Skip to main content

Advertisement

Log in

Non-Canonical Activation of NRF2: New Insights and Its Relevance to Disease

  • Autophagy in Pathobiology (W-X Ding and H-M Shen, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

The goal of this review is to summarize the current knowledge in the field regarding the non-canonical activation of the NRF2 pathway. Specifically, we address what role p62 plays in mediating this pathway, which pathologies have been linked to the p62-dependent activation of NRF2, as well as what therapeutic strategies could be used to treat diseases associated with the non-canonical pathway.

Recent Findings

It has recently been shown that autophagic dysfunction leads to the aggregation or autophagosomal accumulation of p62, which sequesters KEAP1, resulting in prolonged activation of NRF2. The ability of p62 to outcompete NRF2 for KEAP1 binding depends on its abundance, or post-translational modifications to its key domains. Furthermore, the relevance of the p62-dependent activation of NRF2 in disease has been demonstrated in human hepatocellular carcinomas, as well as neurodegenerative diseases.

Summary

These findings indicate that targeting p62, or the enzymes that modify it, could prove to be an advantageous strategy for treating diseases associated with autophagy dysregulation and prolonged activation of NRF2. Other therapeutic possibilities include restoring proper autophagic function, or directly inhibiting NRF2 or its targets, to restore redox and metabolic homeostasis. Future studies will help further clarify the mechanisms, regulation, and relevance of the non-canonical pathway in driving disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953. doi:10.1128/MCB.24.24.10941-10953.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Slocum SL, Kensler TW (2011) Nrf2: control of sensitivity to carcinogens. Arch Toxicol 85(4):273–284. doi:10.1007/s00204-011-0675-4

    Article  CAS  PubMed  Google Scholar 

  4. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27(20):2179–2191. doi:10.1101/gad.225680.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066. doi:10.2337/db11-0807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chartoumpekis DV, Kensler TW (2013) New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr Diabetes Rev 9(2):137–145

    PubMed  PubMed Central  Google Scholar 

  7. Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Kong AN (2013) A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem 329:133–162. doi:10.1007/128_2012_340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    Article  CAS  PubMed  Google Scholar 

  9. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137. doi:10.1146/annurev-pathol-020712-163918

    Article  CAS  PubMed  Google Scholar 

  10. Lau A, Zheng Y, Tao S, Wang H, Whitman SA, White E et al (2013) Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33(12):2436–2446. doi:10.1128/MCB.01748-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223. doi:10.1038/ncb2021

    CAS  PubMed  Google Scholar 

  12. Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282(24):4672–4678. doi:10.1111/febs.13540

    Article  CAS  PubMed  Google Scholar 

  13. Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30(13):3275–3285. doi:10.1128/MCB.00248-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591. doi:10.1074/jbc.M110.118976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S et al (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6(5):614–621. doi:10.4161/auto.6.5.12189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Copple IM, Lister A, Obeng AD, Kitteringham NR, Jenkins RE, Layfield R et al (2010) Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem 285(22):16782–16788. doi:10.1074/jbc.M109.096545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, Van Leuven F et al (2016) Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12(10):1902–1916. doi:10.1080/15548627.2016.1208889. This study verifies that p62 is a transcriptional target of NRF2, and that a number of other autophagy proteins contain ARE-like sequences, highlighting the link between the autophagy and NRF2 pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nezis IP, Stenmark H (2012) p62 at the interface of autophagy, oxidative stress signaling, and cancer. Antioxid Redox Signal 17(5):786–793. doi:10.1089/ars.2011.4394

    Article  CAS  PubMed  Google Scholar 

  19. Puissant A, Fenouille N, Auberger P (2012) When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2(4):397–413

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rojo de la Vega M.; Chapman, E.; Zhang, D.D. NRF2-targeted therapeutics: New targets and modes of NRF2 regulation. Curr Opin Toxicol. 2016;1.

  21. •• Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51(5):618–631. doi:10.1016/j.molcel.2013.08.003. This paper was the first to introduce the enhanced interaction between phosphorylated p62 and KEAP1 as a means of upregulating NRF2 in liver pathologies. Targeting the post-translational modifications that occur on p62, and not just its aggregation, could prove to be an important therapeutic strategy in treating diseases with autophagy dysregulation and/or high levels of NRF2.

  22. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44(2):279–289. doi:10.1016/j.molcel.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  23. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37(2):223–234. doi:10.1016/j.immuni.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R et al (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 11(2):e1004987. doi:10.1371/journal.pgen.1004987

    Article  PubMed  PubMed Central  Google Scholar 

  25. •• Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N, Dou Z et al (2016) TRIM21 Ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell 62(1):149–151. doi:10.1016/j.molcel.2016.03.015. This study highlights the importance of TRIM21 as a negative regulator of p62 aggregation and sequestration of its interacting partners. This article also indicates the importance of post-translational modifications to p62 in modulating its function.

    Article  CAS  PubMed  Google Scholar 

  26. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284. doi:10.1083/jcb.201102031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP et al (2014) Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 61(3):617–625. doi:10.1016/j.jhep.2014.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanji K, Maruyama A, Odagiri S, Mori F, Itoh K, Kakita A et al (2013) Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. J Neuropathol Exp Neurol 72(1):18–28. doi:10.1097/NEN.0b013e31827b5713

    Article  CAS  PubMed  Google Scholar 

  29. Tanji K, Miki Y, Ozaki T, Maruyama A, Yoshida H, Mimura J et al (2014) Phosphorylation of serine 349 of p62 in Alzheimer's disease brain. Acta Neuropathol Commun 2:50. doi:10.1186/2051-5960-2-50

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yamazaki H, Tanji K, Wakabayashi K, Matsuura S, Itoh K (2015) Role of the Keap1/Nrf2 pathway in neurodegenerative diseases. Pathol Int 65(5):210–219. doi:10.1111/pin.12261

    Article  CAS  PubMed  Google Scholar 

  31. Wright T, Rea SL, Goode A, Bennett AJ, Ratajczak T, Long JE et al (2013) The S349T mutation of SQSTM1 links Keap1/Nrf2 signalling to Paget's disease of bone. Bone 52(2):699–706. doi:10.1016/j.bone.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  32. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN et al (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17(1):73–84. doi:10.1016/j.cmet.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  33. Rhee SG, Bae SH (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med 88(Pt B):205–211. doi:10.1016/j.freeradbiomed.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  34. Ro SH, Semple IA, Park H, Park H, Park HW, Kim M et al (2014) Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J 281(17):3816–3827. doi:10.1111/febs.12905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ji LL, Sheng YC, Zheng ZY, Shi L, Wang ZT (2015) The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radic Biol Med 85:12–23. doi:10.1016/j.freeradbiomed.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  36. Ni HM, Boggess N, McGill MR, Lebofsky M, Borude P, Apte U et al (2012) Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against acetaminophen-induced liver injury. Toxicol Sci 127(2):438–450. doi:10.1093/toxsci/kfs133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bomprezzi R (2015) Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther Adv Neurol Disord 8(1):20–30. doi:10.1177/1756285614564152

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sehgal SN (1998) Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31(5):335–340

    Article  CAS  PubMed  Google Scholar 

  39. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282(8):5641–5652. doi:10.1074/jbc.M609532200

    Article  CAS  PubMed  Google Scholar 

  40. Levine B, Packer M, Codogno P (2015) Development of autophagy inducers in clinical medicine. J Clin Invest 125(1):14–24. doi:10.1172/JCI73938

    Article  PubMed  PubMed Central  Google Scholar 

  41. • Li Y, McGreal S, Zhao J, Huang R, Zhou Y, Zhong H et al (2016) A cell-based quantitative high-throughput image screening identified novel autophagy modulators. Pharmacol Res 110:35–49. doi:10.1016/j.phrs.2016.05.004. This article discusses how a novel inhibitor of the phosphorylated-p62-KEAP1 interaction, K67, and its derivatives, modulate the p62-KEAP1-NRF2 pathway.

    Article  PubMed  Google Scholar 

  42. Vakifahmetoglu-Norberg H, Xia HG, Yuan J (2015) Pharmacologic agents targeting autophagy. J Clin Invest 125(1):5–13. doi:10.1172/JCI73937

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yasuda D, Nakajima M, Yuasa A, Obata R, Takahashi K, Ohe T et al (2016) Synthesis of Keap1-phosphorylated p62 and Keap1-Nrf2 protein-protein interaction inhibitors and their inhibitory activity. Bioorg Med Chem Lett 26(24):5956–5959. doi:10.1016/j.bmcl.2016.10.083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are funded by the following grants from the National Institutes of Health: ES023758 (EC & DDZ), CA154377 (DDZ), ES015010 (DDZ), DK109555 (DDZ), and ES006694 (a center grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna D. Zhang.

Ethics declarations

Conflict of Interest

The authors have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Autophagy in Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodson, M., Zhang, D.D. Non-Canonical Activation of NRF2: New Insights and Its Relevance to Disease. Curr Pathobiol Rep 5, 171–176 (2017). https://doi.org/10.1007/s40139-017-0131-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0131-0

Keywords

Navigation