Skip to main content
Log in

Elaboration and electrical characterization of ZnO-based varistor ceramics in different sintering temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The method applied in this study to develop conventional sintered varistors is based on liquid synthesis, The percentage of raw materials used is as follows: 98 mol% ZnO, 0.5 mol% Bi2O3, 0.5 mol% Sb2O3, 0.5 mol% Co2O3, 0.5 mol% MnO2 was sintered in a sintering temperature cycle from 900 to 1200 °C with different sintering times up to 120 min, the highest densification rates, 98.56%, are obtained at the temperature of 1200 °C, the grain sizes are greater than 1.61 µm for the temperature of 900 °C and increase little from one sample to another for all sintering temperatures. The presence of a spinel phase Zn7Sb2O12 as well as Bi2O3. The nonlinearity coefficient was high for the majority of sintered varistors at temperatures of 1000 °C and 1100 °C such that α > 35. The trigger field values (Ea) are nearly identical for all sintering temperatures, The electric fields for sintering at 1000 °C are a little high at about 373 V.mm−1 as a maximum value, 263 V.mm−1 for sintering at 1100 °C and 258 V. mm−1 for sintering at 1200 °C and we can also note that the density value of the leakage current is very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. J. Ren, G. Jiang, Z. Wang et al., Highly, thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering. Adv. Compos. Hybrid Mater. 7, 5 (2024). https://doi.org/10.1007/s42114-023-00816-z

    Article  CAS  Google Scholar 

  2. P. Pal, S.K. Das, D. Dey, K. Chakrabarti, Photovoltaic integrated solar induction heater using voltage source inverter. ES Energy Environ. 16, 26–29 (2022). https://doi.org/10.30919/esee8c686

    Article  Google Scholar 

  3. T. Kwon, S.H. Lee, J.H. Kim et al., Polypropylene nanocomposites doped with carbon nanohorns for high-voltage power cable insulation applications. Adv. Compos. Hybrid Mater. 6, 167 (2023). https://doi.org/10.1007/s42114-023-00746-w

    Article  CAS  Google Scholar 

  4. R. Dai, C. Ding, X. Li et al., Molecular single crystals induce chain alignment in a semiconducting polymer. Adv. Compos. Hybrid Mater. 6, 35 (2023). https://doi.org/10.1007/s42114-022-00611-2

    Article  CAS  Google Scholar 

  5. R.S. Jawad, H. Abid, Fault detection and classification for voltage source converter-high voltage systems by using different swarm optimization algorithms-based neural network. Eng. Sci. 23, 884 (2023). https://doi.org/10.30919/es884

    Article  Google Scholar 

  6. X.U. Dong, S.H.I. Xiao-feng, CHENG Xiao-nong, et al, Microstructure and Electrical properties of Lu2O3-doped ZnO-Bi2O3-based varistor ceramics. Transact. Nonferrous Metal. Soc. China 20(12), 2303–2308 (2010). https://doi.org/10.1016/S1003-6326(10)60645-0

    Article  CAS  Google Scholar 

  7. I.V. Markevich, T.R. Stara, I.P. Vorona et al., Role of ZnMn2O4 phase in formation of varistor characteristics in ZnO:Mn ceramics. Semicond. Phys. Quantum Electron. Optoelectron. 26(3), 255–259 (2023). https://doi.org/10.15407/spqeo26.03.255

    Article  CAS  Google Scholar 

  8. Xu. Dong, K. He, L. Jiao et al., Microstructure and electrical properties of ZrO2-doped ZnO varistor ceramics. J. Mater. Sci. Mater. Electron. 27(1), 767–771 (2016). https://doi.org/10.1007/s10854-015-3814-5

    Article  CAS  Google Scholar 

  9. E. Olsson, L.K. Falk, G.L. Dunlop et al., The microstructure of a ZnO varistor material. J. Mater. Sci. 20, 4091–4098 (1985). https://doi.org/10.1007/BF00552403

    Article  CAS  Google Scholar 

  10. P. Xie, Z. Wang, Wu. Kangning, Evolution of intrinsic and extrinsic electron traps at grain boundary during sintering ZnO based varistor ceramics. Materials 15(3), 1098 (2022). https://doi.org/10.3390/ma15031098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y.-W. Hong, Y.-J. Lee, S.-K. Kim et al., Admittance spectroscopy and electrical properties of Co3O4-doped ZnO. Electron. Mater. Lett. 10(5), 903–906 (2014). https://doi.org/10.1007/s13391-014-3331-3

    Article  CAS  Google Scholar 

  12. H.H. Hng, K.M. Knowles, Microstructure and current-voltage characteristics of praseodymium-doped zinc oxide varistors containing MnO2, Sb2O3 and Co3O4. J. Mater. Sci. 37(6), 1143–1154 (2002). https://doi.org/10.1023/A:1014359204034

    Article  CAS  Google Scholar 

  13. M. Peiteado, J.F. Fernandez, A.C. Caballero, Varistors based in the ZnO–Bi2O3 system: microstructure control and properties. J. Eur. Ceram. Soc. 27(13), 3867–3872 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.046

    Article  CAS  Google Scholar 

  14. L. Liu, P. Chen, X. Zhang et al., Solution synthesis of two-dimensional zinc oxide (ZnO)/molybdenum disulfide (MoS2) heterostructure through reactive templating for enhanced visible-light degradation of rhodamine B. Adv. Compos. Hybrid Mater. 6, 223 (2023). https://doi.org/10.1007/s42114-023-00780-8

    Article  CAS  Google Scholar 

  15. R. Ma, B. Cui, D. Hu et al., Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide–boron trioxide–silica ceramic nanocomposites. Adv. Compos. Hybrid Mater. 5, 1477–1489 (2022). https://doi.org/10.1007/s42114-022-00509-z

    Article  CAS  Google Scholar 

  16. J. Wang, C. Yang, L. Zhang et al., Monodispersed zinc oxide nanoparticles as multifunctional additives for polycarbonate thermoplastic with high transparency and excellent comprehensive performance. Adv. Compos. Hybrid Mater. 5, 2936–2947 (2022). https://doi.org/10.1007/s42114-022-00512-4

    Article  CAS  Google Scholar 

  17. V. Murugadoss, D.Y. Kang, W.J. Lee et al., Fluorine-induced surface modification to obtain stable and low energy loss zinc oxide/perovskite interface for photovoltaic application. Adv. Compos. Hybrid Mater. 5, 1385–1395 (2022). https://doi.org/10.1007/s42114-022-00498-z

    Article  CAS  Google Scholar 

  18. P.L. Meena, K. Poswal, A.K. Surela et al., Synthesis of graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation of the effect of ZnO on the photodegradation activity of g-C3N4 against the brilliant cresyl blue (BCB) dye under visible light irradiation. Adv. Compos. Hybrid Mater. 6, 16 (2023). https://doi.org/10.1007/s42114-022-00577-1

    Article  CAS  Google Scholar 

  19. A.S. Desai, V. Dabir, A. Ashok, Wu. Zijian, H.M. Pathan, Z. Guo, N. Bhagat, Microbicidal study of zinc oxide nanocomposites based coir geotextile with image processing. ES Gen. 3, 1101 (2024). https://doi.org/10.30919/esg1101

    Article  Google Scholar 

  20. S.S. Wagh, D.B. Salunkhe, S.P. Patole, S. Jadkar, R.S. Patil, Zinc oxide decorated carbon nanotubes composites for photocatalysis and antifungal application. ES Energy Environ. 21, 945 (2023). https://doi.org/10.30919/esee945

    Article  CAS  Google Scholar 

  21. K.S. Shaikh, A.M. Mujawar, A.T. Supekar, P.E. Lokhande, J.L. Gunjakar, H.M. Pathan, Nickel doped zinc oxide/titanium oxide films toward light harvesting. ES Energy Environ. 22, 992 (2023). https://doi.org/10.30919/esee992

    Article  CAS  Google Scholar 

  22. E. Savary, S. Marinel, F. Gascoin et al., Peculiar effects of microwave sintering on ZnO based varistors properties. J. Alloys Compd. 509(21), 6163–6169 (2011). https://doi.org/10.1016/j.jallcom.2011.03.048

    Article  CAS  Google Scholar 

  23. M.-H. Wang, C. Yao, N.-f Zhang, Degradation characteristics of low-voltage ZnO varistor manufactured by chemical coprecipitation processing. J. Mater. Process. Technol. 202(1), 406–411 (2008). https://doi.org/10.1016/j.jmatprotec.2007.09.033

    Article  CAS  Google Scholar 

  24. A.B. Glot, I.A. Skuratovsky, Non-ohmic conduction in tin dioxide based varistor ceramics. Mater. Chem. Phys. 99(1), 487–493 (2006). https://doi.org/10.1016/j.matchemphys.2005.11.028

    Article  CAS  Google Scholar 

  25. Q. Xu, Z. Wu, W. Zhao et al., Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv. Compos. Hybrid Mater. 6, 203 (2023). https://doi.org/10.1007/s42114-023-00783-5

    Article  CAS  Google Scholar 

  26. C. Hou, H. Xie, Y. Qu et al., Rigid-flexible double coating silicon oxide composed of pitch pyrolytic carbon and polyvinyl alcohol/polyethyleneimine/carbon nanotubes as high-performance anode material for lithium-ion battery. Adv. Compos. Hybrid Mater. 6, 143 (2023). https://doi.org/10.1007/s42114-023-00715-3

    Article  CAS  Google Scholar 

  27. J. Liu, E. Chen, Y. Wu et al., Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv. Compos. Hybrid Mater. 5, 1196–1205 (2022). https://doi.org/10.1007/s42114-022-00472-9

    Article  CAS  Google Scholar 

  28. D. Kong, Z.M. El-Bahy, H. Algadi et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1

    Article  CAS  Google Scholar 

  29. J.D. Levine, Theory of varistor electronic properties. Crit. Rev. Solid State Mater. Sci. 5(4), 597–603 (1975). https://doi.org/10.1080/10408437508243517

    Article  CAS  Google Scholar 

  30. P. Jiaping Han, A.M.R. MantasSenos, Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. J. Eur. Ceram. Soc. 22(1), 94–95 (2002). https://doi.org/10.1016/S0955-2219(01)00241-2

    Article  Google Scholar 

  31. S. Marinel, D.H. Choi, R. Heuguet et al., Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram. Int. 39(1), 299–306 (2013). https://doi.org/10.1016/j.ceramint.2012.06.025

    Article  CAS  Google Scholar 

  32. J. Wojnarowicz, T. Chudoba, S. Gierlotka, K. Sobczak, W. Lojkowski, Size control of cobalt-doped ZnO nanoparticles obtained in microwave solvothermal synthesis. Crystals 8(4), 179 (2018). https://doi.org/10.3390/cryst8040179

    Article  CAS  Google Scholar 

  33. C.-W. Nahm, Sintering effect on varistor properties and degradation behavior of ZVMB varistor ceramics. J. Mater. Sci. Mater. Electron. 28, 17063–17069 (2017). https://doi.org/10.1007/s10854-017-7632-9

    Article  CAS  Google Scholar 

  34. G.G. Kaan, T.H. Özkan, Densification and grain growth of SrO-doped ZnO. Ceramics-Silikáty 50, 225–231 (2006)

    Google Scholar 

  35. M. Kumar, M.A.B. Achour, M. Lasgorceix, P. Quadros, R. Mincheva, J.-M. Raquez, A. Leriche, Densification of hydroxyapatite through cold sintering process: role of liquid phase chemistry and physical characteristic of HA powder. Open Ceram. 17, 100566 (2024). https://doi.org/10.1016/j.oceram.2024.100566

    Article  CAS  Google Scholar 

  36. C.W. Nahm, The effect of sintering temperature on varistor properties of (Pr Co, Cr, Y, Al)-doped ZnO ceramics. Mater. Lett. 62(29), 4440–4442 (2008). https://doi.org/10.1016/j.matlet.2008.07.042

    Article  CAS  Google Scholar 

  37. A. Badev, S. Marinel, R. Heuguet, E. Savary, D. Agrawal, Sintering behavior and non-linear properties of ZnO varistors processed in microwave electric and magnetic fields at 2.45 GHz. Acta Mater. 61, 7849–7858 (2013). https://doi.org/10.1016/j.actamat.2013.09.023

    Article  CAS  Google Scholar 

  38. W. Cao, Y. Guo, J. Su et al., Effect of sintering temperature on the microstructural evolution of ZnO varistors. J. Electron. Mater. 52, 1266–1273 (2023). https://doi.org/10.1007/s11664-022-10054-6

    Article  CAS  Google Scholar 

  39. T. Li, W. Guo, A. Xie et al., Structural and electrical properties of ZnO–V2O5–TiO2–Co2O3–MnO varistor ceramics with low sintering temperature. J. Mater. Sci. Mater. Electron. 34, 607 (2023). https://doi.org/10.1007/s10854-023-09935-1

    Article  CAS  Google Scholar 

  40. Z. Xu, Y. Wei, S. Ma et al., Low breakdown electric field B2O3-doped ZnO–Bi2O3–TiO2–Co2O3–MnO2 varistor ceramics fabricated by low temperature sintering. J. Mater. Sci. Mater. Electron. 34, 342 (2023). https://doi.org/10.1007/s10854-022-09512-y

    Article  CAS  Google Scholar 

  41. P. Xie, J. Hu, Influence of sintering temperature and ZrO2 dopants on the microstructure and electrical properties of zinc oxide varistors. IEEE Access 7, 140126–140133 (2019). https://doi.org/10.1109/ACCESS.2019.2941965

    Article  Google Scholar 

  42. F. Cui, Z. Xu, R. Chu, Low temperature sintering ZnO–Bi2O3 based varistor ceramic with low electrical breakdown voltage and high nonlinear coefficient. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.09.288

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank all the people who worked in the laboratories of Ferhat Abbes Sétif 1 University as well as the director of the LMCPA laboratory and her team at the University of Valenciennes for their help.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Faiçal Kharchouche contributed to supervision, conceptualization, methodology and project administration. Faiçal Kharchouche and Samia Latreche contributed to the investigation, data curation, software, validation, resources, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Faiçal Kharchouche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharchouche, F., Latreche, S. Elaboration and electrical characterization of ZnO-based varistor ceramics in different sintering temperatures. J Mater Sci: Mater Electron 35, 836 (2024). https://doi.org/10.1007/s10854-024-12602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12602-8

Navigation