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Abstract
The theory of (p, r , s)-summing and (p, r , s)-nuclear linear operators on Banach
spaces was developed by Pietsch in his book on operator ideals (Pietsch in Operator
ideals, North-Holland Mathematical Library, North-Holland Publishing Co., Amster-
dam, 1980, Chapters 17 and 18) Due to recent advances in the theory of ideals of
Bloch maps, we extend these concepts to Bloch maps from the complex open unit disc
D into a complex Banach space X . Variants for (r , s)-dominated Bloch maps of clas-
sical Pietsch’s domination and Kwapień’s factorization theorems of (r , s)-dominated
linear operators are presented. We define analogues of Lapresté’s tensor norms on
the space of X -valued Bloch molecules on D to address the duality of the spaces of
(p∗, r , s)-summing Bloch maps from D into X∗. The class of (p, r , s)-nuclear Bloch
maps is introduced and analysed to give examples of (p, r , s)-summing Bloch maps.
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Introduction

The concept of absolutely p-summing linear operators between Banach spaces for
0 < p ≤ ∞ was introduced by Pietsch [13] and the notion of absolutely (p, r)-
summing operators for 0 < r ≤ p ≤ ∞ is due to Mitjagin and Pełczyński [11]
though the famous factorization theorem for (p, r)-dominated operators was proved
by Kwapień [9].

In his famous monograph about operator ideals [13], Pietsch introduced a more
general multi-index concept with the definition of (p, r , s)-summing operators for
0 < p, r , s ≤ ∞ and 1/p ≤ 1/r + 1/s. The study of the duality of these operator
spaces was addressed with the introduction of suitable norms on the tensor product of
Banach spaces by Chevet [5], Saphar [15] and Lapresté [10].

In other settings, (p, r , s)-summing maps have been dealed by some authors as, for
example, Chávez-Domínguez [4] for Lipschitz maps, and Achour [1], Bernardino,
Pellegrino, Seoane-Sepúlveda and Souza [2] and Fernández-Unzueta and García-
Hernández [7] for multilinear operators and polynomials.

Our main purpose in this paper is to introduce and establish the most notable
properties of a notion of (p, r , s)-summing Bloch maps from the complex open unit
disc D into a complex Banach space X .

Let H(D, X) be the space of all holomorphic maps from D into X . Let us recall
that a map f ∈ H(D, X) is called Bloch if

ρB ( f ) = sup
{
(1 − |z|2) ∥∥ f ′(z)

∥∥ : z ∈ D

}
< ∞.

The linear space of all Bloch maps from D into X , under the Bloch seminorm ρB, is
denoted by B(D, X). The normalized Bloch space B̂(D, X) is the closed subspace of
B(D, X) formed by all those maps f for which f (0) = 0, under the Bloch norm ρB.
For simplicity, we write B̂(D) instead of B̂(D,C). We denote by B̂(D,D) the set of
all holomorphic functions h : D → D for which h(0) = 0.

We now introduce some notation. For Banach spaces X and Y , L(X , Y ) denotes
the Banach space of all continuous linear operators from X into Y , equipped with
the operator canonical norm. As usual, X∗ denotes the dual space L(X ,K), and JX

the canonical injection of X into X∗∗. BX stands for the closed unit ball of X . Given
1 ≤ p ≤ ∞, p∗ denotes the conjugate index of p defined by p∗ = p/(p − 1) if
p �= 1, p∗ = ∞ if p = 1, and p∗ = 1 if p = ∞.

Let X be a Banach space, n ∈ N and a finite set of vectors (xi )
n
i=1 in X . For any

1 ≤ p ≤ ∞, the strong p-norm of (xi )
n
i=1 is defined by

∥∥(xi )
n
i=1

∥∥
p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n∑

i=1

‖xi‖p

) 1
p

if 1 ≤ p < ∞,

max
1≤i≤n

‖xi‖ if p = ∞,
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and the weak p-norm of (xi )
n
i=1 by

ωp
(
(xi )

n
i=1

) = sup
x∗∈BX∗

∥∥(x∗(xi ))
n
i=1

∥∥
p .

According to Pietsch [14, 17.1.1], given Banach spaces X , Y and 0 < p, r , s ≤ ∞
such that 1/p ≤ 1/r + 1/s, an operator T ∈ L(X , Y ) is (p, r , s)-summing if there
exists a constant C ≥ 0 such that

∥∥(y∗
i (T (xi )))

n
i=1

∥∥
p ≤ Cωr

(
(xi )

n
i=1

)
ωs

(
(y∗

i )n
i=1

)

for any n ∈ N, (xi )
n
i=1 in X and (y∗

i )n
i=1 in Y ∗. The least of all constants C for which

such an inequality holds is denoted by π(p,r ,s)(T ), and the linear space of all such
operators is represented by �(p,r ,s)(X , Y ).

Wenowpropose aBlochversion of the notion of (p, r , s)-summing linear operators.
Towards this end, we introduce a third norm: given two finite sets of points (λi )

n
i=1 in

C and (zi )
n
i=1 in D, the weak Bloch p-norm of (λi , zi )

n
i=1 is defined by

ωB̂
p

(
(λi , zi )

n
i=1

) = sup
g∈BB̂(D)

∥∥(λi g
′(zi ))

n
i=1

∥∥
p .

In particular, we write ωB̂
p

(
(zi )

n
i=1

)
instead of ωB̂

p

(
(λi , zi )

n
i=1

)
if λi = 1 for all

i ∈ {1, . . . , n}.
Definition 0.1 Let X be a complex Banach space and let 1 ≤ p, r , s ≤ ∞ such that
1/p ≤ 1/r +1/s. We say that a map f ∈ H(D, X) is (p, r , s)-summing Bloch if there
is a constant C ≥ 0 such that for any n ∈ N, (λi )

n
i=1 in C, (zi )

n
i=1 in D and (x∗

i )n
i=1 in

X∗, we have

∥∥(λi x∗
i ( f ′(zi )))

n
i=1

∥∥
p ≤ CωB̂

r

(
(λi , zi )

n
i=1

)
ωs

(
(x∗

i )n
i=1

)
.

The smallest such constants C is denoted by πB
(p,r ,s)( f ). The linear space of all such

maps is denoted by �B
(p,r ,s)(D, X), and �B̂

(p,r ,s)(D, X) stands for its subspace formed
by all those maps f for which f (0) = 0. Amap (p, r , s)-summing Bloch map f from
D into X is called (r , s)-dominated Bloch whenever 1/p = 1/r + 1/s.

We now describe the contents of this paper. In parallelism with the theory of abso-
lutely (p, r , s)-summing operators, we prove that [�B̂

(p,r ,s), π
B
(p,r ,s)] is a Banach ideal

of normalized Bloch maps. We also show that the space (�B
(p,r ,s)(D, X), πB

(p,r ,s)) is
Möbius-invariant in an approach to Complex Analysis.

For 1 ≤ p, r , s < ∞ such that 1/p = 1/r+1/s, ourmain result in this paper gathers
both variants for (r , s)-dominated Bloch maps of Pietsch’s domination and Kwapień’s
factorization theorems for (r , s)-dominated linear operators (see [14, Theorems 7.4.2
and 7.4.3]).
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In order to address the duality of the �B̂
(p,r ,s)-spaces, we introduce Bloch ana-

logues of Lapresté norms [10] on the space of X -valued Bloch molecules of D,
denoted by μB̂

(p,r ,s). For 1 ≤ p, r , s ≤ ∞ and 1/θ := 1/p + 1/r + 1/s ≥ 1, we

prove that μB̂
(p,r ,s) is a Bloch reasonable θ -crossnorm on such a space so that, when-

ever 1/p∗ ≤ 1/r + 1/s, (�B̂
(p∗,r ,s)(D, X∗), πB

(p∗,r ,s)) is isometrically isomorphic to

(G(D)⊗̂
μB̂

(p,r ,s)
X , μB̂

(p,r ,s))
∗, where G(D) is the Bloch-free Banach space of D.

In order to give examples of (p, r , s)-summingBlochmaps, the concept of (p, r , s)-
nuclear Blochmaps fromD into X for 1 ≤ p, r , s ≤ ∞ such that 1+1/p ≥ 1/r +1/s
is introduced and it is proved that the space formed by such Blochmaps is an θ -Banach
normalized Bloch ideal where 1/θ := 1/p + 1/r∗ + 1/s∗.

1 Results

From now on and unless otherwise stated, we will suppose that X is a complex Banach
space and 1 ≤ p, r , s ≤ ∞ with 1/p ≤ 1/r + 1/s.

1.1 Inclusions

We first show that the new functions introduced are actually Bloch functions.
Given semi-normed spaces (X , ρX ) and (Y , ρY ), we will write (X , ρX ) ≤ (Y , ρY )

to point out that X ⊆ Y and ρY (x) ≤ ρX (x) for all x ∈ X .

Proposition 1.1 (�B
(p,r ,s)(D, X), πB

(p,r ,s)) ≤ (B(D, X), ρB).

Proof Let f ∈ �B
(p,r ,s)(D, X). For each z ∈ D, Hahn–Banach Theorem provides a

functional x∗
z ∈ BX∗ such that

∣∣x∗
z ( f ′(z))

∣∣ = ∥∥ f ′(z)
∥∥. Taking n = 1, λ1 = (1−|z|2),

z1 = z and x∗
1 = x∗

z , we have

(1 − |z|2) ∥∥ f ′(z)
∥∥ = (1 − |z|2) ∣∣x∗

z ( f ′(z))
∣∣

≤ πB
(p,r ,s)( f )ωB̂

r

(
(λi , zi )

n
i=1

)
ωs

(
(x∗

i )n
i=1

)

≤ πB
(p,r ,s)( f ).

Hence f ∈ B(D, X) with ρB( f ) ≤ πB
(p,r ,s)( f ). �

We now prove that the concept of (p, r , s)-summing Bloch maps extends that of
p-summing Bloch maps introduced in [3].

For any 1 ≤ p ≤ ∞, let us recall that a map f ∈ H(D, X) is p-summing Bloch if
there is a constant C ≥ 0 such that

∥∥(λi f ′(zi ))
n
i=1

∥∥
p ≤ CωB̂

p

(
(λi , zi )

n
i=1

)

for any n ∈ N, (λi )
n
i=1 inC and (zi )

n
i=1 inD. The infimum of all constants C for which

such an inequality holds, denoted by πB
p ( f ), defines a seminorm on the linear space,
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denoted by �B
p (D, X), of all p-summing Bloch maps from D into X . Furthermore,

πB
p is a norm on the subspace �B̂

p (D, X) formed by all those maps f ∈ �B
p (D, X)

for which f (0) = 0.

Proposition 1.2 (�B
p,p,∞(D, X), πB

p,p,∞) = (�B
p (D, X), πB

p ).

Proof Let f ∈ �B
(p,p,∞)(D, X). Given n ∈ N, (λi )

n
i=1 in C and (zi )

n
i=1 in D, we have

∥∥(λi f ′(zi ))
n
i=1

∥∥
p = ∥∥(λi x∗

i ( f ′(zi )))
n
i=1

∥∥
p

≤ πB
(p,p,∞)( f )ωB̂

p

(
(λi , zi )

n
i=1

)
ω∞

(
(x∗

i )n
i=1

)

≤ πB
(p,p,∞)( f )ωB̂

p

(
(λi , zi )

n
i=1

)

where we have taken x∗
i ∈ BX∗ such that

∣∣x∗
i ( f ′(zi ))

∣∣ = ∥∥ f ′(zi )
∥∥ for each

i ∈ {1, . . . , n} by Hahn–Banach Theorem. Hence f ∈ �B
p (D, X) with πB

p ( f ) ≤
πB

(p,p,∞)( f ).

Conversely, let f ∈ �B
p (D, X). Let n ∈ N, (λi )

n
i=1 inC, (zi )

n
i=1 inD and (x∗

i )n
i=1 in

X∗. For each i ∈ {1, . . . , n}, Hahn–BanachTheoremprovides a functional y∗∗
i ∈ BX∗∗

such that
∣∣y∗∗

i (x∗
i )

∣∣ = ∥∥x∗
i

∥∥. We obtain

∥∥(λi x∗
i ( f ′(zi )))

n
i=1

∥∥
p ≤ ∥∥(λi

∥∥x∗
i

∥∥ f ′(zi ))
n
i=1

∥∥
p

≤ ∥∥(λi f ′(zi ))
n
i=1

∥∥
p

∥∥(x∗
i )n

i=1

∥∥∞
≤ πB

p ( f )ωB̂
p

(
(λi , zi )

n
i=1

) ∥∥(x∗
i )n

i=1

∥∥∞
= πB

p ( f )ωB̂
p

(
(λi , zi )

n
i=1

) ∥∥(y∗∗
i (x∗

i ))n
i=1

∥∥∞
≤ πB

p ( f )ωB̂
p

(
(λi , zi )

n
i=1

)
ω∞

(
(x∗

i )n
i=1

)
,

and thus f ∈ �B
(p,p,∞)(D, X) with πB

(p,p,∞)( f ) ≤ πB
p ( f ). �

1.2 Banach Bloch ideal property

Given θ ∈ (0, 1] and a linear space X over K, recall that a θ -norm on X is a function
μ : X → R satisfying that x = 0 whenever μ(x) = 0, μ(λx) = |λ|μ(x) for all λ ∈ K

and x ∈ X , and μ(x + y)θ ≤ μ(x)θ + μ(y)θ for all x, y ∈ X . We say that (X , μ) is
an θ -normed space, and it is said that (X , μ) is an θ -Banach space if every Cauchy
sequence in (X , μ) converges in (X , μ).

Following [8, Definition 5.11], a θ -normed (θ -Banach) normalized Bloch ideal,
denoted as [IB̂, ‖·‖IB̂ ], is a subclass IB̂ equipped with a θ -norm ‖·‖IB̂ of the class
of all normalized Bloch maps B̂ endowed with the Bloch norm ρB such that for each
complex Banach space X , the components IB̂(D, X) satisfy the following properties:

(P1) (IB̂(D, X), ‖·‖IB̂ ) is a θ -normed (θ -Banach) space and ρB( f ) ≤ ‖ f ‖IB̂ for

f ∈ IB̂(D, X).
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(P2) For any g ∈ B̂(D) and x ∈ X , themap g ·x : D → X , given by (g ·x)(z) = g(z)x

if z ∈ D, is in IB̂(D, X) and ‖g · x‖IB̂ = ρB(g) ‖x‖.
(P3) The ideal property: if f ∈ IB̂(D, X), h ∈ B̂(D,D) and T ∈ L(X , Y )where Y is

a complexBanach space, then T ◦ f ◦h belongs to IB̂(D, Y ) and ‖T ◦ f ◦h‖IB̂ ≤
‖T ‖ ‖ f ‖IB̂ .

In the case θ = 1, we remove any reference to θ .

Proposition 1.3
[
�B̂

(p,r ,s), π
B
(p,r ,s)

]
is a Banach normalized Bloch ideal.

Proof Let X be a complex Banach space and let n ∈ N, λi ∈ C, zi ∈ D and x∗
i ∈ X∗

for all i ∈ {1, . . . , n}.
(P1) Given f ∈ �B̂

(p,r ,s)(D, X), it is clear that πB
(p,r ,s)( f ) ≥ 0. If πB

(p,r ,s)( f ) = 0,
then ρB( f ) = 0 by Proposition 1.1, and so f = 0. For any λ ∈ C, we have

∥∥(λi x∗
i ((λ f )′(zi )))

n
i=1

∥∥
p = |λ| ∥∥(λi x∗

i ( f ′(zi )))
n
i=1

∥∥
p

≤ |λ|πB
(p,r ,s)( f )ωB̂

r

(
(λi , zi )

n
i=1

)
ωs

(
(x∗

i )n
i=1

)
,

and thus λ f ∈ �B̂
(p,r ,s)(D, X) with πB

(p,r ,s)(λ f ) ≤ |λ| πB
(p,r ,s)( f ). If λ = 0, this

implies that πB
(p,r ,s)(λ f ) = 0 = |λ|πB

(p,r ,s)( f ). If λ �= 0, we have πB
(p,r ,s)( f ) =

πB
(p,r ,s)(λ

−1(λ f )) ≤ ∣∣λ−1
∣∣πB

(p,r ,s)(λ f ), hence |λ|πB
(p,r ,s)( f ) ≤ πB

(p,r ,s)(λ f ), and so

πB
(p,r ,s)(λ f ) = |λ| πB

(p,r ,s)( f ).

For any f1, f2 ∈ �B̂
(p,r ,s)(D, X), we have

∥∥(λi x∗
i (( f1 + f2)

′(zi )))
n
i=1

∥∥
p ≤ ∥∥(λi x∗

i ( f ′
1(zi )))

n
i=1

∥∥
p + ∥∥(λi x∗

i ( f ′
2(zi )))

n
i=1

∥∥
p

≤
(
πB

(p,r ,s)( f1) + πB
(p,r ,s)( f2)

)
ωB̂

r

(
(λi , zi )

n
i=1

)

× ωs
(
(x∗

i )n
i=1

)
,

and thus f1+ f2 ∈ �B̂
(p,r ,s)(D, X)with πB

(p,r ,s)( f1+ f2) ≤ πB
(p,r ,s)( f1)+πB

(p,r ,s)( f2).

Consequently, (�B̂
(p,r ,s)(D, X), πB

(p,r ,s)) is a normed space.

To show its completeness, let ( fi ) be a sequence in �B
(p,r ,s)(D, X) such that∑∞

i=1 πB
(p,r ,s)( fi ) < ∞. Since ρB ≤ πB

(p,r ,s) on �B
(p,r ,s)(D, X) by Proposition 1.1,

and (B̂(D, X), ρB) is a Banach space, there exists f = ∑∞
i=1 fi ∈ B̂(D, X) in the

norm ρB. We will prove that
∑∞

i=1 fi = f in the norm πB
(p,r ,s). Given m ∈ N, λk ∈ C,
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zk ∈ D and x∗
k ∈ X∗ for all k ∈ {1, . . . , m}, we have

∥∥∥∥∥

(
λk x∗

k

((
n∑

i=1

fi

)′
(zk)

))m

k=1

∥∥∥∥∥
p

≤ πB
(p,r ,s)

(
n∑

i=1

fi

)
ωB̂

r

(
(λk, zk)

m
k=1

)

× ωs
(
(x∗

k )m
k=1

)

≤
(

n∑
i=1

πB
(p,r ,s)( fi )

)
ωB̂

r

(
(λk, zk)

m
k=1

)

× ωs
(
(x∗

k )m
k=1

)

for all n ∈ N, and by taking limits with n → ∞ yields

∥∥∥∥∥

(
λk x∗

k

(( ∞∑
i=1

fi

)′
(zk)

))m

k=1

∥∥∥∥∥
p

≤
( ∞∑

i=1

πB
(p,r ,s)( fi )

)
ωB̂

r

(
(λk, zk)

m
k=1

)

× ωs
(
(x∗

k )m
k=1

)
.

Hence f ∈ �B̂
(p,r ,s)(D, X) with πB

(p,r ,s)( f ) ≤ ∑∞
n=1 πB

(p,r ,s)( fn). Moreover,

πB
(p,r ,s)

(
f −

n∑
i=1

fi

)
= πB

(p,r ,s)

( ∞∑
i=n+1

fi

)
≤

∞∑
i=n+1

πB
(p,r ,s) ( fi )

for all n ∈ N, and therefore
∑∞

i=1 fi = f in the norm πB
(p,r ,s).

(P2) Let g ∈ B̂(D) and x ∈ X . It is immediate that g ·x ∈ B̂(D, X)with ρB(g ·x) =
ρB(g) ‖x‖. For g = 0 or x = 0, (P2) is clear. If g �= 0 and x �= 0, the generalized
Hölder’s inequality gives

||(λi x∗
i ((g · x)′(zi )))

n
i=1||p = ρB(g) ‖x‖

∥∥∥∥∥
(

λi

(
g

ρB(g)

)′
(zi )x∗

i

(
x

‖x‖
))n

i=1

∥∥∥∥∥
p

= ρB(g) ‖x‖
∥∥∥∥∥
(

λi

(
g

ρB(g)

)′
(zi )JX

(
x

‖x‖
)

(x∗
i )

)n

i=1

∥∥∥∥∥
p

≤ ρB(g) ‖x‖
∥∥∥∥∥
(

λi

(
g

ρB(g)

)′
(zi )

)n

i=1

∥∥∥∥∥
r

∥∥∥∥
(

JX

(
x

‖x‖
)

(x∗
i )

)n

i=1

∥∥∥∥
s

≤ ρB(g) ‖x‖ ωB̂
r

(
(λi , zi )

n
i=1

)
ωs

(
(x∗

i )n
i=1

)
,

and thus g · x ∈ �B̂
(p,r ,s)(D, X) with πB

(p,r ,s)(g · x) ≤ ρB(g) ‖x‖. Conversely,

ρB(g) ‖x‖ = ρB(g · x) ≤ πB
(p,r ,s)(g · x)
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by using Proposition 1.1.
(P3) Let f ∈ �B̂

(p,r ,s)(D, X), T ∈ L(X , Y ) and h ∈ B̂(D,D). Clearly, (T ◦ f ◦
h)(0) = 0 and T ◦ f ◦ h ∈ H(D, Y ) with

(T ◦ f ◦ h)′ = T ◦ ( f ◦ h)′ = T ◦ [h′ · ( f ′ ◦ h)].

Let n ∈ N, (λi )
n
i=1 in C, (zi )

n
i=1 in D and (y∗

i )n
i=1 in Y ∗. We have

‖(λi y∗
i ((T ◦ f ◦ h)′(zi )))

n
i=1‖p = ∥∥(λi y∗

i (T (h′(zi ) f ′(h(zi )))))
n
i=1

∥∥
p

≤ ‖T ‖ ∥∥(λi h
′(zi )y∗

i ( f ′(h(zi ))))
n
i=1

∥∥
p

≤ ‖T ‖ πB
(p,r ,s)( f )ωB̂

r

(
(λi h

′(zi ), h(zi ))
n
i=1

)
ωs

(
(y∗

i )n
i=1

)

≤ ‖T ‖ πB
(p,r ,s)( f )ωB̂

r

(
(λi , zi )

n
i=1

)
ωs

(
(y∗

i )n
i=1

)
,

where it is applied that ρB(g ◦ h) ≤ ρB(g) for all g ∈ B̂(D) by the Pick–Schwarz
Lemma. So T ◦ f ◦ h ∈ �B̂

(p,r ,s)(D, X) with πB
(p,r ,s)(T ◦ f ◦ h) ≤ ‖T ‖πB

(p,r ,s)( f ). �

1.3 Pietsch’s domination and Kwapień’s factorization

For 1 ≤ p, r , s < ∞ such that 1/p = 1/r + 1/s, we present a result gathering
both variants for (p, r , s)-summing Bloch maps of Pietsch’s domination theorem [14,
Theorem 7.4.2] and Kwapień’s factorization theorem [14, Theorem 7.4.3] for (r , s)-
dominated linear operators.

Given a Banach space X , we will denote by P(BX∗) the set of all regular Borel
probability measures μ on BX∗ with the topology w∗.

Theorem 1.4 Let 1 ≤ p, r , s < ∞ be with 1/p = 1/r + 1/s and f ∈ B̂(D, X). The
following statements are equivalent:

(i) f ∈ �B̂
(p,r ,s)(D, X).

(ii) (Pietsch’s domination). There exist a constant C > 0 and measures μ ∈ P(BB̂(D))

and ν ∈ P(BX∗∗) such that

∣∣x∗( f ′(z))
∣∣ ≤ C

(∫

BB̂(D)

∣∣g′(z)
∣∣r dμ(g)

) 1
r (∫

BX∗∗

∣∣x∗∗(x∗)
∣∣s

dν(x∗∗)
) 1

s

for all z ∈ D and x∗ ∈ X∗.
(iii) (Kwapień’s factorization). There exist a Banach space Z, a closed subspace Y ⊆

Z, a map h ∈ �B̂
r (D, Z) with h′(D) ⊆ Y and an operator T ∈ L(Y , X) with

T ∗ ∈ �s(X∗, Y ∗) such that f ′ = T ◦ h′.

In this case,

πB
(p,r ,s)( f ) = inf{C : C as in (i i)} = inf

{
πs(T

∗)πB
r (h) : f ′ = T ◦ h′}
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and, in addition, both infimums are attained.

Proof (i) ⇔ (i i): We will apply a general Pietsch domination theorem (see [12,
Theorem 4.6]). Define the functions

R1 : BB̂(D) × D × C → [0,∞[, R1(g, z, λ) = |λ| ∣∣g′(z)
∣∣ ,

R2 : BX∗∗ × X∗ → [0,∞[, R2(x∗∗, x∗) = ∣∣x∗∗(x∗)
∣∣ ,

S : B̂(D, X) × D × C × X∗ → [0,∞[, S( f , z, λ, x∗) = |λ| ∣∣x∗( f ′(z))
∣∣ .

Note that R1, R2 and S satisfy the properties (1)–(2) preceding to [12, Definition 4.4]:

1. For each z ∈ D, λ ∈ C and x∗ ∈ X∗, the maps

(R1)z,λ : BB̂(D) → [0,∞[ (R1)z,λ(g) = R1(g, z, λ),

(R2)x∗ : BX∗∗ → [0,∞[ (R2)x∗(x∗∗) = R2(x∗∗, x∗),

are continuous.
2. The equalities

R1(g, z, β1λ) = β1R1(g, z, λ),

R2(x∗∗, β2x∗) = β2R2(x∗∗, x∗),
S( f , z, β1λ, β2x∗) = β1β2S( f , z, λ, x∗),

hold for all g ∈ BB̂(D), x∗∗ ∈ BX∗∗ , z ∈ D, λ ∈ C, x∗ ∈ X∗, β1, β2 ∈ [0, 1] and
f ∈ B̂(D, X).

Now, in view of Definition 4.4 and Theorem 4.6 in [12], we have that f is (p, r , s)-
summing Bloch if and only if f is R1, R2-S abstract (r , s)-summing if and only if
there is a constant C > 0 and measures μ ∈ P(BB̂(D)) and ν ∈ P(BX∗∗) such that

S( f , z, λ, x∗) ≤ C

(∫

BB̂(D)

R1(g, z, λ)r dμ(g)

) 1
r (∫

BX∗∗
R2(x∗∗, x∗)sdν(x∗∗)

) 1
s

for all z ∈ D, λ ∈ C and x∗ ∈ X∗, and this means that

∣∣x∗( f ′(z))
∣∣ ≤ C

(∫

BB̂(D)

∣∣g′(z)
∣∣r dμ(g)

) 1
r (∫

BX∗∗

∣∣x∗∗(x∗)
∣∣s

dν(x∗∗)
) 1

s

for all z ∈ D and x∗ ∈ X∗. In this case, πB
(p,r ,s)( f ) = min{C : C as in (i i)}.

(i i) ⇒ (i i i): Let ιD : D → C(BB̂(D)) be defined by ιD(z)(g) = g′(z) for all
z ∈ D and g ∈ BB̂(D), and let jr : C(BB̂(D)) → Lr (μ) be the canonical injection. In

the light of [3, Lemma 1.5], we can find a map h ∈ B̂(D, Lr (μ)) with ρB(h) = 1
such that h′ = jr ◦ ιD. Moreover, h ∈ �B̂

r (D, Lr (μ)) with πB
r (h) = 1. Consider the
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linear subspace Y = lin(h′(D)) ⊆ Lr (μ) and the operator T ∈ L(Y , X) defined by
T (h′(z)) = f ′(z) for all z ∈ D. Using (ii), we have

∥∥T ∗(x∗)
∥∥ = sup

{∣∣T ∗(x∗)(h′(z))
∣∣ : z ∈ D,

∥∥h′(z)
∥∥ ≤ 1

}

= sup
{∣∣x∗(T (h′(z)))

∣∣ : z ∈ D,
∥∥h′(z)

∥∥ ≤ 1
}

= sup
{∣∣x∗( f ′(z))

∣∣ : z ∈ D,
∥∥h′(z)

∥∥ ≤ 1
}

≤ C

(∫

BX∗∗

∣∣x∗∗(x∗)
∣∣s

dν(x∗∗)
) 1

s

for all x∗ ∈ X∗, and thus T ∗ ∈ �s(X∗, Y ∗) with πs(T ∗) ≤ C . Hence (iii) holds
and πs(T ∗)πB

r (h) ≤ C . Taking the infimum over all such constants C , it follows that
πs(T ∗)πB

r (h) ≤ inf{C : C as in (i i)}.
(i i i) ⇒ (i i): Suppose there exist maps h and T as in (iii). For any z ∈ D and

x∗ ∈ X∗, we have

∣∣x∗( f ′(z))
∣∣ = ∣∣x∗((T ◦ h′)(z))

∣∣ = ∣∣T ∗(x∗)(h′(z))
∣∣ ≤ ∥∥T ∗(x∗)

∥∥ ∥∥h′(z)
∥∥ .

By both Pietsch domination theorems for p-summing linear operators [14, Theorem
7.3.2] and p-summing Bloch maps [3, Theorem 1.4], there are measures ν ∈ P(BX∗∗)
and μ ∈ P(BB̂(D)) such that

∥∥T ∗(x∗)
∥∥ ≤ πs(T

∗)
(∫

BX∗∗

∣∣x∗∗(x∗)
∣∣s

dν(x∗∗)
) 1

s

and

∥∥h′(z)
∥∥ ≤ πB

r (h)

(∫

BB̂(D)

∣∣g′(z)
∣∣r dμ(g)

) 1
r

.

Hence we have

∣∣x∗( f ′(z))
∣∣ ≤ πs(T

∗)πB
r (h)

×
(∫

BB̂(D)

∣∣g′(z)
∣∣r dμ(g)

) 1
r (∫

BX∗∗

∣∣x∗∗(x∗)
∣∣s

dν(x∗∗)
) 1

s

,

and this proves (ii) with πs(T ∗)πB
r (h) ∈ {C : C as in (i i)}. It follows that

inf{C : C as in (i i)} ≤ inf
{
πs(T ∗)πB

r (h) : f ′ = T ◦ h′}. �
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1.4 Möbius invariance

The Möbius group of D, denoted by Aut(D), consists of all biholomorphic bijections
φ : D → D. Each φ ∈ Aut(D) has the form φ = λφa with λ ∈ T and a ∈ D, where

φa(z) = a − z

1 − az
(z ∈ D).

Given a complex Banach space X , let us recall that a linear spaceA(D, X) ⊆ H(D, X)

endowed with a seminorm pA is Möbius-invariant if:

(i) A(D, X) ⊆ B(D, X) and there exists C ≥ 0 such that ρB( f ) ≤ CpA( f ) for all
f ∈ A(D, X),

(ii) f ◦φ ∈ A(D, X)with pA( f ◦φ) = pA( f ) for all φ ∈ Aut(D) and f ∈ A(D, X).

We have the following interesting fact.

Proposition 1.5 The space (�B
(p,r ,s)(D, X), πB

(p,r ,s)) is Möbius-invariant.

Proof By Proposition 1.1,�B
(p,r ,s)(D, X) ⊆ B(D, X) and ρB( f ) ≤ πB

(p,r ,s)( f ) for all

f ∈ �B
(p,r ,s)(D, X). On the other hand, a proof similar to that of (P3) in Proposition 1.3

yields that if f ∈ �B
(p,r ,s)(D, X) and φ ∈ Aut(D), then f ◦ φ ∈ �B

(p,r ,s)(D, X) with

πB
p ( f ◦φ) ≤ πB

p ( f ), and from this fact it is inferred thatπB
p ( f ) = πB

p (( f ◦φ)◦φ−1) ≤
πB

p ( f ◦ φ). �

1.5 Lapresté norms on Blochmolecules

Our approach on the duality of the spaces (�B̂
(p,r ,s), π

B
(p,r ,s)) requires the introduction

of Bloch analogues of Lapresté norms [10] on the tensor product of Banach spaces (a
generalization of the Chevet–Saphar norms [5, 15] on such tensor products). Given
two linear spaces E and F , the tensor product space E ⊗ F equipped with a norm α

will be denoted by E ⊗α F , and the completion of E ⊗α F by E⊗̂α F .
Towards this end, we first recall some concepts and results borrowed from [8]. For

each z ∈ D, a Bloch atom of D is the functional γz ∈ B̂(D)∗ given by γz( f ) = f ′(z)
for all f ∈ B̂(D). The called Bloch molecules of D are the elements of the space

lin({γz : z ∈ D}) ⊆ B̂(D)∗,

and the Bloch-free Banach space of D is the space

G(D) = lin({γz : z ∈ D}) ⊆ B̂(D)∗.

Theorem 1.6 [8]

(i) The map � : z ∈ D �→ γz ∈ G(D) is holomorphic with ‖γz‖ = 1/(1 − |z|2).
(ii) The map � : B̂(D) → G(D)∗, given by �(g)(γz) = g′(z) for all z ∈ D and

g ∈ B̂(D), is an isometric isomorphism.
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(iii) For each h ∈ B̂(D,D), there exists a unique ĥ ∈ L(G(D),G(D)) such that ĥ ◦� =
h′ · (� ◦ h). Furthermore, ||̂h|| ≤ 1.

(iv) For each complex Banach space X and each f ∈ B̂(D, X), there is a unique
S f ∈ L(G(D), X) such that S f ◦ � = f ′ and ‖S f ‖ = pB( f ).

(v) f �→ S f is an isometric isomorphism of B̂(D, X) onto L(G(D), X). �
Given a complex Banach space X , the space of X-valued Bloch molecules of D is

defined as

lin(�(D)) ⊗ X = lin({γz ⊗ x : z ∈ D, x ∈ X}) ⊆ B̂(D, X∗)∗,

where γz ⊗ x : B̂(D, X∗) → C is the functional given by

(γz ⊗ x) ( f ) = 〈
f ′(z), x

〉 (
f ∈ B̂(D, X∗)

)
.

Each element γ ∈ lin(�(D)) ⊗ X can be expressed as γ = ∑n
i=1 λiγzi ⊗ xi for some

n in N, (λi )
n
i=1 in C, (zi )

n
i=1 in D and (xi )

n
i=1 in X , and its action is

γ ( f ) =
n∑

i=1

λi
〈
f ′(zi ), xi

〉
.

Definition 1.7 Let 1 ≤ p, r , s ≤ ∞ and γ ∈ lin(�(D)) ⊗ X . Define

μB̂
(p,r ,s)(γ ) = inf

{∥∥(λi )
n
i=1

∥∥
p ωB̂

r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)}
,

the infimum being taken over all the representations of γ as
∑n

i=1 λiγzi ⊗ xi with n
in N, (λi )

n
i=1 in C, (zi )

n
i=1 in D and (xi )

n
i=1 in X .

Following [3, Definition 2.5], we say that a θ -norm α on lin(�(D)) ⊗ X with
θ ∈ (0, 1] is a Bloch reasonable crossnorm if:

(i) α(γz ⊗ x) ≤ ‖γz‖ ‖x‖ for all z ∈ D and x ∈ X ,
(ii) For g ∈ B̂(D) and x∗ ∈ X∗, the linear functional g ⊗ x∗ on lin(�(D)) ⊗ X

given by (g ⊗ x∗)(γz ⊗ x) = g′(z)x∗(x) is bounded on lin(�(D)) ⊗α X with
‖g ⊗ x∗‖ ≤ ρB(g) ‖x∗‖.
The proof of the following result is based on [10, Theorem 1.1].

Theorem 1.8 Let 1 ≤ p, r , s ≤ ∞ and 1/θ := 1/p + 1/r + 1/s ≥ 1. Then μB̂
(p,r ,s)

is a Bloch reasonable θ -crossnorm on lin(�(D)) ⊗ X.

Proof Let γ ∈ lin(�(D))⊗X and let
∑n

i=1 λiγzi ⊗xi be a representation of γ . Clearly,

μB̂
(p,r ,s)(γ ) ≥ 0. Given λ ∈ C, we have

μB̂
(p,r ,s)(λγ ) ≤ ∥∥(λλi )

n
i=1

∥∥
p ωB̂

r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)

= |λ| ∥∥(λi )
n
i=1

∥∥
p ωB̂

r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)
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If λ = 0, we obtain μB̂
(p,r ,s)(λγ ) = 0 = |λ| μB̂

(p,r ,s)(γ ). For λ �= 0, since the pre-

ceding inequality holds for every representation of γ , we deduce that μB̂
(p,r ,s)(λγ ) ≤

|λ| μB̂
(p,r ,s)(γ ). For the converse inequality, note that

μB̂
(p,r ,s)(γ ) = μB̂

(p,r ,s)(λ
−1(λγ )) ≤ |λ−1|μB̂

(p,r ,s)(λγ ),

thus |λ| μB̂
(p,r ,s)(γ ) ≤ μB̂

(p,r ,s)(λγ ) and hence μB̂
(p,r ,s)(λγ ) = |λ|μB̂

(p,r ,s)(γ ).

We now prove that μB̂
(p,r ,s)(γ ) = 0 implies γ = 0. Applying that θ ≤ 1 and the

generalized Hölder’s inequality, we obtain

∣∣∣∣∣
n∑

i=1

λi h
′(zi )y∗(xi )

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

|λi |θ
∣∣h′(zi )

∣∣θ ∣∣y∗(xi )
∣∣θ

∣∣∣∣∣

1
θ

≤
(

n∑
i=1

|λi |p

) 1
p
(

n∑
i=1

∣∣h′(zi )
∣∣r

) 1
r
(

n∑
i=1

∣∣y∗(xi )
∣∣s

) 1
s

≤ ∥∥(λi )
n
i=1

∥∥
p ωB̂

r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)

for any h ∈ BB̂(D) and y∗ ∈ BX∗ . Since the quantity
∣∣∑n

i=1 λi h′(zi )y∗(xi )
∣∣ does not

depend on the representation of γ since

n∑
i=1

λi h
′(zi )y∗(xi ) =

(
n∑

i=1

λiγzi ⊗ xi

)
(h · y∗) = γ (h · y∗),

taking the infimum over all representations of γ we deduce that

∣∣∣∣∣
n∑

i=1

λi h
′(zi )y∗(xi )

∣∣∣∣∣ ≤ μB̂
(p,r ,s)(γ )

for any h ∈ BB̂(D) and y∗ ∈ BX∗ . Now, if μB̂
(p,r ,s)(γ ) = 0, we have

(
n∑

i=1

λi y∗(xi )γzi

)
(h) =

n∑
i=1

λi h
′(zi )y∗(xi ) = 0

for all h ∈ BB̂(D) and y∗ ∈ BX∗ . For each y∗ ∈ BX∗ , it is
∑n

i=1 λi y∗(xi )γzi = 0,
and since �(D) is linearly independent in G(D) by [8, Remark 2.8], it follows that
λi y∗(xi ) = 0 for all i ∈ {1, . . . , n}, hence λi xi = 0 for all i ∈ {1, . . . , n} since BX∗
separates the points of X , and thus γ = ∑n

i=1 λiγzi ⊗ xi = 0.
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To prove the triangular inequality of μB̂
(p,r ,s), let γ j ∈ lin(�(D)) ⊗ X for j = 1, 2

and ε > 0. For j = 1, 2, by homogeneity we can choose a representation

γ j =
n∑

i=1

λ j,iγz j,i ⊗ x j,i

for some n in N,
(
λ j,i

)n
i=1 in C,

(
z j,i

)n
i=1 in D and

(
x j,i

)n
i=1 in X , so that

∥∥(λ j,i )
n
i=1

∥∥
p ≤

(
μB̂

(p,r ,s)(γ j )
θ + ε

) 1
p
,

ωB̂
r

(
(z j,i )

n
i=1

) ≤
(
μB̂

(p,r ,s)(γ j )
θ + ε

) 1
r
,

ωs
(
(x j,i )

n
i=1

) ≤
(
μB̂

(p,r ,s)(γ j )
θ + ε

) 1
s
.

We can joint these representations of γ1 and γ2 to obtain a representation of γ1 + γ2
in the form

∑n
i, j=1 λ j,iγz j,i ⊗ x j,i such that

∥∥∥(λ j,i )
n
i, j=1

∥∥∥
p

≤
(
μB̂

(p,r ,s)(γ1)
θ + μB̂

(p,r ,s)(γ2)
θ + 2ε

) 1
p
,

ωB̂
r

(
(z j,i )

n
i, j=1

)
≤

(
μB̂

(p,r ,s)(γ1)
θ + μB̂

(p,r ,s)(γ2)
θ + 2ε

) 1
r
,

ωs

(
(x j,i )

n
i, j=1

)
≤

(
μB̂

(p,r ,s)(γ1)
θ + μB̂

(p,r ,s)(γ2)
θ + 2ε

) 1
s
.

Hence

μB̂
(p,r ,s)(γ1 + γ2) ≤

∥∥∥(λ j,i )
n
i, j=1

∥∥∥
p
ωB̂

r

(
(z j,i )

n
i, j=1

)
ωs

(
(x j,i )

n
i, j=1

)

≤
(
μB̂

(p,r ,s)(γ1)
θ + μB̂

(p,r ,s)(γ2)
θ + 2ε

) 1
θ
,

and since ε was arbitrary, we deduce that

μB̂
(p,r ,s)(γ1 + γ2)

θ ≤ μB̂
(p,r ,s)(γ1)

θ + μB̂
(p,r ,s)(γ2)

θ .

Tofinish, wewill show thatμB̂
(p,r ,s) is a Bloch reasonable crossnorm on lin(�(D))⊗

X . First, given z ∈ D and x ∈ X , taking n = 1, λ1 = 1, z1 = z and x1 = x , we have

μB̂
(p,r ,s)(γz ⊗ x) ≤ ∥∥(λi )

n
i=1

∥∥
p ωB̂

r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)

≤ 1

1 − |z|2 ‖x‖ = ‖γz‖ ‖x‖ .
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Second, given g ∈ B̂(D) and x∗ ∈ X∗ with g �= 0 �= x∗, using that θ ≤ 1 and the
generalized Hölder’s inequality, one has

∣∣(g ⊗ x∗)(γ )
∣∣ =

∣∣∣∣∣
n∑

i=1

λi (g ⊗ x∗)(γzi ⊗ xi )

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

λi g
′(zi )x∗(xi )

∣∣∣∣∣

≤ ρB(g)
∥∥x∗∥∥

∥∥∥∥∥
(

λi

(
g

ρB(g)

)′
(zi )

(
x∗

‖x∗‖
)

(xi )

)n

i=1

∥∥∥∥∥
1

≤ ρB(g)
∥∥x∗∥∥

∥∥∥∥∥
(

λi

(
g

ρB(g)

)′
(zi )

(
x∗

‖x∗‖
)

(xi )

)n

i=1

∥∥∥∥∥
θ

≤ ρB(g)
∥∥x∗∥∥ ∥∥(λi )

n
i=1

∥∥
p

∥∥∥∥∥
((

g

ρB(g)

)′
(zi )

)n

i=1

∥∥∥∥∥
r

∥∥∥∥
((

x∗

‖x∗‖
)

(xi )

)n

i=1

∥∥∥∥
s

≤ ρB(g)
∥∥x∗∥∥ ∥∥(λi )

n
i=1

∥∥
p ωB̂

r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)
.

It follows that |(g ⊗ x∗)(γ )| ≤ ρB(g) ‖x∗‖ μB̂
(p,r ,s)(γ ) by taking infimum over all

the representations of γ . Hence g ⊗ x∗ ∈ (lin(�(D)) ⊗
μB̂

(p,r ,s)
X)∗ with ‖g ⊗ x∗‖ ≤

ρB(g) ‖x∗‖. �

1.6 Duality

We will prove that the dual of G(D)⊗̂
μB̂

(p,r ,s)
X can be canonically identified as the

space �B̂
(p∗,r ,s)(D, X∗) with the norm πB

(p∗,r ,s) whenever 1 ≤ p, r , s ≤ ∞ such that
1/p∗ ≤ 1/r + 1/s.

The following easy lemma will be needed.

Lemma 1.9 Let X be a Banach space, n ∈ N, (x∗
i )n

i=1 in X∗ and 1 ≤ p ≤ ∞. Then

sup
x∗∗∈BX∗∗

∥∥(x∗∗(x∗
i ))n

i=1

∥∥
p = sup

x∈BX

∥∥(x∗
i (x))n

i=1

∥∥
p .

Proof Since x∗
i (x) = JX (x)(x∗

i ) for i = 1, . . . , n, the inequality ≥ is immediate.
Conversely, let ε > 0. For each x∗∗ ∈ BX∗∗ , Helly’s Lemma gives an y ∈ X such that
‖y‖ ≤ 1 + ε and x∗

i (y) = x∗∗(x∗
i ) for all i ∈ {1, . . . , n}, and therefore

∥∥(x∗∗(x∗
i ))n

i=1

∥∥
p = (1 + ε)

∥∥∥∥
(

x∗
i

(
y

1 + ε

))n

i=1

∥∥∥∥
p

≤ (1 + ε) sup
x∈BX

∥∥(x∗
i (x))n

i=1

∥∥
p .
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It follows that

sup
x∗∗∈BX∗∗

∥∥(x∗∗(x∗
i ))n

i=1

∥∥
p ≤ (1 + ε) sup

x∈BX

∥∥(x∗
i (x))n

i=1

∥∥
p

and since ε was arbitrary, we obtain the inequality ≤. �
Theorem 1.10 Let 1 ≤ p, r , s ≤ ∞ such that 1/p∗ ≤ 1/r + 1/s. Then the spaces
(�B̂

(p∗,r ,s)(D, X∗), πB
(p∗,r ,s)) and (G(D)⊗̂

μB̂
(p,r ,s)

X)∗ are isometrically isomorphic via

the canonical pairing

�( f )(γ ) =
n∑

i=1

λi
〈
f ′(zi ), xi

〉

for all f ∈ �B̂
p∗,r ,s(D, X∗) and γ = ∑n

i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X. Moreover,

on the closed unit ball of (�B̂
(p∗,r ,s)(D, X∗), πB

(p∗,r ,s)), the weak* topology coincides
with the topology of pointwise σ(X∗, X)-convergence.

Proof We will only prove the result whenever 1 < p < ∞, and the other cases can
be proved similarly.

Let f ∈ �B̂
(p∗,r ,s)(D, X∗) and let �0( f ) : lin(�(D)) ⊗ X → C be the linear

functional given by

�0( f )(γ ) =
n∑

i=1

λi
〈
f ′(zi ), xi

〉

for any γ = ∑n
i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X . We claim that �0( f ) ∈

(lin(�(D)) ⊗
μB̂

(p,r ,s)
X)∗ with ‖�0( f )‖ ≤ πB

(p∗,r ,s)( f ). Indeed, Hölder’s inequality

and an application of Lemma 1.9 yield

|�0( f )(γ )| ≤
n∑

i=1

|λi |
∣∣〈 f ′(zi ), xi

〉∣∣

≤
(

n∑
i=1

|λi |p

) 1
p
(

n∑
i=1

∣∣〈 f ′(zi ), xi
〉∣∣p∗

) 1
p∗

=
(

n∑
i=1

|λi |p

) 1
p
(

n∑
i=1

∣∣〈JX (xi ), f ′(zi )
〉∣∣p∗

) 1
p∗

≤ ∥∥(λi )
n
i=1

∥∥
p πB

(p∗,r ,s)( f )ωB̂
r

(
(zi )

n
i=1

)
ωs

(
(JX (xi ))

n
i=1

)

= ∥∥(λi )
n
i=1

∥∥
p πB

(p∗,r ,s)( f )ωB̂
r

(
(zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)
.
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Taking infimum over all the representations of γ , we deduce that

|�0( f )(γ )| ≤ πB
(p∗,r ,s)( f )μB̂

(p,r ,s)(γ ),

and since γ was arbitrary, this proves our claim.
Since lin(�(D)) is a norm-dense linear subspace ofG(D) andμB̂

(p,r ,s) is a θ -norm on
lin(�(D))⊗ X , then lin(�(D))⊗ X is a norm-dense linear subspace ofG(D)⊗̂

μB̂
(p,r ,s)

X .

Hence there is a unique continuous map �( f ) from G(D)⊗̂
μB̂

(p,r ,s)
X into C extending

�0( f ). Further, �( f ) is linear and ‖�( f )‖ = ‖�0( f )‖.
Let � : �B̂

(p∗,r ,s)(D, X∗) → (G(D)⊗̂
μB̂

(p,r ,s)
X)∗ be so defined. In view of [3, Corol-

lary 2.3], �0 is injective and linear from �B̂
(p∗,r ,s)(D, X∗) into (G(D) ⊗ X)∗, and

therefore so is �. To prove that � is a surjective isometry, let ϕ ∈ (G(D)⊗̂
μB̂

(p,r ,s)
X)∗

and define Fϕ : D → X∗ by

〈
Fϕ(z), x

〉 = ϕ(γz ⊗ x) (z ∈ D, x ∈ X) .

As in the proof of [3, Proposition 2.4], there exists fϕ ∈ B̂(D, X∗)with ρB( fϕ) ≤ ‖ϕ‖
such that f ′

ϕ = Fϕ .

We now prove that fϕ ∈ �B̂
(p∗,r ,s)(D, X∗). Fix n ∈ N, (λi )

n
i=1 in C, (zi )

n
i=1 in D

and (x∗∗
i )n

i=1 in X∗∗. Let ε > 0. By Helly’s Lemma, for each i ∈ {1, . . . , n}, we can
find xi ∈ X with ‖xi‖ ≤ (1 + ε)

∥∥x∗∗
i

∥∥ and
〈
f ′
ϕ(zi ), xi

〉 = 〈
x∗∗

i , f ′
ϕ(zi )

〉
. Clearly, the

map T : Cn → C, defined by

T (t1, . . . , tn) =
n∑

i=1

tiλi
〈
x∗∗

i , f ′
ϕ(zi )

〉
, ∀(t1, . . . , tn) ∈ C

n,

is linear and continuous on (Cn, || · ||p) with

‖T ‖ =
(

n∑
i=1

|λi |p∗ ∣∣〈x∗∗
i , f ′

ϕ(zi )
〉∣∣p∗

) 1
p∗

.

For any (t1, . . . , tn) ∈ C
n with ||(t1, . . . , tn)||p ≤ 1, we have

|T (t1, . . . , tn)| =
∣∣∣∣∣ϕ

(
n∑

i=1

tiλiγzi ⊗ xi

)∣∣∣∣∣

≤ ‖ϕ‖ μB̂
(p,r ,s)

(
n∑

i=1

tiλiγzi ⊗ xi

)

≤ ‖ϕ‖ ∥∥(ti )
n
i=1

∥∥
p ωB̂

r

(
(λi , zi )

n
i=1

)
ωs

(
(xi )

n
i=1

)
.
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For each i ∈ {1, . . . , n}, Hahn–Banach Theorem provides x∗∗∗
i ∈ BX∗∗∗ such that∣∣x∗∗∗

i (x∗∗
i )

∣∣ = ∥∥x∗∗
i

∥∥. Note that ωs
(
(xi )

n
i=1

) ≤ ωs
(
(x∗∗

i )n
i=1

)
because

∥∥(x∗(xi ))
n
i=1

∥∥
s ≤ (1 + ε)

∥∥(x∗∗
i )n

i=1

∥∥
s = (1 + ε)

∥∥(x∗∗∗
i (x∗∗

i ))n
i=1

∥∥
s

≤ (1 + ε)ωs
(
(x∗∗

i )n
i=1

)

for all x∗ ∈ BX∗ . Therefore we can write

(
n∑

i=1

|λi |p∗ ∣∣〈x∗∗
i , f ′

ϕ(zi )
〉∣∣p∗

) 1
p∗

≤ (1 + ε) ‖ϕ‖ ωB̂
r

(
(λi , zi )

n
i=1

)
ωs

(
(x∗∗

i )n
i=1

)
.

By letting ε tend to zero gives fϕ ∈ �B̂
(p∗,r ,s)(D, X∗) with πB

(p∗,r ,s)( fϕ) ≤ ‖ϕ‖.
Finally, for any γ = ∑n

i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X , we get

�( fϕ)(γ ) =
n∑

i=1

λi
〈
f ′
ϕ(zi ), xi

〉 =
n∑

i=1

λiϕ(γzi ⊗ xi )

= ϕ

(
n∑

i=1

λiγzi ⊗ xi

)
= ϕ(γ ).

Hence�( fϕ) = ϕ on a dense subspace ofG(D)⊗̂
μB̂

(p,r ,s)
X and, consequently,�( fϕ) =

ϕ. Moreover, πB
(p∗,r ,s)( fϕ) ≤ ‖ϕ‖ = ∥∥�( fϕ)

∥∥.
The assertion about the weak* topology can be proved with the same argument as

in the proof of Theorem 2.8 in [3]. �

2 (p, r, s)-Nuclear Blochmaps

In order to present examples of (p, r , s)-summing Bloch maps, we introduce the class
of (p, r , s)-nuclear Bloch maps.

Let X be a complex Banach space and 1 ≤ p ≤ ∞. Let �p(X) be the Banach space
of all p-summable sequences (xn)∞n=1 in X , with the norm

∥∥(xn)∞n=1

∥∥
p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∞∑
n=1

‖xn‖p

) 1
p

if 1 ≤ p < ∞,

max
n∈N

‖xn‖ if p = ∞,

and let �ω
p(X) be the Banach space of all weakly p-summable sequences (xn)∞n=1 in

X , with the norm

ωp
(
(xn)∞n=1

) = sup
x∗∈BX∗

∥∥(x∗(xn))∞n=1

∥∥
p .
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As usual, we will write �p and �ω
p instead of �p(C) and �ω

p(C), respectively.
By [14,Definition 18.1.1], givenBanach spaces X , Y and 0 < p, r , s ≤ ∞with 1+

1/p ≥ 1/r +1/s, an operator T ∈ L(X , Y ) is (p, r , s)-nuclear if T = ∑∞
n=1 λn x∗

n ·yn

in the operator canonical norm of L(X , Y ), where (λn)
∞
n=1 ∈ �p, (x∗

n )∞n=1 ∈ �ω
s∗(X∗)

and (yn)∞n=1 ∈ �ω
r∗(Y ). In the case p = ∞, we take (λn)

∞
n=1 ∈ c0. It is said that∑∞

n=1 λn x∗
n · yn is a (p, r , s)-nuclear representation of T . Define

ν(p,r ,s)(T ) = inf{‖(λn)
∞
n=1‖pωs∗((x∗

n )∞n=1)ωr∗((yn)∞n=1)},

where the infimum is taken over all (p, r , s)-nuclear representations of T . Let
N(p,r ,s)(X , Y ) be the set of all (p, r , s)-nuclear operators from X into Y .

The corresponding version for Bloch maps could be the following.

Definition 2.1 Let 1 ≤ p, r , s ≤ ∞ such that 1 + 1/p ≥ 1/r + 1/s. A map f ∈
H(D, X) is said to be (p, r , s)-nuclear Bloch if f = ∑∞

n=1 λngn · xn in the Bloch
norm ρB, where (λn)

∞
n=1 ∈ �p, (gn)

∞
n=1 ∈ �ω

s∗(B̂(D)) and (xn)∞n=1 ∈ �ω
r∗(X). For

p = ∞, we choose (λn)
∞
n=1 ∈ c0. We say that

∑∞
n=1 λngn · xn is a (p, r , s)-nuclear

Bloch representation of f and we set

νB(p,r ,s)( f ) = inf{‖(λn)
∞
n=1‖pωs∗((gn)

∞
n=1)ωr∗((xn)∞n=1)},

where the infimum is taken over all (p, r , s)-nuclear Bloch representations of f . Let
NB

(p,r ,s)(D, X) be the set of all (p, r , s)-nuclear Bloch maps from D into X , and let

N B̂
(p,r ,s)(D, X) be its subset formed by all those maps f for which f (0) = 0.

Putting 1/θ := 1/p + 1/r∗ + 1/s∗, N(p,r ,s)(X , Y ) is a θ -Banach operator ideal
under the norm

ν(p,r ,s)(T ) = inf{‖(λn)
∞
n=1‖pωs∗((x∗

n )∞n=1)ωr∗((yn)∞n=1)},

by taking the infimum is taken over all (p, r , s)-nuclear representations of T (see [14,
Theorem 18.1.2]).

In order to establish a Bloch variant of this result, we first study the linearization
of (p, r , s)-summing Bloch maps and (p, r , s)-nuclear Bloch maps.

Proposition 2.2 Let f ∈ B̂(D, X) and assume that S f ∈ �(p,r ,s)(G(D), X). Then

f ∈ �B̂
(p,r ,s)(D, X) and πB

(p,r ,s)( f ) ≤ π(p,r ,s)(S f ).

Proof Given n ∈ N, (λi )
n
i=1 in C, (zi )

n
i=1 in D and (x∗

i )n
i=1 in X∗, using Theorem 1.6

we have

∥∥(λi x∗
i ( f ′(zi )))

n
i=1

∥∥
p = ∥∥(x∗

i (S f (λiγzi )))
n
i=1

∥∥
p

≤ π(p,r ,s)(S f )ωr
(
(λiγzi )

n
i=1

)
ωs

(
(x∗

i )n
i=1

)
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and since

ωr
(
(λiγzi )

n
i=1

) = sup
φ∈BG(D)∗

∥∥(φ(λiγzi ))
n
i=1

∥∥
r

= sup
g∈BB̂(D)

∥∥(�(g)(λiγzi ))
n
i=1

∥∥
r

= sup
g∈BB̂(D)

∥∥(λi g
′(zi ))

n
i=1

∥∥
r = ωB̂

r ((λi , zi )
n
i=1),

the result is proven. �
Theorem 2.3 Let1 ≤ p, r , s ≤ ∞ such that1+1/p ≥ 1/r+1/s and let f ∈ B̂(D, X).
The following assertions are equivalent:

(i) f : D → X is a (p, r , s)-nuclear Bloch map.
(ii) S f : G(D) → X is a (p, r , s)-nuclear linear operator.

In this case, νB(p,r ,s)( f ) = ν(p,r ,s)(S f ).

Proof (i) ⇒ (i i): Assume that f ∈ N B̂
(p,r ,s)(D, X) and let

∑∞
n=1 λngn · xn be a

(p, r , s)-nuclear Bloch representation of f . First, note that if g ∈ B̂(D) and x ∈ X ,
we have that �(g) · x ∈ L(G(D), X) and

(g · x)′(z) = g′(z)x = �(g)(γz)x = (�(g) · x)(γz) = (�(g) · x ◦ �)(z)

for all z ∈ D, and thus Theorem 1.6 gives Sg·x = �(g) · x . Since

ρB

(
f −

n∑
k=1

λk gk · xk

)
=

∥∥∥∥∥S f −
n∑

k=1

λk Sgk ·xk

∥∥∥∥∥ =
∥∥∥∥∥S f −

n∑
k=1

λk�(gk) · xk

∥∥∥∥∥

for all n ∈ N, it follows that S f = ∑∞
n=1 λn�(gn) ·xn in the operator norm.Moreover,

note that

ωs∗((�(gn))
∞
n=1) = sup

φ∈BG(D)∗∗

∥∥(φ(�(gn)))
∞
n=1

∥∥
s∗

= sup
φ∈BG(D)∗∗

∥∥(�∗(φ)(gn))
∞
n=1

∥∥
s∗

= sup
ϕ∈BB̂(D)∗

∥∥(ϕ(gn))
∞
n=1

∥∥
s∗ = ωs∗((gn)

∞
n=1),

where �∗ : G(D)∗∗ → B̂(D)∗ is the adjoint operator of � : B̂(D) → G(D)∗. Hence
S f ∈ N(p,r ,s)(G(D), X) with

ν(p,r ,s)(S f ) ≤ ‖(λn)
∞
n=1‖pωs∗((gn)

∞
n=1)ωr∗((xn)n=1),
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and passing to the infimum over all (p, r , s)-nuclear Bloch decompositions of f , we
conclude that ν(p,r ,s)(S f ) ≤ νB(p,r ,s)( f ).

(i i) ⇒ (i) is proven with a reasoning similar to the previous one. �
We are ready to establish a Bloch version of Theorem 18.1.2 in [14].

Corollary 2.4 Let 1 ≤ p, r , s ≤ ∞ such that 1 + 1/p ≥ 1/r + 1/s and let 1/θ :=
1/p + 1/r∗ + 1/s∗. Then [N B̂

(p,r ,s), ν
B
(p,r ,s)] is a θ -Banach normalized Bloch ideal.

Proof Let X be a complex Banach space.
(P1): Let λ ∈ C and f , g ∈ N B̂

(p,r ,s)(D, X). Using Theorems 1.6, 2.3 and [14,

Theorem 18.1.2], we obtain that νB(p,r ,s) is a norm on N B̂
(p,r ,s)(D, X):

νB(p,r ,s)(λ f ) = ν(p,r ,s)(Sλ f ) = ν(p,r ,s)(λS f ) = |λ| ν(p,r ,s)(S f ) = |λ| νB(p,r ,s)( f ),

νB(p,r ,s)( f + g)θ = ν(p,r ,s)(S f +g)
θ = ν(p,r ,s)(S f + Sg)

θ

≤ ν(p,r ,s)(S f )
θ + ν(p,r ,s)(Sg)

θ = νB(p,r ,s)( f )θ + νB(p,r ,s)(g)θ ,

νB(p,r ,s)( f ) = 0 ⇒ ν(p,r ,s)(S f ) = 0 ⇒ S f = 0 ⇒ f ′ = S f ◦ � = 0 ⇒ f = 0.

To see that the norm νB(p,r ,s) is complete, note that another application of those theorems

assures that f �→ S f is an isometric isomorphism of (N B̂
(p,r ,s)(D, X), νB(p,r ,s)) onto

(N(p,r ,s)(G(D), X), ν(p,r ,s)), and moreover

ρB( f ) = ∥∥S f
∥∥ ≤ ν(p,r ,s)(S f ) = νB(p,r ,s)( f ).

(P2): Let g ∈ B̂(D) and x ∈ X . By the operator ideal property of [N(p,r ,s), ν(p,r ,s)]
and Theorem 1.6, Sg·x = �(g) · x ∈ N(p,r ,s)(G(D), X) with ν(p,r ,s)(Sg·x ) =
‖�(g)‖ ‖x‖ = ρB(g) ‖x‖. Hence g · x ∈ N B̂

(p,r ,s)(D, X) with νB(p,r ,s)(g · x) =
ρB(g) ‖x‖ by Theorem 2.3.

(P3): Let f ∈ N B̂
(p,r ,s)(D, X), T ∈ L(X , Y ) and h ∈ B̂(D,D). Since T ◦ S f ◦ ĥ ∈

L(G(D), Y ) and

(T ◦ f ◦ h)′ = T ◦ [h′ · ( f ′ ◦ h)] = T ◦ [h′ · (S f ◦ � ◦ h)]
= T ◦ [S f (h

′ · (� ◦ h))] = T ◦ [S f ◦ (̂h ◦ �)]
= (T ◦ S f ◦ ĥ) ◦ �,

one has that ST ◦ f ◦h = T ◦ S f ◦ ĥ by Theorem 1.6. Since S f ∈ N(p,r ,s)(G(D), X)

by Theorem 2.3, we get that ST ◦ f ◦h ∈ N(p,r ,s)(G(D), Y ) with ν(p,r ,s)(ST ◦ f ◦h) ≤
‖T ‖ ν(p,r ,s)(S f )||̂h|| by the operator ideal property of [N(p,r ,s), ν(p,r ,s)], and thus

T ◦ f ◦ h ∈ N B̂
(p,r ,s)(D, Y ) with νB(p,r ,s)(T ◦ f ◦ h) ≤ ‖T ‖ νB(p,r ,s)( f ) by Theorems

1.6 and 2.3. �
We conclude arriving at the objective of this section.
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Corollary 2.5 Let 1 ≤ p, r , s ≤ ∞ such that 1/p ≤ 1/r + 1/s ≤ 1 + 1/p. Then
(N B̂

(p,r ,s)(D, X), νB(p,r ,s)) ≤ (�B̂
(p,r ,s)(D, X), πB

(p,r ,s)).

Proof Let f ∈ N B̂
(p,r ,s)(D, X). Then S f ∈ N(p,r ,s)(G(D), X) with ν(p,r ,s)(S f ) =

νB(p,r ,s)( f ) by Theorem 2.3. Since

(N(p,r ,s)(G(D), X), ν(p,r ,s)) ≤ (�(p,r ,s)(G(D), X), π(p,r ,s)),

it follows that S f ∈ �(p,r ,s)(G(D), X) with π(p,r ,s)(S f ) ≤ ν(p,r ,s)(S f ). By Proposi-

tion 2.2, f ∈ �B̂
(p,r ,s)(D, X) and πB

(p,r ,s)( f ) ≤ π(p,r ,s)(S f ) ≤ νB(p,r ,s)( f ). �
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