Skip to main content

Clinical Use of Diuretics

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Diuretics are among the most commonly prescribed medications for patients with kidney disease. Most diuretics exert their action by preventing sodium re-absorption from the lumen of the nephron. Since cells must maintain electrochemical neutrality, the direct drug effect on sodium and other electrolytes must be counterbalanced, and must be accounted for as potential side effects. The current chapter will review the specific actions of available diuretics and their applications in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Touwaide A, et al. Medicinal plants for the treatment of urogenital tract pathologies according to Dioscorides' De Materia Medica. Am J Nephrol. 1997;17(3–4):241–7.

    Article  CAS  PubMed  Google Scholar 

  2. Schutz K, Carle R, Schieber A. Taraxacum--a review on its phytochemical and pharmacological profile. J Ethnopharmacol. 2006;107(3):313–23.

    Article  PubMed  CAS  Google Scholar 

  3. Clare BA, Conroy RS, Spelman K. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J Altern Complement Med. 2009;15(8):929–34.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schwartz WB. The effect of sulfanilamide on salt and water excretion in congestive heart failure. N Engl J Med. 1949;240(5):173–7.

    Article  CAS  PubMed  Google Scholar 

  5. Beyer KH. Chlorothiazide. Br J Clin Pharmacol. 1982;13(1):15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leaf A, Schwartz WB, Relman AS. Oral administration of a potent carbonic anhydrase inhibitor (diamox). I. Changes in electrolyte and acid-base balance. N Engl J Med. 1954;250(18):759–64.

    Article  CAS  PubMed  Google Scholar 

  7. Van Berkel MA, Elefritz JL. Evaluating off-label uses of acetazolamide. Am J Health Syst Pharm. 2018;75(8):524–31.

    Article  PubMed  CAS  Google Scholar 

  8. Masuda T, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8(2):e14360.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ellison DH. Clinical pharmacology in diuretic use. Clin J Am Soc Nephrol. 2019;14(8):1248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wile D. Diuretics: a review. Ann Clin Biochem. 2012;49(Pt 5):419–31.

    Article  CAS  PubMed  Google Scholar 

  11. Mariano F, et al. Furosemide as a functional marker of acute kidney injury in ICU patients: a new role for an old drug. J Nephrol. 2019;32(6):883–93.

    Article  CAS  PubMed  Google Scholar 

  12. Bates DE, Beaumont SJ, Baylis BW. Ototoxicity induced by gentamicin and furosemide. Ann Pharmacother. 2002;36(3):446–51.

    Article  PubMed  Google Scholar 

  13. Santos F, Nadol JB. Temporal bone histopathology of furosemide ototoxicity. Laryngoscope Investig Otolaryngol. 2017;2(5):204–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Robertson CMT, et al. Avoiding furosemide ototoxicity associated with single-ventricle repair in young infants. Pediatr Crit Care Med. 2019;20(4):350–6.

    Article  PubMed  Google Scholar 

  15. Subramanya AR, Ellison DH. Distal convoluted tubule. Clin J Am Soc Nephrol. 2014;9(12):2147–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol. 2015;10(2):305–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vidt DG. Mechanism of action, pharmacokinetics, adverse effects, and therapeutic uses of amiloride hydrochloride, a new potassium-sparing diuretic. Pharmacotherapy. 1981;1(3):179–87.

    Article  CAS  PubMed  Google Scholar 

  18. Spence JD. Blind spots in the new International Society of Hypertension guidelines: physiologically individualized therapy for resistant hypertension based on renin/aldosterone phenotyping, and amiloride for Liddle phenotype. J Hypertens. 2020;38(11):2338.

    Article  CAS  PubMed  Google Scholar 

  19. Yellepeddi V, et al. Stability of extemporaneously compounded amiloride nasal spray. PLoS One. 2020;15(7):e0232435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Witherspoon B, Ashby NE. The use of mannitol and hypertonic saline therapies in patients with elevated intracranial pressure: a review of the evidence. Nurs Clin North Am. 2017;52(2):249–60.

    Article  PubMed  Google Scholar 

  21. Begin AM, et al. Effect of mannitol on acute kidney injury induced by cisplatin. Support Care Cancer. 2021;29(4):2083–91.

    Article  PubMed  Google Scholar 

  22. Crona DJ, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schrier RW, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    Article  CAS  PubMed  Google Scholar 

  24. Higashi K, et al. Efficacy and safety of tolvaptan for pediatric patients with congestive heart failure. Multicenter survey in the working group of the Japanese society of PEdiatric circulation and hemodynamics (J-SPECH). Int J Cardiol. 2016;205:37–42.

    Article  PubMed  Google Scholar 

  25. Katayama Y, et al. Safety and effectiveness of tolvaptan for fluid management after pediatric cardiovascular surgery. Gen Thorac Cardiovasc Surg. 2017;65(11):622–6.

    Article  PubMed  Google Scholar 

  26. Kim GJ, et al. Development of tolerance to chronic intermittent furosemide therapy in pediatric patients. J Pediatr Pharmacol Ther. 2017;22(6):394–8.

    PubMed  PubMed Central  Google Scholar 

  27. Felker GM, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abraham B, et al. Meta-analysis comparing Torsemide versus furosemide in patients with heart failure. Am J Cardiol. 2020;125(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ding D, et al. Ototoxic effects and mechanisms of loop diuretics. J Otol. 2016;11(4):145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meena J, Bagga A. Current perspectives in Management of Edema in nephrotic syndrome. Indian J Pediatr. 2020;87(8):633–40.

    Article  PubMed  Google Scholar 

  31. Meena J, et al. Therapy with the combination of Tolvaptan and furosemide for refractory edema in nephrotic syndrome. Indian J Nephrol. 2020;30(1):53–5.

    Article  PubMed  Google Scholar 

  32. Carpenter RJ, et al. Lower-dose, intravenous Chlorothiazide is an effective adjunct diuretic to furosemide following pediatric cardiac surgery. J Pediatr Pharmacol Ther. 2020;25(1):31–8.

    PubMed  PubMed Central  Google Scholar 

  33. Warrington SJ, Sinclair AJ, Johnston A. Effects of single doses of a 20 mg frusemide/2.5 mg amiloride combination, 20 mg frusemide and placebo on plasma and urine electrolytes in healthy men. J Int Med Res. 1990;18(Suppl 2):3B–9B.

    CAS  PubMed  Google Scholar 

  34. Alobaidi R, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–68.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: evaluation and management. BMC Nephrol. 2016;17(1):109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vincent JL. Fluid management in the critically ill. Kidney Int. 2019;96(1):52–7.

    Article  PubMed  Google Scholar 

  37. Goldstein SL. Fluid management in acute kidney injury. J Intensive Care Med. 2014;29(4):183–9.

    Article  PubMed  Google Scholar 

  38. Banker H, Sheffield EG, Cohen HL. Nuclear Renal Scan, in StatPearls. 2021: Treasure Island (FL).

    Google Scholar 

  39. van der Voort PH, et al. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit Care Med. 2009;37(2):533–8.

    Article  PubMed  CAS  Google Scholar 

  40. Vasudevan A, Phadke K, Yap HK. Peritoneal dialysis for the management of pediatric patients with acute kidney injury. Pediatr Nephrol. 2017;32(7):1145–56.

    Article  PubMed  Google Scholar 

  41. Barhight MF, et al. Non-resuscitation fluid in excess of hydration requirements is associated with higher mortality in critically ill children. Pediatr Res. 2021;

    Google Scholar 

  42. Moffett BS, et al. Spironolactone effect on potassium supplementation in paediatric cardiac intensive care patients. J Clin Pharm Ther. 2017;42(4):433–7.

    Article  CAS  PubMed  Google Scholar 

  43. Singh NC, et al. Comparison of continuous versus intermittent furosemide administration in postoperative pediatric cardiac patients. Crit Care Med. 1992;20(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  44. Miller JL, Thomas AN, Johnson PN. Use of continuous-infusion loop diuretics in critically ill children. Pharmacotherapy. 2014;34(8):858–67.

    Article  CAS  PubMed  Google Scholar 

  45. Bulkley CF, et al. Bumetanide continuous-infusion dosing in critically ill pediatric patients. Am J Health Syst Pharm. 2012;69(17):1458. 1460-1

    Article  CAS  PubMed  Google Scholar 

  46. McCallister KM, et al. Bumetanide continuous infusions in critically ill pediatric patients. Pediatr Crit Care Med. 2015;16(2):e19–22.

    Article  PubMed  Google Scholar 

  47. Miller JL, et al. Ethacrynic acid continuous infusions in critically ill pediatric patients. J Pediatr Pharmacol Ther. 2014;19(1):49–55.

    PubMed  PubMed Central  Google Scholar 

  48. Ricci Z, et al. Furosemide versus ethacrynic acid in pediatric patients undergoing cardiac surgery: a randomized controlled trial. Crit Care. 2015;19(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Blinder JJ, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.

    Article  PubMed  Google Scholar 

  50. Lex DJ, et al. Fluid overload is associated with higher mortality and morbidity in pediatric patients undergoing cardiac surgery. Pediatr Crit Care Med. 2016;17(4):307–14.

    Article  PubMed  Google Scholar 

  51. Bellos I, Iliopoulos DC, Perrea DN. Association of postoperative fluid overload with adverse outcomes after congenital heart surgery: a systematic review and dose-response meta-analysis. Pediatr Nephrol. 2020;35(6):1109–19.

    Article  PubMed  Google Scholar 

  52. Axelrod DM, et al. Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr Crit Care Med. 2014;15(1):21–7.

    Article  PubMed  Google Scholar 

  53. Costello JM, et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med. 2006;7(1):28–33.

    Article  PubMed  Google Scholar 

  54. Onder AM, et al. Comparison of intraoperative aminophylline versus furosemide in treatment of oliguria during pediatric cardiac surgery. Pediatr Crit Care Med. 2016;17(8):753–63.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Axelrod DM, et al. A double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following congenital heart surgery with cardiopulmonary bypass. Pediatr Crit Care Med. 2016;17(2):135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lopez C, et al. Acetazolamide therapy for metabolic alkalosis in pediatric intensive care patients. Pediatr Crit Care Med. 2016;17(12):e551–8.

    Article  PubMed  Google Scholar 

  57. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med. 2006;27(4):337–49.

    Article  PubMed  Google Scholar 

  58. Sinitsky L, et al. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: retrospective cohort study. Pediatr Crit Care Med. 2015;16(3):205–9.

    Article  PubMed  Google Scholar 

  59. Valentine SL, et al. Fluid balance in critically ill children with acute lung injury. Crit Care Med. 2012;40(10):2883–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wiedemann HP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.

    Article  CAS  PubMed  Google Scholar 

  61. Silversides JA, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.

    Article  PubMed  Google Scholar 

  62. Stulce C, et al. Fluid overload in pediatric severe traumatic brain injury. Pediatr Crit Care Med. 2020;21(2):164–9.

    Article  PubMed  Google Scholar 

  63. Tasker RC, Acerini CL. Cerebral edema in children with diabetic ketoacidosis: vasogenic rather than cellular? Pediatr Diabetes. 2014;15(4):261–70.

    Article  CAS  PubMed  Google Scholar 

  64. Rettig JS, Duncan ED, Tasker RC. Mechanical ventilation during acute brain-injury in children. Paediatr Respir Rev. 2016;20:17–23.

    PubMed  Google Scholar 

  65. Valentine SL, Tasker RC. Weighing the balance of fluids: are pediatric Neurotrauma patients different? Pediatr Crit Care Med. 2020;21(2):204–5.

    Article  PubMed  Google Scholar 

  66. Bavdekar A, Thakur N. Ascites in children. Indian J Pediatr. 2016;83(11):1334–40.

    Article  PubMed  Google Scholar 

  67. Sabri M, Saps M, Peters JM. Pathophysiology and management of pediatric ascites. Curr Gastroenterol Rep. 2003;5(3):240–6.

    Article  PubMed  Google Scholar 

  68. Wang LA, et al. Prolonged furosemide exposure and risk of abnormal newborn hearing screen in premature infants. Early Hum Dev. 2018;125:26–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Visage R, et al. Oral methods of urinary Alkalinization for high-dose methotrexate administration: alternatives to intravenous sodium bicarbonate during a critical drug shortage. J Pediatr Hematol Oncol. 2019;41(5):371–5.

    Article  CAS  PubMed  Google Scholar 

  70. Bargman JM, et al. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10):2158–62.

    Article  PubMed  Google Scholar 

  71. Lamarche C, et al. Pharmacokinetic and dynamic of furosemide in peritoneal dialysis patients. Perit Dial Int. 2016;36(1):107–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ha IS, et al. Risk factors for loss of residual renal function in children treated with chronic peritoneal dialysis. Kidney Int. 2015;88(3):605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen Q, et al. Risk factors for loss of residual renal function in children with end-stage renal disease undergoing automatic peritoneal dialysis. Perit Dial Int. 2020;40(4):368–76.

    Article  PubMed  Google Scholar 

  74. Lim CC, et al. Risk of glaucoma in patients receiving hemodialysis and peritoneal dialysis: a Nationwide population-based cohort study. Int J Environ Res Public Health. 2020;17(18)

    Google Scholar 

  75. Vitaliti G, et al. Therapeutic approaches to pediatric pseudotumor cerebri: new insights from literature data. Int J Immunopathol Pharmacol. 2017;30(1):94–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Voskaki I, et al. Effect of hydrochlorothiazide on renal hypercalciuria. Child Nephrol Urol. 1992;12(1):6–9.

    CAS  PubMed  Google Scholar 

  77. Parvin M, et al. The most important metabolic risk factors in recurrent urinary stone formers. Urol J. 2011;8(2):99–106.

    PubMed  Google Scholar 

  78. Reilly RF, Peixoto AJ, Desir GV. The evidence-based use of thiazide diuretics in hypertension and nephrolithiasis. Clin J Am Soc Nephrol. 2010;5(10):1893–903.

    Article  CAS  PubMed  Google Scholar 

  79. Liern M, Bohorquez M, Vallejo G. Treatment of idiopathic hypercalciuria and its impact on associated diseases. Arch Argent Pediatr. 2013;111(2):110–4.

    PubMed  Google Scholar 

  80. Heerspink HJL, et al. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94(1):26–39.

    Article  CAS  PubMed  Google Scholar 

  81. Kashihara N, Kidokoro K, Kanda E. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors and underlying mechanisms. Curr Opin Nephrol Hypertens. 2020;29(1):112–8.

    Article  CAS  PubMed  Google Scholar 

  82. Boles S, et al. Infantile idiopathic intracranial hypertension: a case study and review of the literature. J Child Neurol. 2019;34(13):806–14.

    Article  PubMed  Google Scholar 

  83. Samant M, Medsinge A, Nischal KK. Pediatric glaucoma: Pharmacotherapeutic options. Paediatr Drugs. 2016;18(3):209–19.

    Article  PubMed  Google Scholar 

  84. Luks AM, et al. Wilderness medical society consensus guidelines for the prevention and treatment of acute altitude illness. Wilderness Environ Med. 2010;21(2):146–55.

    Article  PubMed  Google Scholar 

  85. Reiss WG, Oles KS. Acetazolamide in the treatment of seizures. Ann Pharmacother. 1996;30(5):514–9.

    Article  CAS  PubMed  Google Scholar 

  86. Perkovic V, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  87. Wanner C, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  88. Dhillon S. Dapagliflozin: a review in type 2 diabetes. Drugs. 2019;79(10):1135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rameshkumar R, et al. Randomized clinical trial of 20% mannitol versus 3% hypertonic saline in children with raised intracranial pressure due to acute CNS infections. Pediatr Crit Care Med. 2020;21(12):1071–80.

    Article  PubMed  Google Scholar 

  90. Raina R, et al. Pediatric intradialytic hypotension: recommendations from the Pediatric Continuous Renal Replacement Therapy (PCRRT) workgroup. Pediatr Nephrol. 2019;34(5):925–41.

    Article  PubMed  Google Scholar 

  91. Prandota J. Clinical pharmacology of furosemide in children: a supplement. Am J Ther. 2001;8(4):275–89.

    Article  CAS  PubMed  Google Scholar 

  92. van der Vorst MM, et al. Diuretics in pediatrics : current knowledge and future prospects. Paediatr Drugs. 2006;8(4):245–64.

    Article  PubMed  Google Scholar 

  93. van der Vorst MM, et al. Continuous intravenous furosemide in haemodynamically unstable children after cardiac surgery. Intensive Care Med. 2001;27(4):711–5.

    Article  PubMed  Google Scholar 

  94. Pacifici GM. Clinical pharmacology of furosemide in neonates: a review. Pharmaceuticals (Basel). 2013;6(9):1094–129.

    Article  CAS  Google Scholar 

  95. Eades SK, Christensen ML. The clinical pharmacology of loop diuretics in the pediatric patient. Pediatr Nephrol. 1998;12(7):603–16.

    Article  CAS  PubMed  Google Scholar 

  96. McCallister KM, et al. Bumetanide continuous infusions in critically ill pediatric patients. Pediatr Crit Care Med. 2015;16(2):e19–22.

    Article  PubMed  Google Scholar 

  97. Commander SJ, et al. Pharmacokinetics of hydrochlorothiazide in children: a potential surrogate for renal secretion maturation. J Clin Pharmacol. 2021;61(3):368–77.

    Article  CAS  PubMed  Google Scholar 

  98. Pareek AK, et al. Efficacy of low-dose Chlorthalidone and hydrochlorothiazide as assessed by 24-h ambulatory blood pressure monitoring. J Am Coll Cardiol. 2016;67(4):379–89.

    Article  CAS  PubMed  Google Scholar 

  99. Blowey DL. Diuretics in the treatment of hypertension. Pediatr Nephrol. 2016;31(12):2223–33.

    Article  PubMed  Google Scholar 

  100. Bond G, et al., Metolazone, in StatPearls. 2021: Treasure Island (FL).

    Google Scholar 

  101. Vidt DG. Mechanism of action, pharmacokinetics, adverse effects, and therapeutic uses of amiloride hydrochloride, a new potassium-sparing diuretic. Pharmacotherapy. 1981;1(3):179–87.

    Article  CAS  PubMed  Google Scholar 

  102. Kirchlechner V, et al. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child. 1999;80(6):548–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bavdekar A, Thakur N. Ascites in children. Indian J Pediatr. 2016;83(11):1334–40.

    Article  PubMed  Google Scholar 

  104. Kojima T, et al. Efficacy and safety of tolvaptan after pediatric congenital heart disease surgery. Heart Vessel. 2021;36(5):717–23.

    Article  Google Scholar 

  105. Meena J, et al. Therapy with the combination of Tolvaptan and furosemide for refractory edema in nephrotic syndrome. Indian J Nephrol. 2020;30(1):53–5.

    Article  PubMed  Google Scholar 

  106. Ellison DH. Clinical pharmacology in diuretic use. Clin J Am Soc Nephrol. 2019;14(8):1248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Goodyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goodyer, P., Mir, M., Shemie, S. (2021). Clinical Use of Diuretics. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics