Skip to main content
Log in

Synthesis and characterization of a composite incorporating metal organic frameworks, copper oxide nanoparticles, and graphene oxide and evaluating its multifaceted potential in photocatalysis and electrochemical sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pursuit of affordable innovative materials with dual applications in photocatalytic water treatment and electrochemical sensing has intensified recently. This study successfully synthesized a new composite by combining graphene oxide (GO), Zn-2-PTZ (bis [5-(2-pyridyl) tetrazolato] zinc (II)), and copper oxide (CuO) via hydrothermal method. Comprehensive characterization via XRD, UV–Vis, FT-IR, XPS, Surface area analysis, SEM-EDX, TGA, photocatalytic, and electrochemical analyses confirmed the composite’s remarkable versatility. With a precisely engineered 2.14 eV bandgap, Mott-Schottky analyses unveiled the emergence of a p-n-p heterojunction, attributing to the remarkable 99.92% degradation of methylene blue dye in a mere 30-min exposure to sunlight, facilitated by H2O2, boasting a photocatalytic rate of 0.22703 min−1. Moreover, the composite-based electrochemical sensor developed by employing techniques like Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) demonstrated exceptional electrocatalytic detection of imatinib, with two linear ranges (0.01–20 and 20–240 μM), with a limit of detection (LOD) of 3.05 µM, high accuracy, reproducibility, and stability. This innovative material undeniably establishes its exceptional dual-use potential in photocatalysis and electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on reasonable request.

References

  1. L. Lin, H. Yang, X. Xu, Front. Environ. Sci. 10, 8880246 (2022)

    Google Scholar 

  2. Q. Fan, T. Lu, Y. Deng, Y. Zhang, W. Ma, R. Xiong, C. Huang, Sep. Purif. Technol. 297, 121445 (2022)

    Article  CAS  Google Scholar 

  3. W. Ma, Y. Ding, Y. Li, S. Gao, Z. Jiang, J. Cui, C. Huang, G. Fu, J. Membr. Sci. 634, 119402 (2021)

    Article  CAS  Google Scholar 

  4. S. Jian, Y. Chen, F. Shi, Y. Liu, W. Jiang, J. Hu, X. Han, S. Jiang, W. Yang, Polymers 14, 5417 (2021)

    Article  Google Scholar 

  5. J. Wang, Y. Sun, X. Zhao, L. Chen, S. Peng, C. Ma, G. Duan, Z. Liu, H. Wang, Y. Yuan, N. Wang, E-Polymers 22, 399–410 (2022)

    Article  CAS  Google Scholar 

  6. D.A. Yaseen, M. Scholz, Environ. Sci. Pollut. Res. 16, 2 (2019)

    Google Scholar 

  7. Y. Deng, R. Zhao, Curr. Pollut. Rep. 1, 167–176 (2015)

    Article  CAS  Google Scholar 

  8. A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1–5 (2016)

    Article  CAS  Google Scholar 

  9. A. El Yacoubi, A. Rezzouk, B. Sallek, B. Chafik El Idrissi, J. Mater. Environ. Sci. 2508, 4866–4871 (2017)

    Google Scholar 

  10. M. Ramezani, A. Davoodi, A. Malekizad, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 3957–3962 (2015)

    Article  CAS  Google Scholar 

  11. Z. Aghajani, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 31, 6593–6606 (2020)

    Article  CAS  Google Scholar 

  12. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Electron. Mater. 45, 3612–3620 (2016)

    Article  CAS  Google Scholar 

  13. M. Khodaie, N. Ghasemi, B. Moradi, M. Rahimi, J. Chem. 2013, 383985 (2013)

    Article  Google Scholar 

  14. S. Dardouri, J. Sghaier, Korean J. Chem. Eng. 34, 1037–1043 (2017)

    Article  CAS  Google Scholar 

  15. M.G. Kim, J. Lee, K.S. Kim, New J. Chem. 45, 3485–3497 (2021)

    Article  CAS  Google Scholar 

  16. A. Riapanitra, K. Riyani, T. Setyaningtyas, Sicomas 5, 1–5 (2022)

  17. H. Munawaroh, P.L. Sari, S. Wahyuningsih, A.H. Ramelan, AIP Conf. Proc. 2014, 020119 (2018)

    Article  Google Scholar 

  18. F. Anjum, M. Shaban, M. Ismail, ACS Omega 8, 17667–17681 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A.G. Bekru, L.T. Tufa, O.A. Zelekew, J. Gwak, J. Lee, F.K. Sabir, Crystals 13(1), 133 (2023)

  20. A.A. Sakib, S.M. Masum, J. Hoinkis, R. Islam, M.A. Molla, J. Compos. Sci. 3(3), 91 (2019)

    Article  Google Scholar 

  21. E. Ben Ami, G.D. Demetri, Expert Opin. Drug Saf. 15(4), 571–578 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. M. Eriksson, H. Joensuu, Ann. Oncol. 32(4), 434–436 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. C. Qi, Q. Cai, P. Zhao, X. Jia, N. Lu, L. He, X. Hou, J. Chromatogr. A 1449, 30–38 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. S. Fornasaro, A. Bonifacio, E. Marangon, Anal. Chem. 90(21), 12670–12677 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Z. Yan, Z. Zhang, J. Chen, Sens. Actuators B: Chem. 225, 469–473 (2016)

    Article  CAS  Google Scholar 

  26. T.O. Ajimura, K.B. Borges, A.F. Ferreira, F.A. de Castro, C.M. de Gaitani, Electrophoresis 32, 1885–1892 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. J. Rodríguez, G. Castañeda, I. Lizcano, Electrochim. Acta 269, 668–675 (2018)

    Article  Google Scholar 

  28. M. Brycht, K. Kaczmarska, B. Uslu, S.A. Ozkan, S. Skrzypek, Diam. Relat. Mater. 68, 13–22 (2016)

    Article  CAS  Google Scholar 

  29. Y. Chen, Z. Liu, D. Bai, Alexandria Eng. J. 93, 80–89 (2024)

    Article  Google Scholar 

  30. Y. Wang, L. Wang, H. Chen, X. Hu, S. Ma, ACS Appl. Mater. Interfaces 8, 18173–18181 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Wang, L. Wang, W. Huang, T. Zhang, X. Hu, J.A. Perman, S. Ma, J. Mater. Chem. A 5, 8385–8393 (2017)

    Article  CAS  Google Scholar 

  32. Y. Chen, X. Sun, S. Biswas, Y. Xie, Y. Wang, X. Hu, Biosens. Bioelectron. 141, 111470 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, ACS Appl. Mater. Interfaces 6(14), 11573–11580 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. J. Li, J. Xia, F. Zhang, Z. Wang, Q. Liu, Talanta 181, 80–86 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. T.M. Naidu, P.V.L. Narayana, Indian J. Sci. Technol. 13, 1848–1855 (2020)

    Article  CAS  Google Scholar 

  36. S. Qiu, G. Zhu, Coord. Chem. Rev. 253, 2891–2911 (2009)

    Article  CAS  Google Scholar 

  37. A.D. Pournara, G.D. Tarlas, G.S. Papaefstathiou, Inorg. Chem. Front. 6, 3440–3455 (2019)

    Article  CAS  Google Scholar 

  38. A. Chouhan, A. Pandey, P. Mayer, J. Chem. Sci. 127, 1599–1606 (2015)

    Article  CAS  Google Scholar 

  39. F. Zhao, F. Wang, W. Zhao, J. Zhou, Y. Liu, L. Zou, B. Ye, Microchim. Acta 174, 383–390 (2011)

    Article  CAS  Google Scholar 

  40. K.Q. Lu, Y.H. Li, Z.R. Tang, Y.J. Xu, ACS Mater. Au. 1, 37–54 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, J. Hazard. Mater. 201–202, 250–259 (2012)

    Article  PubMed  Google Scholar 

  42. G. Xiao, P. Gao, L. Wang, Y. Chen, Y. Wang, G. Zhang, J. Nanomater. 2011, 439162 (2011)

    Article  Google Scholar 

  43. I.Z. Luna, L.N. Hilary, A.M.S. Chowdhury, M.A. Gafur, N. Khan, R.A. Khan, Open Access Library J. 2, e1409 (2015)

    Google Scholar 

  44. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  45. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  46. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison Wesley, Reading, MA, USA, 1978)

  47. D. Kumar, A. Pandey, Chem. Select 8(40), 1–12 (2023)

    Google Scholar 

  48. A. Chouhan, D. Kumar, G. Pilet, S. Daniele, A. Pandey, Chem. Select 7, 1–9 (2020)

    Google Scholar 

  49. V.V.T. Padil, M. Černík, Int. J. Nanomed. 8, 889–898 (2013)

    Google Scholar 

  50. P.V. Ferreira de Sousa, A.F. de Oliveira, A.A. da Silva, R.P. Lopes, Environ. Sci. Pollut. Res. 26, 14883–14914 (2019)

    Article  Google Scholar 

  51. A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R. Faruque, I.U. Din, M. Alotaibi, PLoS ONE 16, 5 (2021)

    Google Scholar 

  52. O. Auciello, J. Veyan, J. Maria, Front. Carbon 2, 1279356 (2023)

    Article  Google Scholar 

  53. Z. Zhu, W. Zhu, Y. Chen, P. Ma, H. Zhou, L. Lou, G. Wang, J. Mater. Sci. Mater. Electron. 33, 5575 (2022)

    Article  CAS  Google Scholar 

  54. M. Mazurkiewicz-Pawlicka, M. Nowak, A. Malolepszy, A. Witowski, D. Wasik, Y. Hu, L. Stobinski, Nanomaterials 10, 32 (2020)

    Article  CAS  Google Scholar 

  55. R. Jana, A. Dey, M. Das, J. Datta, P. Das, P.P. Ray, Appl. Surf. Sci. 452, 155 (2018)

    Article  CAS  Google Scholar 

  56. G. Hosseinzadeh, J. Water Environ. Nanotechnol. 8, 13 (2023)

    CAS  Google Scholar 

  57. Y. Cao, A. El-Shafay, A.H. Mohammed, S.F. Almojil, A.I. Almohana, A.F. Alali, Adv. Powder Technol. 33, 103513 (2022)

    Article  CAS  Google Scholar 

  58. T.H.V. Luong, T.H.T. Nguyen, B.V. Nguyen, Green Process. Synth. 11, 71 (2022)

    Article  CAS  Google Scholar 

  59. A. Alayli, H. Nadaroglu, E. Turgut, Appl Water Sci 11, 1 (2021)

    Article  Google Scholar 

  60. Y. Ahmedab, Z. Yaakoba, P. Akhtara, Catal. Sci. Technol. 6, 1222–1232 (2016)

    Article  Google Scholar 

  61. L. Fang, Z. Liu, C. Zhou, Y. Guo, J. Phys. Chem. C 123, 26921–26931 (2019)

    Article  CAS  Google Scholar 

  62. P. Suresh, A.M. Umabala, A.V. Prasad Rao, Int. J. Eng. Appl. Sci. 2, 2394–3661 (2015)

    Google Scholar 

  63. C. Liu, H. Xu, H. Li, Korean J. Chem. Eng. 28, 1126–1132 (2011)

    Article  CAS  Google Scholar 

  64. R.A. Khan, I. Mohammed, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, J. Ind. Eng. Chem. 97, 111–128 (2021)

    Article  Google Scholar 

  65. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors present their appreciation for the assistance received from the Centre for Interdisciplinary Research (CIR) at MNNIT Allahabad, Material Research Centre (MRC) at MNIT Jaipur, Sophisticated Analytical & Technical Help Institute (SATHI), BHU and the Nanoscale Research Facility (NRF), IIT Delhi, through the Indian Nanoelectronics Users’ Programme Idea to Innovation (INUP-i2i). Project funding was granted by MNNIT, Allahabad, through the CPDA grant facilitated to Prof. Ashutosh Pandey. The collaborative contributions to this project are recognized with heartfelt gratitude for the consistent and steadfast support provided.

Funding

This study was funded by Motilal Nehru National Institute of Technology Allahabad, CPDA, Ashutosh Pandey.

Author information

Authors and Affiliations

Authors

Contributions

Varun Bhatnagar: Performing experiments related to electrochemical sensing. Also contributed to writing first draft of manuscript. Deepak Kumar: Performing experiments related to photocatalysis. Anjana Pandey: Experimental Data Interpretation. Prof. Ashutosh Pandey: Originator of the idea, designing of experiments and Final manuscript preparation.

Corresponding author

Correspondence to Ashutosh Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 705 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, V., Kumar, D., Pandey, A. et al. Synthesis and characterization of a composite incorporating metal organic frameworks, copper oxide nanoparticles, and graphene oxide and evaluating its multifaceted potential in photocatalysis and electrochemical sensing. J Mater Sci: Mater Electron 35, 1374 (2024). https://doi.org/10.1007/s10854-024-13130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13130-1

Navigation