1 Introduction and preliminaries

For any Banach spaces X and Y, \(\mathcal {L}(X,Y)\) denotes the Banach space of all continuous linear operators from X into Y, under the operator norm. In particular, \(\mathcal {L}(X,\mathbb {K})\) is denoted by \(X^*\). As usual, \(B_{X}\) stands for the closed unit ball of X.

Recall that \(T\in \mathcal {L}(X,Y)\) is called p-summing with \(p\in [1,\infty )\) if there exists \(C\ge 0\) so that

$$\begin{aligned} \left( \sum _{i=1}^n\left\| T(x_i)\right\| ^p\right) ^{\frac{1}{p}}\le C \sup _{x^*\in B_{X^*}}\left( \sum _{i=1}^n\left| x^*(x_i)\right| ^p\right) ^{\frac{1}{p}} \end{aligned}$$

for any \(n\in \mathbb {N}\) and \(x_1,\ldots ,x_n\in X\). The infimum of such constants C is denoted by \(\pi _p(T)\), and the Banach space of all p-summing operators from X into Y, under the norm \(\pi _p\), by \(\Pi _p(X,Y)\).

In the eighties, Matter considered the ideal of \((p,\sigma )\)-absolutely continuous linear operators for any \(p\in [1,\infty )\) and \(\sigma \in [0,1)\), with the aim of analysing super-reflexive Banach spaces, providing its main properties in the papers [13, 14].

Let us recall that a linear map \(T:X\rightarrow Y\) is called \((p,\sigma )\)-absolutely continuous for \(p\in [1,\infty )\) and \(\sigma \in [0,1)\) if there exist a Banach space Z and a p-summing operator \(S\in \Pi _p(X,Z)\) for which

$$\begin{aligned} \left\| T(x)\right\| \le \left\| x\right\| ^\sigma \left\| S(x)\right\| ^{1-\sigma }\qquad (x\in X). \end{aligned}$$

We set \(\pi _{p,\sigma }(T)=\inf \{\pi _p(S)^{1-\sigma }\}\), where the infimum is taken over all Banach spaces Z and \(S\in \Pi _p(X,Z)\) such that the above inequality holds. Let \(\Pi _{p,\sigma }(X,Y)\) be the Banach space of all \((p,\sigma )\)-absolutely continuous operators from X into Y, under the norm \(\pi _{p,\sigma }\).

In the nineties, López Molina and Sánchez Pérez investigated on the factorization properties and the tensor norms related to these operator ideals in the papers [11, 12, 19]. Roughly speaking, the ideal of \((p,\sigma )\)-absolutely continuous operators can be considered as an interpolating ideal between the p-summing operators and the continuous operators since

$$\begin{aligned} \Pi _{p}(X,Y)\subseteq \Pi _{p,\sigma }(X,Y)\subseteq \mathcal {L}(X,Y) \end{aligned}$$

with

$$\begin{aligned} \left\| T\right\| \le \pi _{p,\sigma }(T)\le \pi _p(T)\qquad (T\in \Pi _{p}(X,Y)). \end{aligned}$$

We refer the reader to the book [9] for a complete study on p-summing operators.

In the second decade of the twentieth century, Achour, Dahia, Rueda and Sánchez Pérez dealt with the factorization of both absolutely continuous polynomials and strongly \((p,\sigma )\)-continuous multilinear operators in [1, 2]. Besides, Achour, Rueda and Yahi [3] extended these studies for Lipschitz maps from a metric space into a Banach space.

Our main purpose in this paper is to introduce and establish the most notable properties of a notion of \((p,\sigma )\)-absolutely continuous Bloch map on the open unit disc \(\mathbb {D}\subseteq \mathbb {C}\), in terms of the concept of p-summing Bloch map. From now on, unless otherwise stated, X will denote a complex Banach space.

If \(\mathcal {H}(\mathbb {D},X)\) represents the space of all holomorphic maps from \(\mathbb {D}\) into X, a map \(f\in \mathcal {H}(\mathbb {D},X)\) is called Bloch if

$$\begin{aligned} \rho _{\mathcal {B}}\left( f\right) :=\sup \left\{ (1-|z|^{2})\left\| f'(z)\right\| :z\in \mathbb {D}\right\} <\infty . \end{aligned}$$

The linear space of all Bloch maps from \(\mathbb {D}\) into X, under the Bloch seminorm \(\rho _{\mathcal {B}}\), is denoted by \(\mathcal {B}(\mathbb {D},X)\). The normalized Bloch space \(\widehat{\mathcal {B}}(\mathbb {D},X)\) is the closed subspace of \(\mathcal {B}(\mathbb {D},X)\) formed by all those maps f for which \(f(0)=0\), under the Bloch norm \(\rho _{\mathcal {B}}\). For simplicity, we write \(\widehat{\mathcal {B}}\left( \mathbb {D}\right) \) instead of \(\widehat{\mathcal {B}}(\mathbb {D},\mathbb {C)}\). Numerous authors have studied these function spaces (see, for example, the monographs [4] for the complex-valued case, and [20] for the vector-valued case).

In a recent paper [6], the p-summability of operators was adapted to address the property of p-summability in the setting of Bloch maps, as follows.

For any \(p\in [1,\infty )\), we say that a map \(f\in \mathcal {H}(\mathbb {D},X)\) is p-summing Bloch if there exists \(C\ge 0\) such that for any n in \(\mathbb {N}\), \(\lambda _1,\ldots ,\lambda _n\) in \(\mathbb {C}\) and \(z_1,\ldots ,z_n\) in \(\mathbb {D}\), one has

$$\begin{aligned} \left( \sum _{i=1}^n\left| \lambda _i\right| ^p\left\| f'(z_i)\right\| ^p\right) ^{\frac{1}{p}}\le C\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left| \lambda _i\right| ^p\left| g'(z_i)\right| ^p\right) ^{\frac{1}{p}}. \end{aligned}$$

The infimum of the constants C for which this inequality holds, denoted by \(\pi _{p}^{\mathcal {B}}\), defines a seminorm on the linear space \(\Pi _{p}^{\mathcal {B}}(\mathbb {D},X)\) of all p-absolutely continuous Bloch maps from \(\mathbb {D}\) into X. Furthermore, this seminorm becomes a norm on the subspace \(\Pi _{p}^{\widehat{\mathcal {B}}}(\mathbb {D},X)\) consisting of all those maps \(f\in \Pi _{p}^{\mathcal {B}}\left( \mathbb {D},X\right) \) so that \(f(0)=0\). A complete study on these spaces can be consulted in [6].

Now, we introduce the Bloch analogue of the notion of \((p,\sigma )\)-absolutely continuous operator.

Definition 1.1

For any \(p\in [1,\infty )\) and \(\sigma \in [0,1)\), we say that a map \(f\in \mathcal {H}\left( \mathbb {D},X\right) \) is \((p,\sigma )\)-absolutely continuous Bloch if there exist a complex Banach space Y and a map \(g\in \Pi _{p}^{\mathcal {B}}\left( \mathbb {D},Y\right) \) such that

$$\begin{aligned} \left\| f'\left( z\right) \right\| \le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| ^{1-\sigma }\qquad (z\in \mathbb {D}). \end{aligned}$$

In such case, we put

$$\begin{aligned} \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) =\inf \left\{ \pi _{p}^{\mathcal {B}}\left( g\right) ^{1-\sigma }\right\} , \end{aligned}$$

taking the infimum over all complex Banach spaces Y and all \(g\in \Pi _{p}^{\mathcal {B}}\left( \mathbb {D},Y\right) \) such that the above inequality holds. \(\Pi _{p,\sigma }^{\mathcal {B}}\left( \mathbb {D},X\right) \) stands for the linear space of all \((p,\sigma )\)-absolutely continuous Bloch maps \(f:\mathbb {D}\rightarrow X\). The linear subspace of \(\Pi _{p,\sigma }^{\mathcal {B}}\left( \mathbb {D},X\right) \) consisting of all those maps f for which \(f(0)=0\) is denoted by \(\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \).

We divide the contents of this paper into some sections. We start by showing that \((\Pi _{p,0}^{\mathcal {B}}(\mathbb {D},X),\pi _{p,0}^{\mathcal {B}})\) can be identified with \((\Pi _p^{\mathcal {B}}(\mathbb {D},X),\pi _{p}^{\mathcal {B}})\). For this reason, the results that we establish in this paper extend some obtained in [6]. In a clear parallel with the linear setting, the class \(\Pi _{p,\sigma }^{\mathcal {B}}\) can be considered as an interpolating class between the classes \(\Pi _{p}^{\mathcal {B}}\) and \(\mathcal {B}\).

In Sects. 2 and 5, we prove that \([\Pi _{p,\sigma }^{\widehat{\mathcal {B}}},\pi _{p,\sigma }^{\mathcal {B}}]\) is an injective Banach normalized Bloch ideal. Sections 3 and 4 are devoted to both versions of Pietsch domination theorem and Pietsch factorization theorem for \((p,\sigma )\)-absolutely continuous Bloch maps on \(\mathbb {D}\). We also address the invariance of the space \((\Pi ^{\mathcal {B}}_p(\mathbb {D},X),\pi ^{\mathcal {B}}_p)\) by Möbius transformations of \(\mathbb {D}\). In Sect. 6, we introduce and analyse the so-called \((p,\sigma )\)-Chevet–Saphar Bloch norms \(d^{\widehat{\mathcal {B}}}_{p,\sigma }\) on the tensor product space \(\mathcal {G}(\mathbb {D})\otimes X\), where \(\mathcal {G}(\mathbb {D})\) is the Bloch-free Banach space. If \(p^*=\infty \) for \(p=1\), and \(p^*=p/(p-1)\) for \(1<p<\infty \), we show that \((\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}(\mathbb {D},X^*),\pi _{p,\sigma }^{\mathcal {B}})\) can be canonically identified with the dual of the completion of the space \(\mathcal {G}(\mathbb {D})\otimes _{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }}X\).

2 Banach structure

We begin with an easy result on interpolation which can be compared to [13, Proposition 3.3]. We will need the following class of Bloch functions. For each \(z\in \mathbb {D}\), the map \(f_z:\mathbb {D}\rightarrow \mathbb {C}\) defined by

$$\begin{aligned} f_z(w)=\frac{(1-|z|^2)w}{1-\overline{z}w}\qquad (w\in \mathbb {D}), \end{aligned}$$

is in \(\widehat{\mathcal {B}}(\mathbb {D})\) and \(\rho _{\mathcal {B}}(f_z)=1=(1-|z|^2)f_z'(z)\) (see [10, Proposition 2.2]). Clearly, \(f_z\in \Pi _p^{\widehat{\mathcal {B}}}(\mathbb {D},\mathbb {C})\) with \(\pi _{p}^{\mathcal {B}}(f_z)\le 1\) for any \(p\in [1,\infty )\).

Given two semi-normed spaces \((X,\rho _X)\) and \((Y,\rho _Y)\), we will write \((X,\rho _X)\le (Y,\rho _Y)\) to indicate that \(X\subseteq Y\) and \(\rho _Y(x)\le \rho _X(x)\) for all \(x\in X\).

Proposition 2.1

If \(p,q\in [1,\infty )\) with \(p<q\) and \(\sigma \in [0,1)\), then

$$\begin{aligned} (\Pi _{p,0}^{\mathcal {B}}(\mathbb {D},X),\pi _{p,0}^{\mathcal {B}})&=(\Pi _p^{\mathcal {B}}(\mathbb {D},X),\pi _p^{\mathcal {B}})\le (\Pi _{p,\sigma }^{\mathcal {B}}(\mathbb {D},X),\pi _{p,\sigma }^{\mathcal {B}})\\&\le (\Pi _{q,\sigma }^{\mathcal {B}}(\mathbb {D},X),\pi _{q,\sigma }^{\mathcal {B}})\le (\mathcal {B}(\mathbb {D},X),\rho _{\mathcal {B}}). \end{aligned}$$

Proof

If \(f\in \Pi _{p,0}^{\mathcal {B}}(\mathbb {D},X)\), there is a map \(g\in \Pi _{p}^{\mathcal {B}}(\mathbb {D},Y)\) for some complex Banach space Y such that \(\left\| f'(z)\right\| \le \left\| g'(z)\right\| \) for all \(z\in \mathbb {D}\). Given \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\), we get

$$\begin{aligned} \left( \sum _{i=1}^n\left| \lambda _i\right| ^p\left\| f'(z_i)\right\| ^p\right) ^{\frac{1}{p}}&\le \left( \sum _{i=1}^n\left| \lambda _i\right| ^p\left\| g'(z_i)\right\| ^p\right) ^{\frac{1}{p}}\\&\le \pi _p^{\mathcal {B}}(g)\sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left| \lambda _i\right| ^p\left| h'(z_i)\right| ^p\right) ^{\frac{1}{p}}, \end{aligned}$$

hence \(f\in \Pi _p^{\mathcal {B}}(\mathbb {D},X)\) with \(\pi _p^{\mathcal {B}}(f)\le \pi _p^{\mathcal {B}}(g)\), and passing to the infimum over all such complex Banach spaces Y and all such maps g, one has \(\rho _{\mathcal {B}}(f)\le \pi ^\mathcal {B}_{p,0}(f)\).

The inequality \((\Pi _p^{\mathcal {B}}(\mathbb {D},X),\pi _p^{\mathcal {B}})\le (\Pi _{p,0}^{\mathcal {B}}(\mathbb {D},X),\pi _{p,0}^{\mathcal {B}})\) is a particular case of the following. If \(f\in \Pi _p^{\mathcal {B}}(\mathbb {D},X)\), then

$$\begin{aligned} \left\| f'(z)\right\|&\le \pi _{p}^{\mathcal {B}}(f)\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| g'(z)\right| \le \pi _{p}^{\mathcal {B}}(f)\frac{1}{1-|z|^2}\\&=\pi _{p}^{\mathcal {B}}(f)\left( \frac{1}{1-|z|^2}\right) ^\sigma \left| f'_z(z)\right| ^{1-\sigma } \qquad (z\in \mathbb {D}). \end{aligned}$$

as for the second inequality we use the supremum is taken over \(g's\) in \(B_{\widehat{\mathcal {B}}(\mathbb {D})}\) and that \(\rho _{\mathcal {B}}(g)\ge (1-|z|^{2})\left\| g'(z)\right\| \). Hence \(f\in \Pi _{p,\sigma }^{\mathcal {B}}(\mathbb {D},X)\) with

$$\begin{aligned} \pi _{p,\sigma }^{\mathcal {B}}(f)\le \pi _{p}^{\mathcal {B}}(\pi _{p}^{\mathcal {B}}(f)^{\frac{1}{1-\sigma }}f_z)^{1-\sigma } =\pi _{p}^{\mathcal {B}}(f)\pi _{p}^{\mathcal {B}}(f_z)^{1-\sigma }\le \pi _{p}^{\mathcal {B}}(f). \end{aligned}$$

If \(f\in \Pi _{p,\sigma }^{\mathcal {B}}(\mathbb {D},X)\), then \(f\in \Pi _{q,\sigma }^{\mathcal {B}}(\mathbb {D},X)\) with \(\pi _{q,\sigma }^{\mathcal {B}}(f)\le \pi _{p,\sigma }^{\mathcal {B}}(f)\) follows readily by applying [6, Proposition 1.1].

If \(f\in \Pi _{q,\sigma }^{\mathcal {B}}(\mathbb {D},X)\), we can take a complex Banach space Y and a map \(g\in \Pi _{q}^{\mathcal {B}}(\mathbb {D},Y)\) such that

$$\begin{aligned} \left\| f'(z)\right\| \le \left( \frac{1}{1-|z|^2}\right) ^\sigma \left\| g'(z)\right\| ^{1-\sigma } \qquad (z\in \mathbb {D}). \end{aligned}$$

It follows that

$$\begin{aligned} (1-|z|^2)\left\| f'(z)\right\| \le \left( (1-|z|^2)\left\| g'(z)\right\| \right) ^{1-\sigma }\le \rho _\mathcal {B}(g)^{1-\sigma } \qquad (z\in \mathbb {D}), \end{aligned}$$

hence \(f\in \mathcal {B}(\mathbb {D},X)\) with \(\rho _{\mathcal {B}}(f)\le \rho _\mathcal {B}(g)^{1-\sigma }\), and taking infimum over all such complex Banach spaces Y and such maps g, we conclude that \(\rho _{\mathcal {B}}(f)\le \pi ^\mathcal {B}_{q,\sigma }(f)\). \(\square \)

The case \(\sigma =0\) in the next result follows from Proposition 2.1 and [6, Proposition 1.2]. In fact, we can adapt the proof of [6, Proposition 1.2] to yield a more general result.

Proposition 2.2

\(\left( \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) ,\pi _{p,\sigma }^{\mathcal {B}}\right) \) is a Banach space for any \(p\in [1,\infty )\) and \(\sigma \in [0,1)\).

Proof

Assume that \(\sigma \in (0,1)\). If \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) and \(\pi _{p,\sigma }^{\mathcal {B}}\left( f\right) =0\), then \(\rho _{\mathcal {B}}\left( f\right) =0\) by Proposition 2.1, and so \(f=0\). We now prove the triangle inequality. For \(i=1,2\), consider \(f_i\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \), a complex Banach space \(Y_i\), and \(g_{i}\in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y_{i}\right) \) such that

$$\begin{aligned} \left\| f_i'\left( z\right) \right\| \le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'_{i}\left( z\right) \right\| _{Y_i} ^{1-\sigma }\qquad (z\in \mathbb {D}). \end{aligned}$$

Let Y be the \(\ell _{1}\)-sum of \(Y_{1}\) and \(Y_{2}\), and let \(I_{i}:Y_{i}\rightarrow Y\) be the canonical injection. The map \(g=\sum \nolimits _{i=1}^2\pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{-\sigma }(I_{i}\circ g_{i})\) belongs to \(\Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y\right) \) and \(\pi _{p}^{\mathcal {B}}\left( g\right) \le \sum _{i=1}^2\pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{1-\sigma }\). Using Holder’s Inequality, we get

$$\begin{aligned} \left\| \sum _{i=1}^2 f'_i\left( z\right) \right\|&\le \sum _{i=1}^2 \left\| f'_i\left( z\right) \right\| \le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\sum _{i=1}^2\left\| g'_{i}\left( z\right) \right\| _{Y_i} ^{1-\sigma }\\&= \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\sum _{i=1}^2\left\| \pi _{p}^{\mathcal {B}}\left( g_i\right) ^{-\sigma }g'_{i}\left( z\right) \right\| _{Y_{i}} ^{1-\sigma }\pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{\sigma (1-\sigma )}\\&\le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left( \underset{i=1}{\overset{2}{\sum }}\left\| \pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{-\sigma }g_{i}'\left( z\right) \right\| _{Y_{i}}\right) ^{1-\sigma }\left( \sum _{i=1}^2\pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{1-\sigma }\right) ^{\sigma } \\&=\left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| ^{1-\sigma } _{Y}\left( \pi _{p}^{\mathcal {B}}\left( g_{1}\right) ^{1-\sigma }+\pi _{p}^{\mathcal {B}}\left( g_{2}\right) ^{1-\sigma }\right) ^{\sigma }\qquad (z\in \mathbb {D}). \end{aligned}$$

Thus \(\sum _{i=1}^2 f_i\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) with

$$\begin{aligned} \pi _{p,\sigma }^{\mathcal {B}}\left( \sum _{i=1}^2 f_i \right) \le \left( \sum _{i=1}^2\pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{1-\sigma }\right) ^{\sigma }\pi _{p}^{\mathcal {B}}\left( g\right) ^{1-\sigma } \le \sum _{i=1}^2\pi _{p}^{\mathcal {B}}\left( g_{i}\right) ^{1-\sigma }. \end{aligned}$$

Passing to the infimum over all such complex Banach spaces Y and such maps \(g_1\) and \(g_2\), we deduce that \(\pi _{p,\sigma }^{\mathcal {B}}\left( \sum _{i=1}^2f_i\right) \le \sum _{i=1}^2\pi _{p,\sigma }^{\mathcal {B}}\left( f_i\right) \).

Let \(\lambda \in \mathbb {C}\) and \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \). We have a complex Banach space Y and \(g\in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y\right) \) such that

$$\begin{aligned} \left\| f'\left( z\right) \right\| \le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| ^{1-\sigma }\qquad (z\in \mathbb {D}). \end{aligned}$$

Therefore,

$$\begin{aligned} \left\| \left( \lambda f\right) '\left( z\right) \right\| \le \left| \lambda \right| \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| ^{1-\sigma } =\left( \frac{1}{1-|z|^2}\right) ^{\sigma }\left\| \left( \lambda ^{\frac{1}{1-\sigma }}g\right) '(z)\right\| ^{1-\sigma } \qquad (z\in \mathbb {D}). \end{aligned}$$

Since \(\lambda ^{\frac{1}{1-\sigma }}g\in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \), we have \(\lambda f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) with \(\pi _{p,\sigma }^{\mathcal {B}}\left( \lambda f\right) \le \pi _{p}^{\mathcal {B}}\left( \lambda ^{\frac{1}{1-\sigma }}g\right) ^{1-\sigma }=\left| \lambda \right| \pi _{p}^{\mathcal {B}}(g)^{1-\sigma }\). For \(\lambda =0\), we obtain \(\pi _{p,\sigma }^{\mathcal {B}}\left( \lambda f\right) =0=\left| \lambda \right| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \). For \(\lambda \ne 0\), we deduce that \(\pi _{p,\sigma }^{\mathcal {B}}\left( \lambda f\right) \le \left| \lambda \right| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \). Hence \(\pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \le \left| \lambda \right| ^{-1}\pi _{p,\sigma }^{\mathcal {B}}\left( \lambda f\right) \), then \(\left| \lambda \right| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \le \pi _{p,\sigma }^{\mathcal {B}}\left( \lambda f\right) \), and thus \(\pi _{p,\sigma }^{\mathcal {B}}\left( \lambda f\right) =\left| \lambda \right| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \). So \((\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) ,\pi _{p,\sigma }^{\mathcal {B}}) \) is a complex normed space.

To prove its completeness, let \((f_{n})\) be a sequence in \(\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) for which \(\sum _{n=1}^\infty \pi _{p,\sigma }^{\mathcal {B}}\left( f_{n}\right) <\infty \). Since \(\rho _{\mathcal {B}}\le \pi _{p,\sigma }^{\mathcal {B}}\) on \(\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) (by Proposition 2.1) and \(\widehat{\mathcal {B}}\left( \mathbb {D},X\right) \) with the norm \(\rho _{\mathcal {B}}\) is a Banach space, there exists \(f\in \widehat{\mathcal {B}}\left( \mathbb {D},X\right) \) such that \(\sum _{n=1}^\infty f_{n}=f\) for \(\rho _{\mathcal {B}}\). We will prove that \(\sum _{n=1}^\infty f_{n}=f\) for \(\pi _{p,\sigma }^{\mathcal {B}}\). Let \(\varepsilon >0\), and for each \(n\in \mathbb {N}\), we can take a complex Banach space \(Y_n\) and a map \(g_{n}\in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y_{n}\right) \) for which

$$\begin{aligned} \left\| f_{n}'\left( z\right) \right\| \le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'_{n}\left( z\right) \right\| _{Y_n} ^{1-\sigma }\qquad (z\in \mathbb {D}), \end{aligned}$$

with

$$\begin{aligned} \pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\le \pi _{p,\sigma }^{\mathcal {B}}\left( f_{n}\right) +\frac{\varepsilon }{2^{n}}. \end{aligned}$$

Then

$$\begin{aligned} \underset{n=1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\le \underset{n=1}{\overset{\infty }{\sum }}\pi _{p,\sigma }^{\mathcal {B}}\left( f_{n}\right) +\varepsilon . \end{aligned}$$

Let \(g={{\sum _{n=1}^{\infty }}}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{-\sigma }\left( I_{n}\circ g_{n}\right) \in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y\right) \), where Y is the \(\ell _{1}\)-sum of all \(Y_{n}\) and \(I_{n}:Y_{n}\rightarrow Y\) is the canonical injection. Hence

$$\begin{aligned} \left\| f'\left( z\right) \right\|&\le \underset{n=1}{\overset{\infty }{\sum }}\left\| f_{n}'\left( z\right) \right\| \le \underset{n=1}{\overset{\infty }{\sum }}\left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g_{n}'\left( z\right) \right\| _{Y_{n}}^{1-\sigma } \\&\le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| _{Y}^{1-\sigma }\left( \underset{n=1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\right) ^{\sigma }\qquad (z\in \mathbb {D}). \end{aligned}$$

This implies that \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) with

$$\begin{aligned} \pi _{p,\sigma }^{\mathcal {B}}\left( f\right)&\le \left( \underset{n=1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\right) ^{\sigma }\pi _p(g)^{1-\sigma }\\&\le \left( \underset{n=1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\right) ^{\sigma }\left( \underset{n=1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\right) ^{1-\sigma }\\&= \underset{n=1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( g_{n}\right) ^{1-\sigma }\le \underset{n=1}{\overset{\infty }{\sum }}\pi _{p,\sigma }^{\mathcal {B}}\left( f_{n}\right) +\varepsilon . \end{aligned}$$

Moreover, we have

$$\begin{aligned} \pi _{p,\sigma }^{\mathcal {B}}\left( f-\underset{k=1}{\overset{n}{\sum }}f_{k}\right) =\pi _{p,\sigma }^{\mathcal {B}}\left( \underset{k=n+1}{\overset{\infty }{\sum }}f_{k}\right) \le \underset{k=n+1}{\overset{\infty }{\sum }}\pi _{p}^{\mathcal {B}}\left( f_{k}\right) \qquad (n\in \mathbb {N}), \end{aligned}$$

and thus \(\sum \nolimits _{n=1}^{\infty } f_{n}=f\) for \(\pi _{p,\sigma }^{\mathcal {B}}\). \(\square \)

3 Pietsch domination

Our next result is a reformulation for \((p,\sigma )\)-absolutely continuous Bloch maps of Pietsch domination theorem for \((p,\sigma )\)-absolutely continuous operators stated by Matter in [13, Theorem 4.1]. However, to prove our result, we will apply an unified abstract version of the Pietsch domination theorem established by Pellegrino and Santos in [15, Theorem 3.1] (see also [5, 16]). Our proof is based on [6, Theorem 1.4 and Lemma 1.5].

Let us recall that \(\widehat{\mathcal {B}}\left( \mathbb {D}\right) \) is a dual Banach space (see, for example, [20]) and therefore we can consider this space equipped with its weak* topology. Let \(\mathcal {P}(B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }) \) be the set of all Borel regular probability measures \(\mu \) on \((B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) },w^{*})\).

Given \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\), \(p\in [1,\infty )\) and \(\sigma \in [0,1)\), consider the inclusion operators

$$\begin{aligned} I_{\infty ,p/(1-\sigma )}:L_\infty (\mu )\rightarrow L_{p/(1-\sigma )}(\mu ) \end{aligned}$$

and

$$\begin{aligned} j_{\infty }:C(B_{\widehat{\mathcal {B}}(\mathbb {D})})\rightarrow L_\infty (\mu ). \end{aligned}$$

We will also use the map

$$\begin{aligned} \iota _\mathbb {D}:\mathbb {D}\rightarrow C(B_{\widehat{\mathcal {B}}(\mathbb {D})}) \end{aligned}$$

defined by

$$\begin{aligned} \iota _\mathbb {D}(z)(g)=g'(z)\qquad \left( g\in B_{\widehat{\mathcal {B}}(\mathbb {D})},\; z\in \mathbb {D}\right) , \end{aligned}$$

and, for a complex Banach space X, the isometric linear embedding

$$\begin{aligned} \iota _X:X\rightarrow \ell _\infty (B_{X^*}) \end{aligned}$$

given by

$$\begin{aligned} \iota _X(x)(x^*)=x^*(x)\qquad (x^*\in B_{X^*},\; x\in X). \end{aligned}$$

Theorem 3.1

(Pietsch domination). Let \(p\in [1,\infty )\), \(\sigma \in [0,1)\) and \(f\in \widehat{\mathcal {B}}\left( \mathbb {D},X\right) \). The following are equivalent:

  1. (1)

    \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \).

  2. (2)

    There is a constant \(C\ge 0\) and a measure \(\mu \in \mathcal {P}\left( B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }\right) \) such that

    $$\begin{aligned} \left\| f'\left( z\right) \right\| \le C\left( \int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma } \left| h'\left( z\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}} \end{aligned}$$

    for all \(z\in \mathbb {D}\).

  3. (3)

    There is a constant \(C\ge 0\) such that

    $$\begin{aligned}{} & {} \left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| f'\left( z_{i}\right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\le C \\{} & {} \qquad \underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| h'\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \end{aligned}$$

    for all \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\).

Furthermore, the infimum of the constants \(C\ge 0\) in (2) (and in (3)) is \(\pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \).

Proof

\(\left( 1\right) \Rightarrow \left( 2\right) \): If \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \), then there exist a complex Banach space Y and a map \(g\in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y\right) \) such that

$$\begin{aligned} \left\| f'\left( z\right) \right\| \le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g\left( z\right) \right\| ^{1-\sigma }\qquad (z\in \mathbb {D}). \end{aligned}$$

By [6, Theorem 1.4], there is a measure \(\mu \in \mathcal {P}\left( B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }\right) \) such that

$$\begin{aligned} \left\| g'(z)\right\| \le \pi _{p}^{\mathcal {B}}(g)\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| h'(z)\right| ^{p}\textrm{d}\mu (h)\right) ^{\frac{1}{p}}\qquad (z\in \mathbb {D}), \end{aligned}$$

and therefore

$$\begin{aligned} \left\| f'\left( z\right) \right\|&\le \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| ^{1-\sigma } \\&\le \pi _{p}^{\mathcal {B}}\left( g\right) ^{1-\sigma }\left( \int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left| h'\left( z\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}}(z\in \mathbb {D}). \end{aligned}$$

\(\left( 2\right) \Rightarrow \left( 1\right) \): By [6, Lemma 1.5], there exists a map \(k\in \widehat{\mathcal {B}}\left( \mathbb {D},L_{\infty }\left( \mu \right) \right) \) with \(\rho _{\mathcal {B}}\left( k\right) =1\) such that \(k'=j_{\infty }\circ \iota _{\mathbb {D}}\). In fact, \(k\in \Pi _{p}^{\widehat{\mathcal {B}}}\left( \mathbb {D},L_{\infty }\left( \mu \right) \right) \) with \(\pi _{p}^{\mathcal {B}}\left( k\right) =1\). By (2), we can write

$$\begin{aligned} \left\| f'(z)\right\|&\le C\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \left( \frac{1}{1-|z|^{2}}\right) ^{\sigma }\left| h'(z)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu (h)\right) ^{\frac{1-\sigma }{p}} \\&=\left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left( \int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left| C^{\frac{1}{1-\sigma }}(I_{\infty ,p}\circ j_{\infty }\circ \iota _{\mathbb {D}})\left( z\right) \left( h\right) \right| ^{p}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}} \\&=\left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D}}}\left| C^{\frac{1}{1-\sigma }}(I_{\infty ,p}\circ k)'\left( z\right) \left( h\right) \right| ^{p}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}}\\&=\left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left\| g'\left( z\right) \right\| _{L_p(\mu )} ^{1-\sigma }, \end{aligned}$$

where \(g=C^{\frac{1}{1-\sigma }}(I_{\infty ,p}\circ k)\in \Pi _{p}^{\widehat{\mathcal {B}}}(\mathbb {D},L_p(\mu ))\).

\(\left( 2\right) \Rightarrow \left( 3\right) \): If (2) holds, then

$$\begin{aligned}&\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| f'\left( z_{i}\right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad \le C\left( \sum _{i=1}^n\int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma } \left| h'\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }} \textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}}\\&\quad \le C\left( \sum _{i=1}^n\int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}}\\&\quad = C \left( \sum _{i=1}^n\int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| f'_{z_i}(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}}\\&\quad \le C\left( \sum _{i=1}^n\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| f'_{z_i}(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad \le C\sup _{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \sum _{i=1}^n\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| h'\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \end{aligned}$$

for all \(n\in \mathbb {N}\) \(\lambda _i\in \mathbb {C}\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\), and this proves (3).

\(\left( 3\right) \Rightarrow \left( 2\right) \): Let \(R:B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }\times \left( \mathbb {D}\times \mathbb {R}\right) \times \mathbb {R}\rightarrow \bigg [ 0,+\infty \bigg [ \) be given by

$$\begin{aligned} R\left( h,\left( z,\lambda \right) ,b\right) =\left| \lambda \right| \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left| h'\left( z\right) \right| ^{1-\sigma }\left| b\right| , \end{aligned}$$

and let \(S:\widehat{\mathcal {B}}\left( \mathbb {D},X\right) \times \left( \mathbb {D}\times \mathbb {R}\right) \times \mathbb {R}\rightarrow \bigg [ 0,+\infty \bigg [ \) be defined by

$$\begin{aligned} S\left( f,\left( z,\lambda \right) ,b\right) =\left| \lambda \right| \left\| f'\left( z\right) \right\| \left| b\right| . \end{aligned}$$

Then f is R-S-abstract \(p/(1-\sigma )\)-summing (see definition in [15]) since

$$\begin{aligned}&\left( \underset{i=1}{\overset{n}{\sum }}S\left( f,\left( z_{i},\lambda _{i}\right) ,b_{i}\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} =\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left\| f'\left( z_{i}\right) \right\| \left| b_{i}\right| \right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \\&\quad \le C\underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_i\right| ^{2}}\right) ^{\sigma } \left| h'\left( z_{i}\right) \right| ^{1-\sigma }\left| b_{i}\right| \right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \\&\quad = C\underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}R\left( h,\left( z_{i},\lambda _{i}\right) ,b_{i}\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}. \end{aligned}$$

Then, by [15, Theorem 3.1], there are \(C>0\) and \(\mu \in \mathcal {P}\left( B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }\right) \) such that

$$\begin{aligned} S\left( f,\left( z,\lambda \right) ,b\right) \le C\left( \int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}R\left( h,\left( z,\lambda \right) ,b\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}} \end{aligned}$$

for all \(\left( z,\lambda \right) \in \mathbb {D\times R}\) and \(b\in \mathbb {R}\). In particular, we have

$$\begin{aligned} \left\| f'\left( z\right) \right\| \le C\left( \int _{B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}\left( \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma } \left| h'\left( z\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu \left( h\right) \right) ^{\frac{1-\sigma }{p}}\qquad (z\in \mathbb {D}). \end{aligned}$$

\(\square \)

4 Pietsch factorization

We now present the analogue for \((p,\sigma )\)-absolutely continuous Bloch maps of Pietsch factorization theorem for \((p,\sigma )\)-summing operators. Its proof is based on those of [6, Theorem 1.6] and [7, Theorem 3.5].

Theorem 4.1

(Pietsch factorization). Let \(p\in [1,\infty )\), \(\sigma \in [0,1)\) and \(f\in \widehat{\mathcal {B}}(\mathbb {D},X)\). The following are equivalent:

  1. (1)

    \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \).

  2. (2)

    There exist a measure \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\), a map \(h\in \widehat{\mathcal {B}}(\mathbb {D},L_\infty (\mu ))\) and an operator \(T\in \mathcal {L}(L_{p/(1-\sigma )}(\mu ),\ell _\infty (B_{X^*}))\) such that the following diagram commutes:

Furthermore, \(\pi ^{\mathcal {B}}_{p,\sigma }(f)=\inf \left\{ \left\| T\right\| \rho _\mathcal {B}(h)\right\} \), the infimum being extended over all such decompositions of \(\iota _X\circ f'\) as above, and this infimum is attained.

Proof

If (1) holds, then Theorem 3.1 provides a measure \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\) such that

$$\begin{aligned} \left\| f'(z)\right\| \le \pi ^{\mathcal {B}}_{p,\sigma }(f)\left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \left( \frac{1}{1-|z|^2}\right) ^\sigma \left| g'(z)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu (g)\right) ^{\frac{1-\sigma }{p}}\qquad (z\in \mathbb {D}). \end{aligned}$$

By [6, Lemma 1.5], there exists a map \(h\in \widehat{\mathcal {B}}(\mathbb {D},L_\infty (\mu ))\) with \(\rho _\mathcal {B}(h)=1\) such that \(h'=j_{\infty }\circ \iota _\mathbb {D}\). Denote the closed linear subspace

$$\begin{aligned} S_{p/(1-\sigma )}:=\overline{\textrm{lin}}(I_{\infty ,p/(1-\sigma )}(h'(\mathbb {D})))\subseteq L_{p/(1-\sigma )}(\mu ), \end{aligned}$$

and define \(T_0\in \mathcal {L}(S_{p/(1-\sigma )},\ell _\infty (B_{X^*}))\) by

$$\begin{aligned} T_0(I_{\infty ,p/(1-\sigma )}(h'(z)))=\iota _X(f'(z))\qquad (z\in \mathbb {D}). \end{aligned}$$

Notice that \(\left\| T_0\right\| \le \pi ^{\mathcal {B}}_{p,\sigma }(f)\) since

$$\begin{aligned}&\left\| T_0\left( \sum _{i=1}^n\alpha _iI_{\infty ,p/(1-\sigma )}(h'(z_i))\right) \right\| _\infty =\left\| \sum _{i=1}^n\alpha _i T_0(I_{\infty ,p/(1-\sigma )}(h'(z_i)))\right\| _\infty \\&\quad =\left\| \sum _{i=1}^n\alpha _i \iota _X(f'(z_i))\right\| _\infty \le \sum _{i=1}^n\left| \alpha _i\right| \left\| \iota _X(f'(z_i))\right\| _\infty =\sum _{i=1}^n\left| \alpha _i\right| \left\| f'(z_i)\right\| \\&\quad \le \pi ^{\mathcal {B}}_{p,\sigma }(f)\sum _{i=1}^n\left| \alpha _i\right| \left( \int _{B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \left( \frac{1}{1-|z_i|^2}\right) ^\sigma \left| g'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\textrm{d}\mu (g)\right) ^{\frac{1-\sigma }{p}}\\&\quad \le \pi ^{\mathcal {B}}_{p,\sigma }(f)\sum _{i=1}^n\frac{\left| \alpha _i\right| }{1-|z_i|^2} \end{aligned}$$

and

$$\begin{aligned} \sum _{i=1}^n\frac{\left| \alpha _i\right| }{1-|z_i|^2}&=\left| \sum _{i=1}^n\alpha _i\frac{\overline{\alpha _i}}{\left| \alpha _i\right| }f'_{z_i}(z_i)\right| =\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| \sum _{i=1}^n\alpha _i g'(z_i)\right| =\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left| \sum _{i=1}^n\alpha _i \iota _\mathbb {D}(z_i)(g)\right| \\&=\left\| \sum _{i=1}^n\alpha _i\iota _\mathbb {D}(z_i)\right\| _\infty =\left\| \sum _{i=1}^n\alpha _i j_{\infty }(\iota _\mathbb {D}(z_i))\right\| _{L_\infty (\mu )}=\left\| \sum _{i=1}^n\alpha _i h'(z_i)\right\| _{L_\infty (\mu )}\\&=\left\| I_{\infty ,p/(1-\sigma )}\left( \sum _{i=1}^n\alpha _ih'(z_i)\right) \right\| _{L_{p/(1-\sigma )}}=\left\| \sum _{i=1}^n\alpha _iI_{\infty ,p/(1-\sigma )}(h'(z_i))\right\| _{L_{p/(1-\sigma )}} \end{aligned}$$

for any \(n\in \mathbb {N}\), \(\alpha _i\in \mathbb {C}^*\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\). By the injectivity of the Banach space \(\ell _\infty (B_{X^*})\) (see [9, p. 45]), there exists \(T\in \mathcal {L}(L_{p/(1-\sigma )}(\mu ),\ell _\infty (B_{X^*}))\) such that \(\left. T\right| _{S_{p/(1-\sigma )}}=T_0\) with \(\left\| T\right\| =\left\| T_0\right\| \). This allows us to conclude that \(\iota _X\circ f'=T\circ I_{\infty ,p/(1-\sigma )}\circ h'\) with \(\left\| T\right\| \rho _\mathcal {B}(h)\le \pi ^{\mathcal {B}}_{p,\sigma }(f)\).

Conversely, assume that \(\iota _X\circ f'=T\circ I_{\infty ,p/(1-\sigma )}\circ h'\) as in (2). We have

$$\begin{aligned}&\left( \sum _{i=1}^n\left| \lambda _i\right| ^{\frac{p}{1-\sigma }}\left\| f'(z_i)\right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} =\left( \sum _{i=1}^n\left| \lambda _i\right| ^{\frac{p}{1-\sigma }}\left\| \iota _X(f'(z_i))\right\| _\infty ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad =\left( \sum _{i=1}^n\left| \lambda _i\right| ^{\frac{p}{1-\sigma }}\left\| T(I_{\infty ,p/(1-\sigma )}(h'(z_i)))\right\| _\infty ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad \le \left\| T\right\| \left( \sum _{i=1}^n\left| \lambda _i\right| ^{\frac{p}{1-\sigma }}\left\| I_{\infty ,p/(1-\sigma )}(h'(z_i))\right\| _{L_{p/(1-\sigma )}(\mu )}^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad =\left\| T\right\| \left( \sum _{i=1}^n\left| \lambda _i\right| ^{\frac{p}{1-\sigma }}\left\| h'(z_i)\right\| _{L_\infty (\mu )}^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad \le \left\| T\right\| \rho _\mathcal {B}(h)\left( \sum _{i=1}^n\frac{\left| \lambda _i\right| ^{\frac{p}{1-\sigma }}}{(1-|z_i|^2)^{\frac{p}{1-\sigma }}}\right) ^{\frac{1-\sigma }{p}}\\&\quad =\left\| T\right\| \rho _\mathcal {B}(h)\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-|z_i|^2}\right) ^\sigma \left| f'_{z_i}(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad \le \left\| T\right\| \rho _\mathcal {B}(h)\sup _{g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-|z_i|^2}\right) ^\sigma \left| g'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \end{aligned}$$

for any \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\). Hence \(f\in \Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X)\) with \(\pi ^{\mathcal {B}}_{p,\sigma }(f)\le \left\| T\right\| \rho _\mathcal {B}(h)\) by Theorem 3.1. \(\square \)

We now relate \((p,\sigma )\)-absolutely continuous Bloch maps with (weakly) compact Bloch maps which were introduced in [10].

Let us recall that the Bloch range of a function \(f\in \mathcal {H}(\mathbb {D},X)\), denoted by \(\textrm{rang}_{\mathcal {B}}(f)\), is the set

$$\begin{aligned} \left\{ (1-|z|^2)f'(z)\in X:z\in \mathbb {D}\right\} . \end{aligned}$$

A map \(f\in \mathcal {H}(\mathbb {D},X)\) is called (weakly) compact Bloch if \(\textrm{rang}_{\mathcal {B}}(f)\) is a relatively (weakly) compact set in X.

Proposition 4.2

If \(p\in [1,\infty )\) and \(\sigma \in [0,1)\), then every \((p,\sigma )\)-absolutely continuous Bloch map \(f:\mathbb {D}\rightarrow X\) is weakly compact Bloch, and if in addition X is reflexive, then f is compact Bloch.

Proof

Let \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}(\mathbb {D},X)\). Hence Theorem 4.1 guarantees that

$$\begin{aligned} (\iota _X\circ f)'=\iota _X\circ f'=T\circ I_{\infty ,p/(1-\sigma )}\circ h'=T\circ (I_{\infty ,p/(1-\sigma )}\circ h)', \end{aligned}$$

for some measure \(\mu \in \mathcal {P}(B_{\widehat{\mathcal {B}}(\mathbb {D})})\), an operator \(T\in \mathcal {L}(L_{p/(1-\sigma )}(\mu ),\ell _{\infty }(B_{X^*}))\) and a map \(h\in \widehat{\mathcal {B}}(\mathbb {D},L_{\infty }(\mu ))\). Assume first \(p>1\) and then the reflexivity of \(L_{p/(1-\sigma )}(\mu )\) shows that \(\iota _X\circ f\in \widehat{\mathcal {B}}(\mathbb {D},\ell _{\infty }(B_{X^*}))\) is weakly compact Bloch by [10, Theorem 5.6]. Now, the equality \(\textrm{rang}_{\mathcal {B}}(\iota _X\circ f)=\iota _X(\textrm{rang}_{\mathcal {B}}(f))\) yields that f is weakly compact Bloch. The case \(p=1\) follows from the previous case when \(\sigma \in (0,1)\) and from Proposition 2.1 and [6, Corollary 1.7] when \(\sigma =0\).

So we have proved that \(\textrm{rang}_{\mathcal {B}}(f)\) is relatively weakly compact in X, and therefore relatively compact in X whenever X is reflexive. \(\square \)

5 Injective Banach normalized Bloch ideal

Motivated by the theory of operator ideals between Banach spaces [17], the concept of a Banach normalized Bloch ideal on \(\mathbb {D}\) was introduced in [10, Definition 5.11]. Proposition 1.2 in [6] asserts that \([\Pi _{p}^{\widehat{\mathcal {B}}},\pi _{p}^{\mathcal {B}}] \) is an injective Banach normalized Bloch ideal for any \(p\in [1,\infty )\). We now show that \([\Pi _{p,\sigma }^{\widehat{\mathcal {B}}},\pi _{p,\sigma }^{\mathcal {B}}]\) enjoys the same property using [10].

Proposition 5.1

\([\Pi _{p,\sigma }^{\widehat{\mathcal {B}}},\pi _{p,\sigma }^{\mathcal {B}}]\) is an injective Banach normalized Bloch ideal for any \(p\in [1,\infty )\) and \(\sigma \in [0,1)\).

Proof

Note that we only need to prove the case \(\sigma \in (0,1)\).

(N1): By Proposition 2.2, \((\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}(\mathbb {D},X),\pi _{p,\sigma }^{\mathcal {B}})\) is a Banach space with \(\rho _{\mathcal {B}}(f)\le \pi _{p,\sigma }^{\mathcal {B}}(f)\) for all \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}(\mathbb {D},X)\).

(N2): Let \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x\in X\). Let us recall that \(g\cdot x\in \widehat{\mathcal {B}}(\mathbb {D},X) \) with \(\rho _{\mathcal {B}}(g\cdot x)=\rho _{\mathcal {B}}(g)\left\| x\right\| \) by [10, Proposition 5.13]. Assume \(g\ne 0\). For all \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\), it holds

$$\begin{aligned}&\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| \left( g\cdot x\right) '\left( z_{i}\right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} =\rho _{\mathcal {B}}(g)\left\| x\right\| \left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left| \left( \frac{g}{\rho _{\mathcal {B}}(g)}\right) ^{^{\prime }}\left( z_{i}\right) \right| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \\&\quad \le \rho _{\mathcal {B}}(g)\left\| x\right\| \underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z\right| ^{2}}\right) ^{\sigma }\left| h'\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}, \end{aligned}$$

and so \(g\cdot x\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb { D},X\right) \) with \(\pi _{p,\sigma }^{\mathcal {B}}\left( g\cdot x\right) \le \rho _{\mathcal {B}}(g)\left\| x\right\| \). Since \(\rho _{\mathcal {B}}(g)\left\| x\right\| =\rho _{\mathcal {B}}(g\cdot x)\le \pi _{p}^{\mathcal {B}}\left( g\cdot x\right) \), we have \( \pi _{p,\sigma }^{\mathcal {B}}\left( g\cdot x\right) =\rho _{\mathcal {B}}(g)\left\| x\right\| \).

(N3): Let \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) ,T\in \mathcal {L}\left( X,Y\right) \) and let \(g:\mathbb {D}\rightarrow \mathbb {D}\) be a holomorphic function with \(g(0)=0\). The Pick–Schwarz Lemma assures that

$$\begin{aligned} (1-|z|^2)|g'(z)|\le 1-|g(z)|^2\qquad (z\in \mathbb {D}). \end{aligned}$$

Let us recall that \(T\circ f\circ g\in \widehat{\mathcal {B}}\left( \mathbb {D},Y\right) \) by [10, Proposition 5.13]. We have

$$\begin{aligned}&\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| \left( T\circ f\circ g\right) '\left( z_{i}\right) \right\| ^{\frac{p}{1-\sigma } }\right) ^{\frac{1-\sigma }{p}} \\&\quad =\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| T\left( f'\left( g\left( z_{i}\right) \right) g'\left( z_{i}\right) \right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \\&\quad \le \left\| T\right\| \left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left| g'\left( z_{i}\right) \right| \left\| f'\left( g\left( z_{i}\right) \right) \right\| \right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \\&\quad \le \left\| T\right\| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left| g'\left( z_{i}\right) \right| \left| h'\left( g\left( z_{i}\right) \right) \right| ^{1-\sigma }\left( \frac{1}{1-\left| g\left( z_{i}\right) \right| ^{2}}\right) ^{\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{ 1-\sigma }{p}} \\&\quad =\left\| T\right\| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left| g'\left( z_{i}\right) h'\left( g\left( z_{i}\right) \right) \right| ^{1-\sigma }\left( \frac{\left| g^{\prime }\left( z_{i}\right) \right| }{1-\left| g\left( z_{i}\right) \right| ^{2}} \right) ^{\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p} } \\&\quad \le \left\| T\right\| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup } \left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| \left( h\circ g\right) '\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma } }\right) ^{\frac{1-\sigma }{p}} \\&\quad \le \left\| T\right\| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \underset{k \in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup } \left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| k '\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}. \end{aligned}$$

where \(\rho _{\mathcal {B}}(h\circ g)\le \rho _{\mathcal {B}}(h)\) by [10, Proposition 3.6]. Therefore, \(T\circ f\circ g\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) with \(\pi _{p,\sigma }^{\mathcal {B}}\left( T\circ f\circ g\right) \le \left\| T\right\| \pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \).

(I): Let \(f\in \widehat{\mathcal {B}}\left( \mathbb {D},X\right) \) and let \(\iota :X\rightarrow Y\) be a linear isometry so that \(\iota \circ f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},Y\right) \). We have

$$\begin{aligned}&\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| f'\left( z_{i}\right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} =\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| \iota \left( f'\left( z_{i}\right) \right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{\frac{ 1-\sigma }{p}} \\&\quad =\left( \underset{i=1}{\overset{n}{\sum }}\left| \lambda _{i}\right| ^{\frac{p}{1-\sigma }}\left\| \left( \iota \circ f\right) '\left( z_{i}\right) \right\| ^{\frac{p}{1-\sigma }}\right) ^{ \frac{1-\sigma }{p}} \\&\quad \le \pi _{p,\sigma }^{\mathcal {B}}\left( \iota \circ f\right) \underset{h\in B_{\widehat{\mathcal {B}}\left( \mathbb {D}\right) }}{\sup }\left( \underset{i=1}{\overset{n}{\sum }}\left( \left| \lambda _{i}\right| \left( \frac{1}{1-\left| z_{i}\right| ^{2}}\right) ^{\sigma }\left| h'\left( z_{i}\right) \right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}} \end{aligned}$$

and thus \(f\in \Pi _{p,\sigma }^{\widehat{\mathcal {B}}}\left( \mathbb {D},X\right) \) with \(\pi _{p,\sigma }^{\mathcal {B}}\left( f\right) \le \pi _{p,\sigma }^{\mathcal {B}}\left( \iota \circ f\right) \). The reverse inequality follows from (N3). \(\square \)

The Möbius group of \(\mathbb {D}\), designated \(\textrm{Aut}(\mathbb {D})\), consists of all biholomorphic bijections from \(\mathbb {D}\) onto itself. Let us recall that a linear space \(\mathcal {A}(\mathbb {D},X)\subseteq \mathcal {B}(\mathbb {D},X)\), under a seminorm \(\rho _\mathcal {A}\), is Möbius-invariant if: (i) there is \(C>0\) such that \(\rho _{\mathcal {B}}(f)\le C \rho _{\mathcal {A}}(f)\) for all \(f\in \mathcal {A}(\mathbb {D},X)\); and (ii) \(f\circ \phi \in \mathcal {A}(\mathbb {D},X)\) with \(\rho _{\mathcal {A}}(f\circ \phi )=\rho _{\mathcal {A}}(f)\) for all \(\phi \in \textrm{Aut}(\mathbb {D})\) and \(f\in \mathcal {A}(\mathbb {D},X)\).

By Proposition 2.1, \((\Pi _{p,\sigma }^{\mathcal {B}}(\mathbb {D},X),\pi _{p,\sigma }^{\mathcal {B}})\le (\mathcal {B}(\mathbb {D},X),\rho _{\mathcal {B}})\). Moreover, by the proof of (N3) in Proposition 5.1, one has that if \(f\in \Pi _{p,\sigma }^{\mathcal {B}}(\mathbb {D},X)\) and \(\phi \in \textrm{Aut}(\mathbb {D})\), then \(f\circ \phi \in \Pi _{p,\sigma }^{\mathcal {B}}(\mathbb {D},X)\) with \(\pi ^{\mathcal {B}}_{p,\sigma }(f\circ \phi )\le \pi ^{\mathcal {B}}_{p,\sigma }(f)\), and this fact also yields \(\pi ^{\mathcal {B}}_{p,\sigma }(f)=\pi ^{\mathcal {B}}_{p,\sigma }((f\circ \phi )\circ \phi ^{-1})\le \pi ^{\mathcal {B}}_{p,\sigma }(f\circ \phi )\). So we have stated the following result which extends [6, Proposition 1.3].

Corollary 5.2

\((\Pi ^{\mathcal {B}}_{p,\sigma }(\mathbb {D},X),\pi ^{\mathcal {B}}_{p,\sigma })\) is a Möbius-invariant space for \(p\in [1,\infty )\) and \(\sigma \in [0,1)\). \(\square \)

6 Duality

With the aim of studying the duality of the spaces \(\Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\), we first introduce the Bloch analogues of the \((p,\sigma )\)-Chevet–Saphar norms on the tensor product of two Banach spaces. We refer the reader to the references [8, 18] for a complete study on the theory of tensor product. As usual, for any linear spaces E and F, the tensor product \(E\otimes F\) equipped with a norm \(\alpha \) is denoted by \(E\otimes _\alpha F\), and its completion by \(E\widehat{\otimes }_\alpha F\).

Towards our aim, we recall some concepts and results of [10]. For each \(z\in \mathbb {D}\), a Bloch atom of \(\mathbb {D}\) is the functional \(\gamma _z\in \widehat{\mathcal {B}}(\mathbb {D})^*\) given by \(\gamma _z(f)=f'(z)\) for all \(f\in \widehat{\mathcal {B}}(\mathbb {D})\). The named Bloch molecules of \(\mathbb {D}\) are the elements of the space

$$\begin{aligned} \textrm{lin}(\{\gamma _z:z\in \mathbb {D}\})\subseteq \widehat{\mathcal {B}}(\mathbb {D})^*, \end{aligned}$$

and the Bloch-free Banach space of \(\mathbb {D}\) is the space

$$\begin{aligned} \mathcal {G}(\mathbb {D}):=\overline{\textrm{lin}}(\{\gamma _z:z\in \mathbb {D}\})\subseteq \widehat{\mathcal {B}}(\mathbb {D})^*. \end{aligned}$$

The map \(\Gamma :z\in \mathbb {D}\mapsto \gamma _z\in \mathcal {G}(\mathbb {D})\) is holomorphic with \(\left\| \gamma _z\right\| =1/(1-|z|^2)\) for all \(z\in \mathbb {D}\).

Define now the space of X-valued Bloch molecules of \(\mathbb {D}\) by setting

$$\begin{aligned} \textrm{lin}(\Gamma (\mathbb {D}))\otimes X:=\textrm{lin}\left\{ \gamma _z\otimes x:z\in \mathbb {D},\, x\in X\right\} \subseteq \widehat{\mathcal {B}}(\mathbb {D},X^*)^*, \end{aligned}$$

where \(\gamma _z\otimes x:\widehat{\mathcal {B}}(\mathbb {D},X^*)\rightarrow \mathbb {C}\) is the functional given by

$$\begin{aligned} \left( \gamma _z\otimes x\right) (f)=\left\langle f'(z),x\right\rangle \qquad \left( f\in \widehat{\mathcal {B}}(\mathbb {D},X^*)\right) . \end{aligned}$$

Plainly, each element \(\gamma \in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) can be expressed as \(\gamma =\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\) for some \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\), \(z_i\in \mathbb {D}\) and \(x_i\in X\) for \(i=1,\ldots ,n\). Moreover,

$$\begin{aligned} \gamma (f)=\sum _{i=1}^n\lambda _i\left\langle f'(z_i),x_i\right\rangle \qquad (f\in \widehat{\mathcal {B}}(\mathbb {D},X^*)). \end{aligned}$$

The following family of norms contains the p-Chevet–Saphar Bloch norms on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) introduced in [6, Subsection 2.3].

Definition 6.1

Let \(p\in (1,\infty )\) and \(\sigma \in [0,1)\). We define the \((p,\sigma )\)-Chevet–Saphar Bloch norm \(d^{\widehat{\mathcal {B}}}_{p,\sigma }\) on \(\gamma \in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) by

$$\begin{aligned} d^{\widehat{\mathcal {B}}}_{1,\sigma }(\gamma )&=\inf \left\{ \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \max _{1\le i\le n}\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) \right) \right) \right. \\&\quad \times \left. \left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{1}{1-\sigma }}\right) ^{1-\sigma }\right\} ,\\ d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )&=\inf \left\{ \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) \right. \\&\quad \times \left. \left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}\right\} \\ d^{\widehat{\mathcal {B}}}_{\infty ,\sigma }(\gamma )&=\inf \left\{ \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{1}{1-\sigma }}\right) ^{1-\sigma }\right) \right. \\&\quad \times \left. \left( \max _{1\le i\le n}\left\| x_i\right\| ^{\frac{1}{1-\sigma }}\right) ^{1-\sigma }\right\} , \end{aligned}$$

the infimum being taken over all the representations of \(\gamma \) as \(\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\).

The following result concerning Bloch reasonable crossnorms introduced in [6, Definition 2.5] is based on [6, Theorem 2.6].

Given a complex Banach space X, let us recall that a norm \(\alpha \) on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) is a Bloch reasonable crossnorm if it satisfies the two conditions: (i) \(\alpha (\gamma _z\otimes x)\le \left\| \gamma _z\right\| \left\| x\right\| \) for all \(z\in \mathbb {D}\) and \(x\in X\); and (ii) Given \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x^*\in X^*\), the linear functional \(g\otimes x^*:\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\rightarrow \mathbb {C}\) given by \((g\otimes x^*)(\gamma _z\otimes x)=g'(z)x^*(x)\) is bounded on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes _\alpha X\) with \(\left\| g\otimes x^*\right\| \le \rho _{\mathcal {B}}(g)\left\| x^*\right\| \).

Theorem 6.2

\(d^{\widehat{\mathcal {B}}}_{p,\sigma }\) is a Bloch reasonable crossnorm on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) for \(\sigma \in [0,1)\) and \(p\in [1,\infty ]\).

Proof

For \(\sigma =0\) and \(p\in [1,\infty ]\), the result was stated in [6, Theorem 2.6]. We will prove it here for \(\sigma \in (0,1)\) and \(p\in (1,\infty )\). For \(p\in \{1,\infty \}\), the proofs are similar.

Let \(\gamma \in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) and let \(\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\) be a representation of \(\gamma \). Clearly, \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )\ge 0\). Given \(\lambda \in \mathbb {C}\), it is immediate that

$$\begin{aligned} d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda \gamma )\le & {} \left| \lambda \right| \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) \\{} & {} \times \left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}. \end{aligned}$$

From this inequality, we infer that \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda \gamma )=0=\left| \lambda \right| d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )\) if \(\lambda =0\), and that \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda \gamma )\le \left| \lambda \right| d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )\) if \(\lambda \ne 0\). In this case, \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )=d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda ^{-1}(\lambda \gamma ))\le |\lambda ^{-1}|d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda \gamma )\), hence \(\left| \lambda \right| d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )\le d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda \gamma )\), and thus also \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\lambda \gamma )=\left| \lambda \right| d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )\).

To prove the triangular inequality of \(d^{\widehat{\mathcal {B}}}_{p,\sigma }\), let \(\gamma _1,\gamma _2\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\) and \(\varepsilon >0\). We can choose representations

$$\begin{aligned} \gamma _1=\sum _{i=1}^n\lambda _{1,i}\gamma _{z_{1,i}}\otimes x_{1,i},\qquad \gamma _2=\sum _{i=1}^m\lambda _{2,i}\gamma _{z_{2,i}}\otimes x_{2,i}, \end{aligned}$$

so that

$$\begin{aligned} \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _{1,i}\right| \left( \frac{1}{1-\left| z_{1,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{1,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) \left( \sum _{i=1}^n\left\| x_{1,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}} \end{aligned}$$

and

$$\begin{aligned} \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^m\left( \left| \lambda _{2,i}\right| \left( \frac{1}{1-\left| z_{2,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{2,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) \left( \sum _{i=1}^m\left\| x_{2,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}} \end{aligned}$$

are less or equal than \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1)+\varepsilon \) and \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _2)+\varepsilon \), respectively.

For \(r,s\in \mathbb {R}^+\) arbitrary, define

$$\begin{aligned} \lambda _{3,i}\gamma _{z_{3,i}}=\left\{ \begin{array}{lll} r^{-1}\lambda _{1,i}\gamma _{z_{1,i}}&{}\quad i=1,\ldots ,n,\\ s^{-1}\lambda _{2,i-n}\gamma _{z_{2,i-n}}&{}\quad i=n+1,\ldots ,n+m, \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} x_{3,i}=\left\{ \begin{array}{lll} rx_{1,i}&{}\quad i=1,\ldots ,n,\\ sx_{2,i-n}&{}\quad i=n+1,\ldots ,n+m. \end{array}\right. \end{aligned}$$

Plainly, \(\gamma _1+\gamma _2=\sum _{i=1}^{n+m}\lambda _{3,i}\gamma _{z_{3,i}}\otimes x_{3,i}\) and, in consequence, \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1+\gamma _2)\) is less or equal than

$$\begin{aligned}{} & {} \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^{n+m}\left( \left| \lambda _{3,i}\right| \left( \frac{1}{1-\left| z_{3,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{3,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) \\{} & {} \quad \times \left( \sum _{i=1}^{n+m}\left\| x_{3,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}. \end{aligned}$$

A simple computation produces

$$\begin{aligned}&\left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^{n+m}\left( \left| \lambda _{3,i}\right| \left( \frac{1}{1-\left| z_{3,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{3,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) ^{\frac{p^*}{1-\sigma }}\\&\quad \le \left( r^{-1}\sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _{1,i}\right| \left( \frac{1}{1-\left| z_{1,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{1,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) ^{\frac{p^*}{1-\sigma }}\\&\qquad +\left( s^{-1}\sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^m\left( \left| \lambda _{2,i}\right| \left( \frac{1}{1-\left| z_{2,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{2,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) ^{\frac{p^*}{1-\sigma }} \end{aligned}$$

and

$$\begin{aligned} \sum _{i=1}^{n+m}\left\| x_{3,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}} =r^{\frac{p^*}{p^*-(1-\sigma )}}\sum _{i=1}^{n}\left\| x_{1,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}} +s^{\frac{p^*}{p^*-(1-\sigma )}}\sum _{i=1}^{m}\left\| x_{2,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}. \end{aligned}$$

Since \(p^*/(1-\sigma )>1\) and \((p^*/(1-\sigma ))^*=p^*/(p^*-(1-\sigma ))\), Young’s Inequality gives us

$$\begin{aligned}&d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1+\gamma _2) \le \frac{1-\sigma }{p^*}\left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^{n+m}\left( \left| \lambda _{3,i}\right| \left( \frac{1}{1-\left| z_{3,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{3,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) ^{\frac{p^*}{1-\sigma }}\\&\qquad +\frac{p^*-(1-\sigma )}{p^*}\sum _{i=1}^{n+m}\left\| x_{3,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\\&\quad \le \frac{(1-\sigma )r^{-\frac{p^*}{1-\sigma }}}{p^*}\left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _{1,i}\right| \left( \frac{1}{1-\left| z_{1,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{1,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) ^{\frac{p^*}{1-\sigma }}\\&\qquad +\frac{(p^*-(1-\sigma ))r^{\frac{p^*}{p^*-(1-\sigma )}}}{p^*}\sum _{i=1}^{n}\left\| x_{1,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\\&\qquad +\frac{(1-\sigma )s^{-\frac{p^*}{1-\sigma }}}{p^*}\left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^m\left( \left| \lambda _{2,i}\right| \left( \frac{1}{1-\left| z_{2,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{2,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) ^{\frac{p^*}{1-\sigma }}\\&\qquad +\frac{(p^*-(1-\sigma ))s^{\frac{p^*}{p^*-(1-\sigma )}}}{p^*}\sum _{i=1}^{m}\left\| x_{2,i}\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}. \end{aligned}$$

In particular, taking above

$$\begin{aligned} r&=(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1)+\varepsilon )^{-\frac{1-\sigma }{p^*}}\sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _{1,i}\right| \left( \frac{1}{1-\left| z_{1,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{1,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}},\\ s&=(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _2)+\varepsilon )^{-\frac{1-\sigma }{p^*}}\sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^m\left( \left| \lambda _{2,i}\right| \left( \frac{1}{1-\left| z_{2,i}\right| ^2}\right) ^{\sigma }\left| h'(z_{2,i})\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}, \end{aligned}$$

one obtains \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1+\gamma _2)\le d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1)+d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _2)+2\varepsilon \), and the arbitrariness of \(\varepsilon \) yields

$$\begin{aligned} d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1+\gamma _2)\le d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _1)+d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _2). \end{aligned}$$

To conclude that \(d^{\widehat{\mathcal {B}}}_{p,\sigma }\) is a norm, note that the Hölder’s Inequality gives

$$\begin{aligned}&\left| \sum _{i=1}^n \lambda _i \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }g'(z_i)^{1-\sigma }x^*(x_i)\right| \le \sum _{i=1}^n\left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| g'(z_i)\right| ^{1-\sigma }\left\| x_i\right\| \\&\quad \le \left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| g'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}\\&\quad \le \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}, \end{aligned}$$

whenever \(g\in B_{\widehat{\mathcal {B}}(\mathbb {D})}\) and \(x^*\in B_{X^*}\). Note that the value \(\left| \sum _{i=1}^n \lambda _i g'(z_i)x^*(x_i)\right| \) is independent on the representation of \(\gamma \) seeing as

$$\begin{aligned} \sum _{i=1}^n \lambda _i g'(z_i)x^*(x_i)=\left( \sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\right) (g\cdot x^*)=\gamma (g\cdot x^*), \end{aligned}$$

and taking infimum over all representations of \(\gamma \) produces

$$\begin{aligned} \left| \sum _{i=1}^n \lambda _i g'(z_i)x^*(x_i)\right| \le d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma ) \qquad \left( g\in B_{\widehat{\mathcal {B}}(\mathbb {D})},\; x^*\in B_{X^*}\right) . \end{aligned}$$

Now, if \(d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma )=0\), the above inequality gives

$$\begin{aligned} \left( \sum _{i=1}^n \lambda _i x^*(x_i)\gamma _{z_i}\right) (g)=\sum _{i=1}^n \lambda _i x^*(x_i) g'(z_i)=0\qquad \left( g\in B_{\widehat{\mathcal {B}}(\mathbb {D})},\; x^*\in B_{X^*}\right) . \end{aligned}$$

For each \(x^*\in B_{X^*}\), this implies that \(\sum _{i=1}^n\lambda _i x^*(x_i)\gamma _{z_i}=0\), and since \(\Gamma (\mathbb {D})\) is linearly independent in \(\mathcal {G}(\mathbb {D})\) (see [10, Remark 2.8]), we secure that \(x^*(x_i)\lambda _i =0\) for all \(i\in \{1,\ldots ,n\}\), hence \(\lambda _i=0\) for all \(i\in \{1,\ldots ,n\}\) since \(B_{X^*}\) separate points, and so \(\gamma =\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i=0\).

To finish, we show that \(d^{\widehat{\mathcal {B}}}_{p,\sigma }\) is a Bloch reasonable crossnorm on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\):

  1. (i)

    Given \(z\in \mathbb {D}\) and \(x\in X\),

    $$\begin{aligned}{} & {} d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma _z\otimes x)\le \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \left( \frac{1}{1-\left| z\right| ^2}\right) ^{\sigma }\left| h'(z)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\left\| x\right\| \\{} & {} \le \frac{\left\| x\right\| }{1-|z|^2}=\left\| \gamma _z\right\| \left\| x\right\| . \end{aligned}$$
  2. (ii)

    For any \(g\in \widehat{\mathcal {B}}(\mathbb {D})\) and \(x^*\in X^*\),

    $$\begin{aligned}&\left| (g\otimes x^*)(\gamma )\right| =\left| \sum _{i=1}^n\lambda _i(g\otimes x^*)(\gamma _{z_i}\otimes x_i)\right| =\left| \sum _{i=1}^n\lambda _i g'(z_i)x^*(x_i)\right| \\&\quad \le \sum _{i=1}^n\left| \lambda _i\right| \left| g'(z_i)\right| \left| x^*(x_i)\right| \le \rho _{\mathcal {B}}(g)\left\| x^*\right\| \sum _{i=1}^n\frac{\left| \lambda _i\right| }{1-|z_i|^2}\left\| x_i\right\| \\&\quad =\rho _{\mathcal {B}}(g)\left\| x^*\right\| \sum _{i=1}^n\left| \lambda _i\right| \left| f'_{z_i}(z_i)\right| \left\| x_i\right\| =\rho _{\mathcal {B}}(g)\left\| x^*\right\| \sum _{i=1}^n\left| \lambda _i\right| \\&\qquad \times \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| f'_{z_i}(z_i)\right| ^{1-\sigma }\left\| x_i\right\| \\&\quad \le \rho _{\mathcal {B}}(g)\left\| x^*\right\| \left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| f'_{z_i}(z_i)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\\&\qquad \times \left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}\\&\quad \le \rho _{\mathcal {B}}(g)\left\| x^*\right\| \left( \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p^*}{1-\sigma }}\right) ^{\frac{1-\sigma }{p^*}}\right) \\&\qquad \times \left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p^*}{p^*-(1-\sigma )}}\right) ^{\frac{p^*-(1-\sigma )}{p^*}}. \end{aligned}$$

    Passing to the infimum over all the representations of \(\gamma \) yields

    $$\begin{aligned} \left| (g\otimes x^*)(\gamma )\right| \le \rho _{\mathcal {B}}(g)\left\| x^*\right\| d^{\widehat{\mathcal {B}}}_{p,\sigma }(\gamma ). \end{aligned}$$

    Therefore, \(g\otimes x^*\in (\textrm{lin}(\Gamma (\mathbb {D}))\otimes _{d^{\widehat{\mathcal {B}}}_{p,\sigma }} X)^*\) and \(\left\| g\otimes x^*\right\| \le \rho _{\mathcal {B}}(g)\left\| x^*\right\| \).

\(\square \)

We are now in a position to address the duality of the space of \((p,\sigma )\)-absolutely continuous Bloch maps from \(\mathbb {D}\) into the dual space \(X^*\) of a complex Banach space X. In the proof of the following result, we will make use of Proposition 2.1 and Theorem 3.1.

Theorem 6.3

Let \(p\in [1,\infty )\) and \(\sigma \in [0,1)\). Then \(\Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\) is isometrically isomorphic to \((\mathcal {G}(\mathbb {D})\widehat{\otimes }_{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }} X)^*\), via the canonical pairing

$$\begin{aligned} \Lambda (f)(\gamma )=\sum _{i=1}^n\lambda _i\left\langle f'(z_i),x_i\right\rangle \end{aligned}$$

for all \(f\in \Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\) and \(\gamma =\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\).

Proof

For \(\sigma =0\), the result follows from Proposition 2.1 and [6, Theorem 2.8]. Assume \(\sigma \in (0,1)\). We are going to prove the case \(1<p<\infty \). The case \(p=1\) follows similarly.

Let \(f\in \Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\) and define the linear map \(\Lambda _0(f):\textrm{lin}(\Gamma (\mathbb {D}))\otimes X\rightarrow \mathbb {C}\) by setting

$$\begin{aligned} \Lambda _0(f)(\gamma )=\sum _{i=1}^n\lambda _i\left\langle f'(z_i),x_i\right\rangle \qquad (\gamma =\sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X). \end{aligned}$$

Since \(p/(1-\sigma )>1\) and \((p/(1-\sigma ))^*=p/(p-(1-\sigma ))\), Hölder Inequality and Theorem 3.1 provide

$$\begin{aligned}&\left| \Lambda _0(f)(\gamma )\right| =\left| \sum _{i=1}^n\lambda _i\left\langle f'(z_i), x_i\right\rangle \right| \le \sum _{i=1}^n\left| \lambda _i\right| \left\| f'(z_i)\right\| \left\| x_i\right\| \\&\quad \le \left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left\| f'(z_i)\right\| \right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p}{p-(1-\sigma )}}\right) ^{\frac{p-(1-\sigma )}{p}}\\&\quad \le \pi ^{\mathcal {B}}_{p,\sigma }(f)\sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\&\quad \left( \sum _{i=1}^n\left\| x_i\right\| ^{\frac{p}{p-(1-\sigma )}}\right) ^{\frac{p-(1-\sigma )}{p}}. \end{aligned}$$

Calculating the infimum on all the representations of \(\gamma \) yields

$$\begin{aligned} \left| \Lambda _0(f)(\gamma )\right| \le \pi ^{\mathcal {B}}_{p,\sigma }(f)d^{\widehat{\mathcal {B}}}_{p^*,\sigma }(\gamma ). \end{aligned}$$

Hence \(\Lambda _0(f)\) is continuous on \(\textrm{lin}(\Gamma (\mathbb {D}))\otimes _{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }} X\) with \(\left\| \Lambda _0(f)\right\| \le \pi ^{\mathcal {B}}_{p,\sigma }(f)\).

Clearly, \(\mathcal {G}(\mathbb {D})\otimes X\) is a norm-dense linear subspace of \(\mathcal {G}(\mathbb {D})\widehat{\otimes }_{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }} X\) and therefore we can find a unique continuous map \(\Lambda (f):\mathcal {G}(\mathbb {D})\widehat{\otimes }_{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }} X\rightarrow \mathbb {C}\) extending \(\Lambda _0(f)\). Further, \(\Lambda (f)\) is linear and \(\left\| \Lambda (f)\right\| =\left\| \Lambda _0(f)\right\| \).

In this way, we define a map \(\Lambda :\Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\rightarrow (\mathcal {G}(\mathbb {D})\widehat{\otimes }_{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }} X)^*\). By [6, Corollary 2.3], \(\Lambda \) is linear and injective since \(\Pi _{p,\sigma }^{\widehat{\mathcal {B}}}(\mathbb {D},X^*)\subseteq \widehat{\mathcal {B}}(\mathbb {D},X^*)\). We now prove that \(\Lambda \) is a surjective isometry. For it, let \(\varphi \in (\mathcal {G}(\mathbb {D})\widehat{\otimes }_{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }} X)^*\) and define \(F_\varphi :\mathbb {D}\rightarrow X^*\) by

$$\begin{aligned} \left\langle F_\varphi (z),x\right\rangle =\varphi (\gamma _z\otimes x)\qquad \left( z\in \mathbb {D},\; x\in X\right) . \end{aligned}$$

Apparently (see, for example, the proof of [6, Proposition 2.4]), \(F_\varphi \in \mathcal {H}(\mathbb {D},X^*)\) and \(F_\varphi =f'_\varphi \) for a suitable map \(f_\varphi \in \widehat{\mathcal {B}}(\mathbb {D},X^*)\) with \(\rho _{\mathcal {B}}(f_\varphi )\le \left\| \varphi \right\| \).

To prove that \(f_\varphi \in \Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\), let \(n\in \mathbb {N}\), \(\lambda _i\in \mathbb {C}\) and \(z_i\in \mathbb {D}\) for all \(i\in \{1,\ldots ,n\}\). Given \(\varepsilon >0\), for each \(i\in \{1,\ldots ,n\}\), we can find \(x_i\in X\) with \(\left\| x_i\right\| \le 1+\varepsilon \) so that

$$\begin{aligned} \left\langle f_\varphi '(z_i),x_i\right\rangle =\left\| f_\varphi '(z_i)\right\| . \end{aligned}$$

Obviously, \(T:\mathbb {C}^n\rightarrow \mathbb {C}\) defined by

$$\begin{aligned} T(t_1,\ldots ,t_n)=\sum _{i=1}^n t_i \lambda _i\left\| f_\varphi '(z_i)\right\| ,\qquad (t_1,\ldots ,t_n)\in \mathbb {C}^n, \end{aligned}$$

is in \((\mathbb {C}^n,||\cdot ||_{(p/(1-\sigma ))^*})^*\) and

$$\begin{aligned} \left\| T\right\| =\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left\| f'_\varphi (z_i)\right\| \right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}. \end{aligned}$$

If \(||(t_1,\ldots ,t_n)||_{(p/(1-\sigma ))^*}\le 1\), we get

$$\begin{aligned}&\left| T(t_1,\ldots ,t_n)\right| =\left| \varphi \left( \sum _{i=1}^n t_i\lambda _i\gamma _{z_i}\otimes x_i\right) \right| \le \left\| \varphi \right\| d^{\widehat{\mathcal {B}}}_{p^*,\sigma }\left( \sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes t_ix_i\right) \\&\quad \le \left\| \varphi \right\| \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\left( \sum _{i=1}^n\left\| t_ix_i\right\| ^{\frac{p}{p-(1-\sigma )}}\right) ^{\frac{p-(1-\sigma )}{p}}\\&\quad \le (1+\varepsilon )\left\| \varphi \right\| \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}, \end{aligned}$$

therefore

$$\begin{aligned}{} & {} \left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left\| f'_\varphi (z_i)\right\| \right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}\\{} & {} \quad \le \left\| \varphi \right\| \sup _{h\in B_{\widehat{\mathcal {B}}(\mathbb {D})}}\left( \sum _{i=1}^n\left( \left| \lambda _i\right| \left( \frac{1}{1-\left| z_i\right| ^2}\right) ^{\sigma }\left| h'(z_i)\right| ^{1-\sigma }\right) ^{\frac{p}{1-\sigma }}\right) ^{\frac{1-\sigma }{p}}, \end{aligned}$$

and consequently Theorem 3.1 tells us that \(f_\varphi \in \Pi ^{\widehat{\mathcal {B}}}_{p,\sigma }(\mathbb {D},X^*)\) with \(\pi ^{\mathcal {B}}_{p,\sigma }(f_\varphi )\le \left\| \varphi \right\| \).

Now, for any \(\gamma =\sum _{i=1}^n \lambda _i\gamma _{z_i}\otimes x_i\in \textrm{lin}(\Gamma (\mathbb {D}))\otimes X\), one has

$$\begin{aligned} \Lambda (f_\varphi )(\gamma ) =\sum _{i=1}^n\lambda _i\left\langle f'_\varphi (z_i),x_i\right\rangle =\sum _{i=1}^n\lambda _i\varphi (\gamma _{z_i}\otimes x_i) =\varphi \left( \sum _{i=1}^n\lambda _i\gamma _{z_i}\otimes x_i\right) =\varphi (\gamma ), \end{aligned}$$

and \(\Lambda (f_\varphi )=\varphi \) on \(\mathcal {G}(\mathbb {D})\widehat{\otimes }_{d^{\widehat{\mathcal {B}}}_{p^*,\sigma }}X\). Further, \(\pi ^{\mathcal {B}}_{p,\sigma }(f_\varphi )\le \left\| \Lambda (f_\varphi )\right\| \). This completes the proof.\(\square \)