bloch atom of D is the functional y, € g(]D))* given by v, (f) = f(2)
forall f € g(D). The called Bloch molecules of D are the elements of the space

lin({y,: z € D}) € BD)*,
and the Bloch-free Banach space of D is the space
G(D) = Tin({y:: z € D)) € BO)".

Theorem 1.6 [8]

(i) The map T": z€ D+ y. € G(D) is holomorphic with ||y.|| = 1/(1 — |z|?).
(it) The map A: B(D) — GM)*, given by A(g)(y;) = g'(z) for all z € D and
g € B(D), is an isometric isomorphism.
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(iii) Foreachh € g(]DD, D), there exists a uniqueﬁ € L(G(D), G(D)) such thathol =
h' - (T o h). Furthermore, ||h|| < 1. R
(iv) For each complex Banach space X and each f € B(D, X), there is a unique
Sy e L(GD), X) such that Sy oI' = f’/a\nd I1S7ll = pa(f).
(v) f > Sy is anisometric isomorphism of B(D, X) onto L(G(D), X). m|

Given a complex Banach space X, the space of X-valued Bloch molecules of D is
defined as

lin(M(D)) ® X =lin({y: ®x: z € D, x € X}) € BD, X*)*,
where y;, ® x: B(D, X*) — C is the functional given by

. ®x) (/) =(f'@.x) (f e BOD, X).

Each element y € lin(I'(D)) ® X can be expressed as y = Y ;| A ¥z, ® x; for some
ninN, (A; ) _,inC, (zl)” 1 in D and (x,) _; in X, and its action is

y(H) =Y ni(f'@) x).
i=1

Definition 1.7 Let 1 < p,r,s < coand y € lin(I'(D)) ® X. Define
1) =0t { |G |, 0 (o)) o (i)}

the infimum being taken over all the representations of y as Y ' _; Ajy;; @ x; with n
inN, (3)!_;inC, (z;)!_, inDand (x;)]_, in X.

Following [3, Definition 2.5], we say that a 6-norm « on lin(I'(D)) ® X with
6 € (0, 1] is a Bloch reasonable crossnorm if:

(@) aly: ®x) < llyll x|l forallz € Dand x € X,

(ii) For g € B(D) and x* € X*, the linear functional g ® x* on lin(I'(D)) ® X
given by (g ® x*)(y; ® x) = g'(z)x*(x) is bounded on lin(I'(D)) ®, X with
lg ®x*Il < pp(g) Ix*|.

The proof of the following result is based on [10, Theorem 1.1].

Theorem 1.8 Let 1 < p,r,s <ococand 1/0 :=1/p+ 1/r +1/s > 1. Then Mé,r,s)
is a Bloch reasonable 0-crossnorm on lin(I'(D)) ® X.

Proof Lety € lin(I'(D))® X andlet ) 7, A;y;, ®x; be arepresentation of y. Clearly,
Mg,m)(y) > 0. Given A € C, we have

H’(prs)()”y) = ”()L)‘) 1” ?((Zl 1 l)ws ((xl)z 1)

= [l ”()‘) 1“ ((z, i= 1)“)S ((x')t 1)
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If A = 0, we obtain ugr‘s)()ny) =0=|A ,ugr’s)(y). For A # 0, siAnce the pre-
ceding inequality holds for every representation of y, we deduce that Mg; p S)()\y) <

[X] ,uﬁ)y r.s) (y). For the converse inequality, note that
Kooy () = 10 0T O)) < IRTNRE, , o Op),

thus 4 B () < u(,, s (y) andhence uB () = 1B, ).

We now prove that /,L( o S)(y) = 0 implies y = 0. Applying that & < I and the
generalized Holder’s inequality, we obtain

Do xh Gy | < (3 1l 1 @l |y oo

i=1

i=1

n % n % n %
s(ZmP) (ZW@)V) <Z|y*(x,~)|s>
i=1 i=1 i=1

< iy, oF (o) o (g

forany h € Bg ) and y* € Byx=. Since the quantity ’Z;’:l Ak (zi)y* (xi)‘ does not
depend on the representation of y since

D hih @)y ) = (Z hiVe ®xl~) (h-y)=yh-y,

i=1 i=l1

taking the infimum over all representations of y we deduce that

DY | < w0 @)

i=1
forany h € Bg ) and y* € By~. Now, if ,u?p_r S)(y) = 0, we have
n n
(Z A,-y*<x,»>yz,.) (h) =Y il (zi)y*(xi) =0
i=1 i=1
forall h € B, and y* € Byx=. For each y* € By, itis ) i Aiy*(xi)y; = 0,
and since I'(D) is linearly independent in G(ID) by [8, Remark 2.8], it follows that
Aiy*(x;) =O0foralli € {1,...,n}, hence A;x; = O0foralli € {1,...,n} since Bxx

separates the points of X, and thus y = Y '_, A;y;, @ x; = 0.
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To prove the triangular inequality of “é,r, 5 lety; € linI"(D)) ® X for j = 1,2
and ¢ > 0. For j = 1, 2, by homogeneity we can choose a representation

n
Vi = Z)‘j,iyz_j,; ® xji
i=1

forsome nin N, (1;;)/_, in C, (z;,;);_, inDand (x;;);_, in X, so that

1\~

[G.00ll, = (65,000 +)"
—~ 1
il’s((z]l)l l) <:u(pr y)(VJ) +‘9) >
1

oy (@) = (1 ) )’

We can joint these representations of y; and y; to obtain a representation of y; + y»
in the form 7/ ;_; A;,i¥z;, ® x;,; such that

'u\—

[t st = (16 0" 16 02 +26) "

P ((z,-,i)?,jﬂ) < (Mﬁ,,,,s)(m)(’ + 1l o) + 28)’ :
~ ~ 1
o (0300 21) = (1,000 + 1B, ) +2¢)°

Hence

u’g,m(m +y) < H (7 =1 pr? ((Zj,i)?,,g]) on ((xj,i)?,j=1)

B B 7
< (1B 0 +uf, 0 +20) ",
and since ¢ was arbitrary, we deduce that
wh o+’ <ub o0 +ub ).

To finish, we will show that pc (p.r.5) is a Bloch reasonable crossnorm on lin(I" (D)) ®
X. First, given z €e Dand x € X, takmgn =1,A1 =1,z1 =zand x; = x, we have

A

uE @) = |Gy |, oF () o ()

1——|Z|2 llxll = Nyl llx]l -
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Second, given g € E(D) and x* € X* with g # 0 # x™*, using that 6 < 1 and the
generalized Holder’s inequality, one has

=D rigz)x*(x)

i=1

(+ (PB(&O) (n *||>(x")>j=] 1
5p5(g)||x*”'< (pzs(g)) <||x*||>(’”)),~:1 )

(g ®x") ()| = Zx-(g ® x") (v ® Xi)

< o2 ||x*|

=5 [x*[ |Gninl,

g( ) ); H((||i:||>(’“”>j=1

< o8(8) [x*| [ )} 1” (@)izy) @s (i) -

It follows that |(g ® x*) ()] < ,og(g) [ ,ué) . S)(y) by taking infimum over all

the representations of y. Hence g ® x* € (lin(I"(D)) ® X)* with ||g @ x*|| <
(p r.,s)

pB(8) Ilx*|. O

1.6 Duality

We will prove that the dual of G (D)® 5 X can be canonically identified as the

. (p.r.s)
space Ha*’r,s)(]]]), X*) with the norm JT([;;*J’S)
I/p* <1/r+1/s.

The following easy lemma will be needed.

whenever 1 < p,r,s < oo such that

Lemma 1.9 Let X be a Banach space, n € N, ()ci*)l'.'=1 inX*and1 < p < 0. Then

wup i, = sup e,
xEBx

X**EBX**

Proof Since x/(x) = Jx (x)(xl.*) fori = 1,...,n, the inequality > is immediate.
Conversely, let & > 0. For each x** € By++, Helly’s Lemma gives an y € X such that
Iyl <14 ¢eandx’(y) =x*(x]) foralli € {1, ..., n}, and therefore

|Gl = A +e

(+ (7).

<(l+e) sup G iy, -

XGX

p
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It follows that

sup | L[, = (o) sup |G i),

X EB ywx xeBy
and since &€ was arbitrary, we obtain the inequality <. O

Theorem 1.10 Let 1 < p,r,s < oo such that 1/p* < 1/r + 1/s. Then the spaces
(I—Ig,*’,’s)(ﬂ), X*), ﬂg,*ﬁm)) and (g(D)@Mé”)X)* are isometrically isomorphic via
the canonical pairing

AHG) = 1@ xi)
i=1

forall f € HE D, X*)yand y = Y7 Liy; ® x; € lin(I'(D)) ® X. Moreover,

p*,r.s o
on the closed unit ball of(Hg,* m)(]D, X*), JT(ZZ*J S)), the weak* topology coincides
with the topology of pointwise o (X*, X)-convergence.

Proof We will only prove the result whenever 1 < p < oo, and the other cases can
be proved similarly.

Let f € Hg*’r,s)(]]), X*) and let Ag(f): lin('(D)) ® X — C be the linear

functional given by
Ao =D xi(f'@). xi)
i=1

for any y = Y diy; @ x; € lin(I'(D)) ® X. We claim that Ao(f) €
(lin(T"(D)) ®Mg X)* with |[Ag()] < ng]* b s)(f). Indeed, Holder’s inequality
¢ a

pir.s)

and an application of Lemma 1.9 yield

n

1A <D Il (/o). xi)]|

i=1

1
pT

= (Z mw) (Z (7 (x:), f/<zl->>|"*)
i=1

i=1
< 0|, 75 s (DF (@) @5 ((Ux i)y

= ” ()"l'):'/l:l Hp n(Bp*,r,S)(f)w? ((Zi)?ZI) Wy ((xi)?zl) .
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Taking infimum over all the representations of y, we deduce that

Ao(HWI = 7B, (HuB,, o),

and since y was arbitrary, this proves our claim. ~
Since lin(I" (D)) is a norm-dense linear subspace of G (D) and ug, r.s) is a f-norm on
lin(T'(D)) ® X, then lin(I"' (D)) ® X is anorm-dense linear subspace of ) g X.

- Hprs)
Hence there is a unique continuous map A (f) from Q(D)(X)M g X into C extending

(p.r,s)
Ao(f). Further, A(f) is linear and [ A(f)|| = [[Ao(/)II- ]
Let A: 18 )(D, X*) — (Q(D)@M,g X)* be so defined. In view of [3, Corol-

(pt.r.s (por.s)
lary 2.3], Ao is injective and linear from Hg* P S)(]D), X*) into (G(D) ® X)*, and
therefore so is A. To prove that A is a surjective isometry, let ¢ € (GD)® 7 X)*
P.r.s)
and define F,: D — X* by
(Fo(@,x)=0(r:®x) (zeD, xeX).

As in the proof of [3, Proposition 2.4], there exists f, € E(ID), X*)with pp(fy) < llel
such that f; = Fy. R

We now prove that f, € Hg*,r,s)(D’ X*).Fixn e N, (3)!_, inC, (z;)]_,; inD
and (x;k*);’:l in X**. Let ¢ > 0. By Helly’s Lemma, for each i € {1, ..., n}, we can

find x; € X with [lx;[| < (14 &) | x*| and (£} (zi), xi) = (x}*, f,(zi)). Clearly, the
map T: C" — C, defined by

n
T(tla AR ] tn) = Zti)"i (x;k*v f(//)(zl)>’ V(tlv LR ] tn) € (C}’l’
i=1

is linear and continuous on (C”, || - || ,,) with

1
¥

n
171 = (Zw’*
i=1
For any (t1, ..., t,) € C" with |[(t1, ..., t)|]p, < 1, we have
n
% (Zti)»i)/z,- ®xi)'
i=1
e n
< lloll g, p ) (Z LAV ®x,-)

i=1

<x;k*,f<;<a>>v”*)

T, ....t0)| =

< lel |G-, ||pwrg(()»i, )y) o5 (()1Z) -
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For each i € {1,...,n}, Hahn—Banach Theorem provides x/** € By such that
| ()| =[x} Note that g () ;) < o5 ((x}*)1_ )because

| @i [, = A+ o) @i, |, = 4 +e) [aF e i, |,
< (1+ 8w ()

for all x* € Bx+. Therefore we can write

( n
i=1

By letting ¢ tend to zero gives f, € Hé* - s)(D, X*) with 7157* , s)(f(p) < lell.
Finally, forany y = )"/, Aiy;, @ x; € lin(F'(D)) @ X, we get

1
x;**,fq3<zi)>|p*) < (1+9) gl of (G, 20y) @5 (1)) -

A = hi{fp@). xi) = hig(y;; ® xi)

i=1 i=1

=9 (Z)\iyz,- ®xz‘) =¢(y).

i=1

Hence A(f,) = ¢ onadense subspace of g(]D))(X) g X and, consequently, A(f,) =

Kprs)
¢. Moreover, 75, . (fo) < ol = [ A(fp) .
The assertion about the weak* topology can be proved with the same argument as
in the proof of Theorem 2.8 in [3]. O

2 (p, r, s)-Nuclear Bloch maps

In order to present examples of (p, r, s)-summing Bloch maps, we introduce the class
of (p, r, s)-nuclear Bloch maps.

Let X be a complex Banach space and 1 < p < oo. Let £,(X) be the Banach space
of all p-summable sequences (x,);2 ; in X, with the norm

%0 »
(Z ||xn||"> if 1 <p < oo,

n=1

[cennzill, =

max || x, || if p =00
neN

and let Z“’(X ) be the Banach space of all weakly p-summable sequences (x,)52 ; in
X, with the norm

wp (()pZy) = sup [ GF )Ry |, -

xex*
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As usual, we will write £, and £9 instead of £ »(C) and K‘;,’((C), respectively.

By [14, Definition 18.1.1], given Banach spaces X, Y and0 < p, r, s < cowith 1+
1/p > 1/r+1/s,anoperator T € L(X,Y)is (p,r, s)-nuclear if T =Y 07 | AnXi-yn
in the operator canonical norm of L(X, Y), where (A,):2; € £,, (x;)5° | € £5(X™)
and (y,);2, € £%(Y). In the case p = oo, we take (X,)52, € cp. It is sald that
Yoo kX ynis a (p, r, s)-nuclear representation of T. Define

Vip,r,) (T) = Inf {02 | pwss ()2 Dy ()2 P},

where the infimum is taken over all (p,r,s)-nuclear representations of 7. Let
/\/(,,,,,AY)(X, Y) be the set of all (p, r, s)-nuclear operators from X into Y.
The corresponding version for Bloch maps could be the following.

Definition2.1 Let 1 < p,r,s < ocosuchthat 14+ 1/p > 1/r+1/s. Amap f €
‘H(D, X) is said to be (p, r, s)-nuclear Bloch if f Zi" | An8&n - Xn in the Bloch
norm pg, where (A,)72, € £, (gn)y2, € €5 (B(]D))) and (x,);2, € £7%(X). For
p = 00, we choose (1,)° | € co. We say that Z An&n - Xpisa(p,r, s) nuclear
Bloch representation of f and we set

vE L () = inf (I a)SS s (828 Doy ()31,

where the infimum is taken over all (p, r, s)-nuclear Bloch representations of f. Let
N (por S)(]D) X) be the set of all (p, r, s)-nuclear Bloch maps from D into X, and let

N (por 3)(]DD X) be its subset formed by all those maps f for which f(0) = 0.

Putting 1/0 := 1/p + 1/r* + 1/s*, N(p.r.)(X, Y) is a 6-Banach operator ideal
under the norm

V(p,r,s)(T) = inf{||()»n)f,°:1||pws* ((x*)oo 1)wr*((yn)oo 1)}

by taking the infimum is taken over all (p, r, s)-nuclear representations of T (see [14,
Theorem 18.1.2]).

In order to establish a Bloch variant of this result, we first study the linearization
of (p, r, s)-summing Bloch maps and (p, r, s)-nuclear Bloch maps.

Proposition2.2 Let f € E(D, X) and assume that Sy € I, , 5(GD), X). Then
feng, M X)and 7l . (f) < 7(prs(Sp)-

Proof Givenn € N, (4;)!_, inC, (z))?_, in D and (x)!_, in X*, using Theorem 1.6
we have

|Gt (F o |, = oS Gaveoieal,
< Tprs) (Spor (Rive)izy) o ((5)]))
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and since

o (ivz)izy) = sup [ @iy )iz ],

¢EBQ(]D))*

= sup H(A(g)()hi)’zi))?ﬂ”r

geBg(D)

= sup g G|, = 0P (a2,
geBg(D)

the result is proven. O

Theorem 2.3 Letl < p,r,s < ocosuchthat14+1/p > 1/r+1/sandlet f € E(D, X).
The following assertions are equivalent:

(i) f:D— Xisa(p,r,s)-nuclear Bloch map.
(ii) Sy: GD) — X isa (p,r,s)-nuclear linear operator.

. B
In this case, v, . o/ (f) = V(p.rs)(Sy).

Proof (i) = (ii): Assume that f € NB (D, X) and let 350 hngy - x, be a

(p, r, s)-nuclear Bloch representation of f. First, note that if g € g(]ID) and x € X,
we have that A(g) - x € L(G(D), X) and

(g 0)'(2) = g'(@Dx = A®)(y)x = (A(®) - X)(y2) = (A(g) - x 0 )(2)

for all z € D, and thus Theorem 1.6 gives S,., = A(g) - x. Since

n
Sp= Y MA) X
k=1

n
Sy — Z MeSgpoxi
k=1

PB (f = gk ‘Xk) -
k=1

foralln € N, itfollows that Sy = ZZOZI AnA(gn) - x;, in the operator norm. Moreover,
note that

s (A = sup  [[(@(A(g))L

n=1

s*

¢€BQ(D)**

= sup  [[(A*@)(&))nei]
¢EBQ(D)**

= sup (@i = w5 (g )
(pEBg(D)*

where A*: G(D)** — B(D)* is the adjoint operator of A: B(D) — G(D)*. Hence
St € Nipr.n(GD), X) with

Vprs) (S1) = 1)y lp@s () Py ((tn)n=1),
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and passing to the infimum over all (p, r, s)-nuclear Bloch decompositions of f, we
conclude that v, , (Sy) < v(l; . S)(f).
(ii) = (i) is proven with a reasoning similar to the previous one. O

We are ready to establish a Bloch version of Theorem 18.1.2 in [14].

Corollary 2.4 Let 1 < p,r,s < oo suchthat1+1/p > 1/r + 1/s and let 1/6 :=
1/p+1/r* +1/s*. Then ['A/(If:,r,s)’ U(L;,r,S)] is a 6-Banach normalized Bloch ideal.

Proof Let X be a complex Banach space.
(Pl): Let . € Cand f,g € ./\/p”)(}D) X). Using Theorems 1.6, 2.3 and [14,

Theorem 18.1.2], we obtain that vB is a norm on /\/(p p S)(ID), X):

(p.r.s)

Vpur) f) = V() (S0p) = V) S ) = M vy (Sp) = M VG5 ()
V0o (f 8 =05 (Sr+)’ = viprn(Ss + Sp)’
<V S (S’ =0E, (N G, (),
Vo () =02 04,0(S) =0= S, =0= f =Sgol =0= f =0.

To see that the norm v(l; r.s) is complete, note that another application of those theorems

assures that f +— Sy is an isometric isomorphism of (N (D, X), vB ) onto
(p.r.s) (p.r.s)
Np.r.(G(D), X), v(p,r.5)), and moreover

pB(f) = [S¢]| < vipr(Sp) =0, ().

(P2): Letg € g(D) and x € X. By the operator ideal property of [N, s), V(p.r.5)]
and Theorem 1.6, S,., = A(g) - x € /\/(p”)(g(]D)),X) with vy, 5 (Sgx) =
IA@IIxI = pp(g) llx|l. Hence g - x € N( (D, X) with vg,,,,s)(g cx) =
oB(g) llx|| by Theorem 2.3.

(P3):Let f € NB (D, X),T € L(X.Y)andh € B(D, D). Since T o Sy o1 €
L(G(D),Y) and

pirss)

(p.r.s)

(Tofoh)=Tol[h -(foh)l=Tol[h'-(Sfol oh)]
=Tol[Se(h'-(Toh)]=Tol[Sfo(hol)]
=(ToSsoh)oTl,

one has that S7orop = T 0 Sy o ﬁby Theorem 1.6. Since Sy € J\/(p r(GD), X)
by Theorem 2.3, we get that Syofon € Np.r.s(G(D), Y) with v(p 5 (STo fon) <
||T|| Vip,r S)(Sf)||h|| by the operator ideal property of [./\/(p r.s)» V(pr,s)], and thus

ofoheNB J(D,Y) with vl (T o foh) <IT|vE, (f) by Theorems

(p,r,s (p,r,s (p,r,s
1.6 and 2.3. o

We conclude arriving at the objective of this section.
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Corollary 2.5 Let 1 < p,r,s < oo such that 1/p < 1/r +1/s < 1+ 1/p. Then

B B B
% )(Dv X), U(p,r,s)) =< (II )(Dv X), w

B
(p.r,s (p.r.s (p,r»S))‘

Proof Let f € NE (D, X). Then Sy € Nip.r.o)(GD). X) with vpr.(Sy) =
v([;,),r,s)(f) by Theorem 2.3. Since

(-/\[(p,r,s)(g(D)y X)’ V(p,r,s)) =< (H(p,r,s) (g(]D)a X)7 jT(p,V,S))v

it follows that Sy € I, r 5 (GD), X) with (., ) (Sf) < V(p.r.5)(Sr). By Proposi-

tion2.2, f € nfj'p,r,s)(m, X) and ng’rys)(f) < T(prs)(Sf) < vg)’r’s)(f). O
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