Skip to main content

Camelina sativa: An Emerging Biofuel Crop

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

In current scenario, the petroleum products should be replaced by renewable plant originated products, but the food crops must be avoided for this. In these lines, Camelina sativa L. Crantz is very promising crop; it needs no special fertilizers, herbicides, or pesticides and produces decent amount of biofuel. C. sativa contains 30–48% oil and 33–47% protein and adequate micronutrients. With such wholesome composition, it displays varied applications, not only as feed but also for multiple industrial uses. It has compounds of bio-significance like glucosinolates, phenolic compounds, tocopherols, polyunsaturated fatty acids, polysaccharides, and lignans.

In biofuel industries it is utilized as biodiesel, jet fuel, glycerol, and biolubricants. In animal and human system, Camelina oil and seeds have applicability in treatment of burns, inflammations, heart disease, neurological abnormalities, cholesterol reduction, ulcers, and cancer. It is also used as health-promoting supplements. Its application as adhesive, alkyd resins, cosmetic products, soaps, lotions, gum, plastics, and wax manufacturing are many other alternatives to create new dimensions in the pathway of Camelina. In agronomical practices, the deoiled cake of Camelina can be useful as organic fertilizer, pesticide, insecticide, and antifungal agents.

Camelina has high ω-3 fatty acid, which has capacity to be used in therapeutic formulations. It is also rich in antioxidant like α-tocopherol that is responsible to enhance shelf life. With the development of some improved new varieties, Camelina may prove to be a potential crop for future renewable feedstock for biofuel industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash P, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh H (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20(8):5879–5885

    Article  Google Scholar 

  • Abramovic H, Abram V (2005) Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol Biotechnol 43(1):63–70

    Google Scholar 

  • Abramovič H, Butinar B, Nikolič V (2007) Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem 104(3):903–909

    Article  Google Scholar 

  • Allen B, Vigil M, Jabro J (2014) Camelina growing degree hour and base temperature requirements. Agron J 106(3):940–944

    Article  Google Scholar 

  • Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9(1):187

    Article  Google Scholar 

  • Angelini LG, Moscheni E, Colonna G, Belloni P, Bonari E (1997) Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind Crop Prod 6(3):313–323

    Article  Google Scholar 

  • Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Aziza A, Quezada N, Cherian G (2010a) Feeding Camelina sativa meal to meat-type chickens: effect on production performance and tissue fatty acid composition. J Appl Poultry Res 19(2): 157–168

    Article  Google Scholar 

  • Aziza A, Quezada N, Cherian G (2010b) Antioxidative effect of dietary Camelina meal in fresh, stored, or cooked broiler chicken meat. Poult Sci 89(12):2711–2718

    Article  Google Scholar 

  • Balanuca B, Lungu A, Hanganu AM, Stan LR, Vasile E, Iovu H (2014) Hybrid nanocomposites based on POSS and networks of methacrylated Camelina oil and various PEG derivatives. Eur J Lipid Sci Technol 116(4):458–469

    Article  Google Scholar 

  • Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13–30

    Article  Google Scholar 

  • Berhow MA, Polat U, Glinski JA, Glensk M, Vaughn SF, Isbell T, Ayala-Diaz I, Marek L, Gardner C (2013) Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind Crop Prod 43:119–125

    Article  Google Scholar 

  • Bermúdez-Aguirre D, Barbosa-Cánovas GV (2011) Quality of selected cheeses fortified with vegetable and animal sources of omega-3. LWT-Food Sci Technol 44(7):1577–1584

    Article  Google Scholar 

  • Bernardo A, Howard-Hildige R, O’Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy J (2003) Camelina oil as a fuel for diesel transport engines. Ind Crop Prod 17(3):191–197

    Article  Google Scholar 

  • Berti M, Wilckens R, Fischer S, Solis A, Johnson B (2011) Seeding date influence on Camelina seed yield, yield components, and oil content in Chile. Ind Crop Prod 34(2):1358–1365

    Article  Google Scholar 

  • Betancor M, Sprague M, Usher S, Sayanova O, Campbell P, Napier JA, Tocher DR (2015) A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci Rep 5:8104

    Article  Google Scholar 

  • Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76(6):1191–1201

    Article  Google Scholar 

  • Blades M, Zubr J (2010) Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutr Food Sci 40(5):523–531

    Article  Google Scholar 

  • Botelho PB, da Rocha Mariano K, Rogero MM, de Castro IA (2013) Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. Lipids Health Dis 12(1):1

    Article  Google Scholar 

  • Brandess A (2007) Modeling the profitability of Camelina sativa as a biofuel feedstock in eastern Colorado, Master’s Thesis in Agricultural and Resource Economics, Colorado State University, Fort Collins, US

    Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of Camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72(3):309–315

    Article  Google Scholar 

  • Bullerwell CN, Collins SA, Lall SP, Anderson DM (2016) Growth performance, proximate and histological analysis of rainbow trout fed diets containing Camelina sativa seeds, meal (high-oil and solvent-extracted) and oil. Aquaculture 452:342–350

    Article  Google Scholar 

  • Cais-Sokolińska D, Majcher M, Pikul J, Bielińska S, Czauderna M, Wójtowski J (2013) The effect of Camelina sativa cake diet supplementation on sensory and volatile profiles of ewe’s milk. Afr J Biotechnol 10(37):7245–7252

    Google Scholar 

  • Cappellozza BI, Cooke R, Bohnert D, Cherian G, Carroll J (2012) Effects of Camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. J Anim Sci 90(11):4042–4054

    Article  Google Scholar 

  • Carlsson AS (2009) Plant oils as feedstock alternatives to petroleum–a short survey of potential oil crop platforms. Biochimie 91(6):665–670

    Article  Google Scholar 

  • Cermak SC, Biresaw G, Isbell TA, Evangelista RL, Vaughn SF, Murray R (2013) New crop oils – properties as potential lubricants. Ind Crop Prod 44:232–239

    Article  Google Scholar 

  • Chaturvedi S (2011) Influence of composted biodiesel cake on growth, yield, and micronutrient composition of tomato. Commun Soil Sci Plant Anal 42(21):2642–2653

    Article  Google Scholar 

  • Chaturvedi S, Kumar A (2012) Bio-diesel waste as tailored organic fertilizer for improving yields and nutritive values of Lycopercicum esculatum (tomato) crop. J Soil Sci Plant Nutr 12(4): 801–810

    Google Scholar 

  • Chaturvedi S, Kumar V, Satya S (2009) Composting effects of Pongamia pinnata on tomato fertilization. Arch Agron Soil Sci 55(5):535–546

    Article  Google Scholar 

  • Chaturvedi S, Singh B, Nain L, Khare SK, Pandey AK, Satya S (2010) Evaluation of hydrolytic enzymes in bioaugmented compost of Jatropha cake under aerobic and partial anaerobic conditions. Ann Microbiol 60(4):685–691

    Article  Google Scholar 

  • Chaturvedi S, Hemamalini R, Khare SK (2012) Effect of processing conditions on saponin content and antioxidant activity of Indian varieties of soybean (Glycine max Linn.) Cell 91:09350408194

    Google Scholar 

  • Chaturvedi S, Kumar A, Singh B, Nain L, Joshi M, Satya S (2013) Bioaugmented composting of Jatropha de-oiled cake and vegetable waste under aerobic and partial anaerobic conditions. J Basic Microbiol 53(4):327–335

    Article  Google Scholar 

  • Chaturvedi S, Luqman S, Khare SK (2014) Facet of isoflavone, phenol and flavonoid content in soybean (Glycine max Merrill) varieties under dissimilar processing conditions. Annals of Phytomedicine 3(1):50–55

    Google Scholar 

  • Chedea V, Pelmus R, Smaranda T, Taranu I, Grosu H, Dragomir C (2014) Evaluation of Camelina meal as a dietary source of polyphenol for dairy cows. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 71(2):279–280

    Google Scholar 

  • Chen C, Bekkerman A, Afshar RK, Neill K (2015) Intensification of dryland cropping systems for bio-feedstock production: evaluation of agronomic and economic benefits of Camelina sativa. Ind Crop Prod 71:114–121

    Article  Google Scholar 

  • Cherian G (2012) Camelina sativa in poultry diets: opportunities and challenges. In: Biofuel co-products as livestock feed: opportunities and challenges. FAO, Rome, pp 303–310

    Google Scholar 

  • Cherian G, Campbell A, Parker T (2009) Egg quality and lipid composition of eggs from hens fed Camelina sativa. J Appl Poultry Res 18(2):143–150

    Article  Google Scholar 

  • Ciubota-Rosie C, Ruiz JR, Ramos MJ, Pérez Á (2013) Biodiesel from Camelina sativa: a comprehensive characterisation. Fuel 105:572–577

    Article  Google Scholar 

  • Ciuca N (2013) Effect of the dietary by-product Camelina meal on performances and carcass quality of TOPIGS pigs. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 70(2): 205–213

    Google Scholar 

  • Crowley J, Fröhlich A (1998) Factors affecting the composition and use of Camelina. Citeseer, Dublin

    Google Scholar 

  • Cuendet M, Oteham CP, Moon RC, Pezzuto JM (2006) Quinone reductase induction as a biomarker for cancer chemoprevention⊥. J Nat Prod 69(3):460–463

    Article  Google Scholar 

  • Cui SW (2000) Polysaccharide gums from agricultural products: processing, structures and functionality. CRC Press, Technomic Publishing Company, Inc. Lancaster, USA

    Google Scholar 

  • Czech Z (2007) Synthesis and cross-linking of acrylic PSA systems. J Adhes Sci Technol 21(7): 625–635

    Article  Google Scholar 

  • Dal Bello B, Torri L, Piochi M, Zeppa G (2015) Healthy yogurt fortified with n-3 fatty acids from vegetable sources. J Dairy Sci 98(12):8375–8385

    Article  Google Scholar 

  • Dalbey WE, Biles RW (2003) Respiratory toxicology of mineral oils in laboratory animals. Appl Occup Environ Hyg 18(11):921–929

    Article  Google Scholar 

  • Das N, Berhow MA, Angelino D, Jeffery EH (2014) Camelina sativa defatted seed meal contains both alkyl sulfinyl glucosinolates and quercetin that synergize bioactivity. J Agric Food Chem 62(33):8385–8391

    Article  Google Scholar 

  • Davis PB, Menalled FD, Peterson RK, Maxwell BD (2011) Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J Appl Ecol 48(4):989–997

    Article  Google Scholar 

  • Eidhin DN, O’Beirne D (2010) Oxidative stability of Camelina oil in salad dressings, mayonnaises and during frying. Int J Food Sci Technol 45(3):444–452

    Article  Google Scholar 

  • Eidhin DN, Burke J, O’Beirne D (2003) Oxidative stability of ω3-rich Camelina oil and Camelina oil-based spread compared with plant and fish oils and sunflower spread. J Food Sci 68(1): 345–353

    Article  Google Scholar 

  • Enjalbert J, Johnson J (2011) Guide for producing dryland Camelina in eastern Colorado. Colorado State University Extension, Fort Collins

    Google Scholar 

  • Erhan SZ (2005) Industrial uses of vegetable oils. AOCS Press, Champaign

    Book  Google Scholar 

  • Escobar D, Clark S, Ganesan V, Repiso L, Waller J, Harte F (2011) High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese. J Dairy Sci 94(3):1201–1210

    Article  Google Scholar 

  • Fahey JW, Wade KL, Stephenson KK, Chou FE (2003) Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J Chromatogr A 996(1):85–93

    Article  Google Scholar 

  • Fairley P (2011) Introduction: next generation biofuels. Nature 474(7352):S2–S5

    Article  Google Scholar 

  • Fishel CV, Lakeman M, Lawrence M, Tindal C (2011) Roundtable: aviation biofuels: can biotech make a difference? Ind Biotechnol 7(3):172–179

    Article  Google Scholar 

  • Flachowsky G, Schaarmann G, Jahreis G, Schone F, Richter G, Bohme H, Schneider A (1997) Influence of feeding of oilseeds and byproducts from oilseeds on vitamin E concentration of animal products. Fett-Lipid 99(2):55–60

    Article  Google Scholar 

  • Frame DD, Palmer M, Peterson B (2007) Use of Camelina sativa in the diets of young turkeys. J Appl Poultry Res 16(3):381–386

    Article  Google Scholar 

  • Franke R, Schreiber L (2007) Suberin – a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10(3):252–259

    Article  Google Scholar 

  • Fröhlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crop Prod 21(1):25–31

    Article  Google Scholar 

  • Froment M, Mastebroek D, Van Gorp K (2006) A growers manual for Calendula officinalis L. http://www.defra.gov.uk /farm/crops/industrial/ research/reports/ Calendula%. 20Manual.pdf

    Google Scholar 

  • Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061–1083

    Article  Google Scholar 

  • Ganesan B, Brothersen C, McMahon DJ (2014) Fortification of foods with omega-3 polyunsaturated fatty acids. Crit Rev Food Sci Nutr 54(1):98–114

    Article  Google Scholar 

  • Gesch R, Cermak S (2011) Sowing date and tillage effects on fall-seeded Camelina in the northern corn belt. Agron J 103(4):980–987

    Article  Google Scholar 

  • Gesch R, Isbell T, Oblath E, Allen B, Archer D, Brown J, Hatfield J, Jabro J, Kiniry J, Long D (2015) Comparison of several Brassica species in the north central US for potential jet fuel feedstock. Ind Crop Prod 75:2–7

    Article  Google Scholar 

  • Gilbertson P, Johnson B, Berti M, Halvorson M (2007) Seeding date and performance of specialty oilseeds in North Dakota. Issues in new crops and new uses. ASHS Press, Alexandria, pp 105–110

    Google Scholar 

  • Goffman FD, Thies W, Velasco L (1999) Chemotaxonomic value of tocopherols in Brassicaceae. Phytochemistry 50(5):793–798

    Article  Google Scholar 

  • Gogus U, Smith C (2010) n-3 Omega fatty acids: a review of current knowledge. Int J Food Sci Technol 45(3):417–436

    Article  Google Scholar 

  • Grady K, Nleya TM (2010) Camelina production. South Dakota Cooperative Extension Service, Brookings

    Google Scholar 

  • Graham-Rowe D (2011) Agriculture: beyond food versus fuel. Nature 474(7352):S6–S8

    Article  Google Scholar 

  • Gryglewicz S, Muszyński M, Nowicki J (2013) Enzymatic synthesis of rapeseed oil-based lubricants. Ind Crop Prod 45:25–29

    Article  Google Scholar 

  • Gugel R, Falk K (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86:1047

    Article  Google Scholar 

  • Güner FS, Yağcı Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31(7): 633–670

    Article  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  Google Scholar 

  • Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197(1):12–24

    Article  Google Scholar 

  • Hayes J, Stepanyan V, Allen P, O’Grady M, O’Brien N, Kerry J (2009) The effect of lutein, sesamol, ellagic acid and olive leaf extract on lipid oxidation and oxymyoglobin oxidation in bovine and porcine muscle model systems. Meat Sci 83(2):201–208

    Article  Google Scholar 

  • Hertog MG, Hollman PC, Venema DP (1992) Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J Agric Food Chem 40(9): 1591–1598

    Article  Google Scholar 

  • Hixson SM, Parrish CC, Anderson DM (2013) Effect of replacement of fish oil with Camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua). Fish Physiol Biochem 39(6):1441–1456

    Article  Google Scholar 

  • Hixson SM, Parrish CC, Anderson DM (2014a) Use of Camelina oil to replace fish oil in diets for farmed salmonids and Atlantic cod. Aquaculture 431:44–52

    Article  Google Scholar 

  • Hixson SM, Parrish CC, Anderson DM (2014b) Full substitution of fish oil with Camelina (Camelina sativa) oil, with partial substitution of fish meal with Camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem 157:51–61

    Article  Google Scholar 

  • Hrastar R, Petrisic MG, Ogrinc N, Košir IJ (2009) Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication. J Agric Food Chem 57(2): 579–585

    Article  Google Scholar 

  • Hrastar R, Petrisic MG, Ogrinc N, Kosir IJ (2011) Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication. J Agric food Chem 57:579–585

    Article  Google Scholar 

  • Hu P, Wang A, Engledow A, Hollister E, Rothlisberger K, Matocha J, Zuberer D, Provin T, Hons F, Gentry T (2011) Inhibition of the germination and growth of Phymatotrichopsis omnivora (cotton root rot) by oilseed meals and isothiocyanates. Appl Soil Ecol 49:68–75

    Article  Google Scholar 

  • Hulbert AJ, Turner N, Storlien L, Else P (2005) Dietary fats and membrane function: implications for metabolism and disease. Biol Rev 80(01):155–169

    Article  Google Scholar 

  • Hulbert S, Guy S, Pan W, Paulitz T, Schillinger W, Sowers K, Wysocki D (2012) Camelina production in the dryland Pacific Northwest. Washington State University Extension, Pullman

    Google Scholar 

  • Hurtaud C, Peyraud J (2007) Effects of feeding Camelina (seeds or meal) on milk fatty acid composition and butter spreadability. J Dairy Sci 90(11):5134–5145

    Article  Google Scholar 

  • IATA A (2009) Global approach to reducing aviation emissions. First Stop: Carbon Neutral Growth from 2020

    Google Scholar 

  • Imbrea F, Jurcoane S, Halmajan HV, Duda M, Botos L (2011) Camelina sativa: a new source of vegetable oil. Rom Biotechnol Lett 16:6263–6270

    Google Scholar 

  • Iskandarov U, Kim HJ, Cahoon EB (2014) Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials. In: McCann M., Buckeridge M., Carpita N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY

    Google Scholar 

  • Jeffery EH, Araya M (2009) Physiological effects of broccoli consumption. Phytochem Rev 8(1): 283–298

    Article  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2008) 4 composition of plant cuticular waxes. Annu Plant Rev Biol Plant Cuticle 23:145

    Google Scholar 

  • Jha P, Stougaard RN (2013) Camelina (Camelina sativa) tolerance to selected Preemergence Herbicides. Weed Technol 27(4):712–717

    Article  Google Scholar 

  • Jiang Y, Caldwell CD, Falk KC (2014) Camelina seed quality in response to applied nitrogen, genotype and environment. Can J Plant Sci 94(5):971–980

    Article  Google Scholar 

  • Johnson D (2007) Camelina: an emerging crop for bioenergy. In: In vitro cellular & developmental biology-Animal. Springer, New York, pp S12–S13

    Google Scholar 

  • Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116(11):4846–4851

    Article  Google Scholar 

  • Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49(2): 223–229

    Article  Google Scholar 

  • Karvonen HM, Aro A, Tapola NS, Salminen I, Uusitupa MI, Sarkkinen ES (2002) Effect of [alpha]-linolenic acid [ndash] rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism 51(10):1253–1260

    Article  Google Scholar 

  • Kasetaite S, Ostrauskaite J, Grazuleviciene V, Svediene J, Bridziuviene D (2014) Camelina oil-and linseed oil-based polymers with bisphosphonate crosslinks. J Appl Polym Sci 131(17):8536

    Article  Google Scholar 

  • Kerstiens G (1996) Signalling across the divide: a wider perspective of cuticular structure – function relationships. Trends Plant Sci 1(4):125–129

    Article  Google Scholar 

  • Kim JT, Netravali AN (2012) Non-food application of Camelina meal: development of sustainable and green biodegradable paper-Camelina composite sheets and fibers. Polym Compos 33(11): 1969–1976

    Article  Google Scholar 

  • Kim N, Li Y, Sun XS (2015) Epoxidation of Camelina sativa oil and peel adhesion properties. Ind Crop Prod 64:1–8

    Article  Google Scholar 

  • Kirkhus B, Lundon AR, Haugen J-E, Vogt G, Borge GIA, Henriksen BI (2013) Effects of environmental factors on edible oil quality of organically grown Camelina sativa. J Agric Food Chem 61(13):3179–3185

    Article  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070

    Article  Google Scholar 

  • Korsrud G, Keith M, Bell J (1978) A comparison of the nutritional value of crambe and Camelina seed meals with egg and casein. Can J Anim Sci 58(3):493–499

    Article  Google Scholar 

  • Koski A, Pekkarinen S, Hopia A, Wähälä K, Heinonen M (2003) Processing of rapeseed oil: effects on sinapic acid derivative content and oxidative stability. Eur Food Res Technol 217(2):110–114

    Article  Google Scholar 

  • Kosma DK, Molina I, Ohlrogge JB, Pollard M (2012) Identification of an Arabidopsis fatty alcohol: caffeoyl-coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiol 160(1):237–248

    Article  Google Scholar 

  • Krohn BJ, Fripp M (2012) A life cycle assessment of biodiesel derived from the “niche filling” energy crop Camelina in the USA. Appl Energy 92:92–98

    Article  Google Scholar 

  • Kumari A, Mohsin M, Arya MC, Joshi PK, Ahmed Z (2012) Effect of spacing on Camelina sativa: A new biofuel crop in India. Bioscan 7(4):575–577

    Google Scholar 

  • Lane J (2008) India ministerial group approves national bio-Fuel policy, avoids key decisions on bio-diesel, Jatropha Support. BioFuel Digest

    Google Scholar 

  • Lenssen AW, Iversen WM, Sainju UM, Caesar-TonThat T, Blodgett SL, Allen BL, Evans RG (2012) Yield, pests, and water use of durum and selected crucifer oilseeds in two-year rotations. Agron J 104(5):1295–1304

    Article  Google Scholar 

  • Li Y, Sun XS (2014) Di-hydroxylated soybean oil polyols with varied hydroxyl values and their influence on UV-curable pressure-sensitive adhesives. J Am Oil Chem Soc 91(8):1425–1432

    Article  Google Scholar 

  • Li Y, Beisson F, Ohlrogge J, Pollard M (2007) Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144(3):1267–1277

    Article  Google Scholar 

  • Li N, Wang Y, Tilley M, Bean SR, Wu X, Sun XS, Wang D (2011) Adhesive performance of sorghum protein extracted from sorghum DDGS and flour. J Polym Environ 19(3):755–765

    Article  Google Scholar 

  • Li N, Qi G, Sun XS, Wang D, Bean S, Blackwell D (2014) Isolation and characterization of protein fractions isolated from Camelina meal. Trans ASABE 57(1):169–178

    Google Scholar 

  • Li N, Qi G, Sun XS, Xu F, Wang D (2015) Adhesion properties of Camelina protein fractions isolated with different methods. Ind Crop Prod 69:263–272

    Article  Google Scholar 

  • Li N, Qi G, Sun XS, Wang D (2016) Characterization of gum isolated from Camelina seed. Ind Crop Prod 83:268–274

    Article  Google Scholar 

  • Liang YC, May CY, Foon CS, Ngan MA, Hock CC, Basiron Y (2006) The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85(5):867–870

    Article  Google Scholar 

  • Liu J, Tjellström H, McGlew K, Shaw V, Rice A, Simpson J, Kosma D, Ma W, Yang W, Strawsine M (2015) Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa. Ind Crop Prod 65:259–268

    Article  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by agrobacterium-mediated transformation. Plant Cell Rep 27(2):273–278

    Article  Google Scholar 

  • Lue B-M, Nielsen NS, Jacobsen C, Hellgren L, Guo Z, Xu X (2010) Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chem 123(2):221–230

    Article  Google Scholar 

  • Luna FMT, Rocha BS, Rola EM, Albuquerque MC, Azevedo DC, Cavalcante CL (2011) Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Ind Crop Prod 33(3):579–583

    Article  Google Scholar 

  • Marquard VR, Kuhlmann H (1986) Investigations of productive capacity and seed quality of linseed dodder (Camelina sativa Crtz.). Fette Seifen Anstrichm 88:245–249

    Article  Google Scholar 

  • Matthäs B (1997) Antinutritive compounds in different oilseeds. Lipid/Fett 99(5):170–174

    Article  Google Scholar 

  • Matthäus B (2002) Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem 50(12):3444–3452

    Article  Google Scholar 

  • Matthaus B (2004) Camelina sativa-revival of an old vegetable oil? Ernahrungs-Umschau 51(1): 12–15

    Google Scholar 

  • Matthäus B, Zubr J (2000) Variability of specific components in Camelina sativa oilseed cakes. Ind Crop Prod 12(1):9–18

    Article  Google Scholar 

  • McNutt J (2016) Development of biolubricants from vegetable oils via chemical modification. J Ind Eng Chem 36:1

    Article  Google Scholar 

  • McVay K, Lamb P (2008) Camelina production in Montana. A self-learning resource from MSU extension, US. www.msuextension.org/publications.asp

  • Meadus WJ, Duff P, McDonald T, Caine WR (2014) Pigs fed Camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase. J Anim Sci Biotechnol 5(1):1

    Article  Google Scholar 

  • Merrien A, Carre P, Quinsac A (2012) Des ressources oléagineuses variées potentiellement au service du développement de la chimie verte. Oléagineux, Corps gras, Lipides 19(1):6–9

    Article  Google Scholar 

  • Morais S, Edvardsen RB, Tocher DR, Bell JG (2012) Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod (Gadus morhua) fed diets with Camelina oil as replacement for fish oil. Comp Biochem Physiol B: Biochem Mol Biol 161(3):283–293

    Article  Google Scholar 

  • Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope? Lipid Technol 22(12):270–273

    Article  Google Scholar 

  • Moser BR (2012) Biodiesel from alternative oilseed feedstocks: Camelina and field pennycress. Biofuels 3(2):193–209

    Article  Google Scholar 

  • Moser BR, Vaughn SF (2010) Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour Technol 101(2):646–653

    Article  Google Scholar 

  • Mulligan GA (2002) Weedy introduced mustards (Brassicaceae) of Canada. Can Field-Naturalist 116(4):623–631

    Google Scholar 

  • Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41(5):1523–1542

    Article  Google Scholar 

  • Nagendramma P, Kaul S (2012) Development of ecofriendly/biodegradable lubricants: an overview. Renew Sust Energ Rev 16(1):764–774

    Article  Google Scholar 

  • Nosal H, Nowicki J, Warzała M, Nowakowska-Bogdan E, Zarębska M (2015) Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Prog Org Coat 86:59–70

    Article  Google Scholar 

  • Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K, Stockmann R (2005) Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem 53(4):823–837

    Article  Google Scholar 

  • Obour A, Sintim H, Obeng E, Zheljazkov D (2015) Oilseed Camelina (Camelina sativa L Crantz): production systems, prospects and challenges in the USA Great Plains. Adv Plants Agric Res 2:1–10

    Google Scholar 

  • Onyilagha J, Bala A, Hallett R, Gruber M, Soroka J, Westcott N (2003) Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem Syst Ecol 31(11):1309–1322

    Article  Google Scholar 

  • Oomah BD, Kenaschuk EO, Mazza G (1995) Phenolic acids in flaxseed. J Agric Food Chem 43(8):2016–2019

    Article  Google Scholar 

  • Özer BH, Kirmaci HA (2010) Functional milks and dairy beverages. Int J Dairy Technol 63(1):1–15

    Article  Google Scholar 

  • Pan X, Xie W, Caldwel C, Anderson D (2011) Growth performance and carcass composition of rainbow trout (Oncorhynchus mykiss) fed practical diets containing graded levels of high fat residue Camelina meal. In: Canadian Journal of animal science, vol 3. Agricultural Institute Canada, Ottawa, pp 484–484

    Google Scholar 

  • Parker A (2014) Camelina sativa: success of a temperate biofuel crop as intercrop in tropical conditions of Mhow, Madhya Pradesh, India. Curr Sci 107(3):359

    Google Scholar 

  • Pavlista A, Isbell T, Baltensperger D, Hergert G (2011) Planting date and development of spring-seeded irrigated canola, brown mustard and Camelina. Ind Crop Prod 33(2):451–456

    Article  Google Scholar 

  • Peiretti P, Mussa P, Prola L, Meineri G (2007) Use of different levels of false flax (Camelina sativa L.) seed in diets for fattening rabbits. Livest Sci 107(2):192–198

    Article  Google Scholar 

  • Peričin D, Krimer V, Trivić S, Radulović L (2009) The distribution of phenolic acids in pumpkin’s hull-less seed, skin, oil cake meal, dehulled kernel and hull. Food Chem 113(2):450–456

    Article  Google Scholar 

  • Peschel W, Dieckmann W, Sonnenschein M, Plescher A (2007) High antioxidant potential of pressing residues from evening primrose in comparison to other oilseed cakes and plant antioxidants. Ind Crop Prod 25(1):44–54

    Article  Google Scholar 

  • Putnam D, Budin J, Field L, Breene W (1993) Camelina: a promising low-input oilseed. In: New crops. Wiley, New York, p 314

    Google Scholar 

  • Qi G, Sun XS (2011) Soy protein adhesive blends with synthetic latex on wood veneer. J Am Oil Chem Soc 88(2):271–281

    Article  Google Scholar 

  • Qi G, Li N, Wang D, Sun XS (2012) Physicochemical properties of soy protein adhesives obtained by in situ sodium bisulfite modification during acid precipitation. J Am Oil Chem Soc 89(2): 301–312

    Article  Google Scholar 

  • Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications–a review. Bioresour Technol 98(10):2000–2009

    Article  Google Scholar 

  • Rana D, Pachauri D (2001) Sensitivity of zero erucic acid genotypes of oleiferous brassicas to plant population and planting geometry. Indian J Agronomy 46(4):736–740

    Google Scholar 

  • Rani S, Joy M, Nair KP (2015) Evaluation of physiochemical and tribological properties of rice bran oil–biodegradable and potential base stoke for industrial lubricants. Ind Crop Prod 65:328–333

    Article  Google Scholar 

  • Rathke G-W, Behrens T, Diepenbrock W (2006) Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ 117(2):80–108

    Article  Google Scholar 

  • Razeq FM, Kosma DK, Rowland O, Molina I (2014) Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188–196

    Article  Google Scholar 

  • Reaney M, Hartley Furtan W, Loutas P (2006) A critical cost benefit analysis of oilseed biodiesel in Canada: a BIOCAP research integration program synthesis paper, Canada. www.biocap.ca

  • Reddy N, Jin E, Chen L, Jiang X, Yang Y (2012) Extraction, characterization of components, and potential thermoplastic applications of Camelina meal grafted with vinyl monomers. J Agric Food Chem 60(19):4872–4879

    Article  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Robinson RG (1987) Camelina: a useful research crop and a potential oilseed crop. Minnesota Agricultural Experiment Station, University of Minnesota, St. Paul

    Google Scholar 

  • Rode J (2002) Study of autochthon Camelina sativa (L.) Crantz in Slovenia. J Herbs Spices Med Plants 9(4):313–318

    Article  Google Scholar 

  • Rokka T, Alén K, Valaja J, Ryhänen E-L (2002) The effect of a Camelina sativa enriched diet on the composition and sensory quality of hen eggs. Food Res Int 35(2):253–256

    Article  Google Scholar 

  • Russo R, Reggiani R (2012) Antinutritive compounds in twelve Camelina sativa genotypes

    Google Scholar 

  • Ryhänen EL, Perttilä S, Tupasela T, Valaja J, Eriksson C, Larkka K (2007) Effect of Camelina sativa expeller cake on performance and meat quality of broilers. J Sci Food Agric 87(8): 1489–1494

    Article  Google Scholar 

  • Saarinen NM, Wärri A, Airio M, Smeds A, Mäkelä S (2007) Role of dietary lignans in the reduction of breast cancer risk. Mol Nutr Food Res 51(7):857–866

    Article  Google Scholar 

  • Salminen H, Heinonen M (2008) Plant phenolics affect oxidation of tryptophan. J Agric Food Chem 56(16):7472–7481

    Article  Google Scholar 

  • Salminen H, Estévez M, Kivikari R, Heinonen M (2006) Inhibition of protein and lipid oxidation by rapeseed, Camelina and soy meal in cooked pork meat patties. Eur Food Res Technol 223(4): 461–468

    Article  Google Scholar 

  • Sampath A (2009) Chemical characterization of Camelina seed oil. Rutgers University-Graduate School, New Brunswick

    Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Plant Biol 59(1):683

    Article  Google Scholar 

  • Satas D (1989) Characterization and Evaluation of Materials. Handbook of pressure sensitive adhesive technology. Van Nostrand Reinhold company incorporated, Springer Science and Business Media New York

    Google Scholar 

  • Schillinger WF, Wysocki DJ, Chastain TG, Guy SO, Karow RS (2012) Camelina: planting date and method effects on stand establishment and seed yield. Field Crop Res 130:138–144

    Article  Google Scholar 

  • Schneider MP (2006) Plant-oil-based lubricants and hydraulic fluids. J Sci Food Agric 86(12): 1769–1780

    Article  Google Scholar 

  • Séguin-Swartz G, Eynck C, Gugel R, Strelkov S, Olivier C, Li J, Klein-Gebbinck H, Borhan H, Caldwell C, Falk K (2009) Diseases of Camelina sativa (false flax). Can J Plant Pathol 31(4):375–386

    Article  Google Scholar 

  • Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29(3):382–392

    Article  Google Scholar 

  • Simopoulos AP (1999) New products from the agri-food industry: the return of n-3 fatty acids into the food supply. Lipids 34(1):S297–S301

    Article  Google Scholar 

  • Sioen I, De Henauw S, Van Camp J, Volatier J-L, Leblanc J-C (2009) Comparison of the nutritional–toxicological conflict related to seafood consumption in different regions worldwide. Regul Toxicol Pharmacol 55(2):219–228

    Article  Google Scholar 

  • Skupinska K, Misiewicz-Krzeminska I, Stypulkowski R, Lubelska K, Kasprzycka-Guttman T (2009) Sulforaphane and its analogues inhibit CYP1A1 and CYP1A2 activity induced by benzo [a] pyrene. J Biochem Mol Toxicol 23(1):18–28

    Article  Google Scholar 

  • Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55(4):1337–1346

    Article  Google Scholar 

  • Smeds AI, Eklund PC, Willför SM (2012) Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chem 134(4):1991–1998

    Article  Google Scholar 

  • Soares VL, Lachter ER, Rodrigues JdA Jr, Batista LN, Nascimento RS (2011) New applications for soybean biodiesel glycerol. Soyabean- Application and technology, Agricultural and biological sciences. INTECH Open Access Publisher, SE19 SG, London, UK

    Google Scholar 

  • Solis A, Vidal I, Paulino L, Johnson BL, Berti MT (2013) Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Ind Crop Prod 44:132–138

    Article  Google Scholar 

  • Soni S, Agarwal M (2014) Lubricants from renewable energy sources–a review. Green Chem Letters Rev 7(4):359–382

    Article  Google Scholar 

  • Soriano NU Jr, Narani A (2012) Evaluation of biodiesel derived from Camelina sativa oil. J Am Oil Chem Soc 89(5):917–923

    Article  Google Scholar 

  • Spencer GF, Daxenbichler ME (1980) Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates. J Sci Food Agric 31(4):359–367

    Article  Google Scholar 

  • Steiner J, Griffith S, Mueller-Warrant G, Whittaker G, Banowetz G, Elliott L (2006) Conservation practices in western Oregon perennial grass seed systems. Agron J 98(1):177–186

    Article  Google Scholar 

  • Szumacher-Strabel M, Cieślak A, Zmora P, Pers-Kamczyc E, Bielińska S, Stanisz M, Wójtowski J (2011) Camelina sativa cake improved unsaturated fatty acids in ewe’s milk. J Sci Food Agric 91(11):2031–2037

    Article  Google Scholar 

  • Taasevigen DJ (2010) Camelina composite pellet fuels feasibility for residential and commercial applications. Montana State University-Bozeman, College of Engineering

    Google Scholar 

  • Terpinc P, Abramovič H (2010) A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chem 121(2):366–371

    Article  Google Scholar 

  • Terpinc P, Polak T, Šegatin N, Hanzlowsky A, Ulrih NP, Abramovič H (2011) Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem 128(1):62–69

    Article  Google Scholar 

  • Terpinc P, Polak T, Makuc D, Ulrih NP, Abramovič H (2012) The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chem 131(2):580–589

    Article  Google Scholar 

  • Thiyam U, Kuhlmann A, Stöckmann H, Schwarz K (2004) Prospects of rapeseed oil by-products with respect to antioxidative potential. C R Chim 7(6):611–616

    Article  Google Scholar 

  • Tripathi V, Edrisi SA, Abhilash P (2016) Towards the coupling of phytoremediation with bioenergy production. Renew Sust Energ Rev 57:1386–1389

    Article  Google Scholar 

  • Trumbo P, Schlicker S, Yates AA, Poos M (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102(11): 1621–1630

    Article  Google Scholar 

  • Tse MF, Jacob L (1996) Pressure sensitive adhesives based on vector sis polymers i. rheological model and adhesive design pathways. J Adhes 56(1–4):79–95

    Article  Google Scholar 

  • Tuck N (2000) Waterborne and solvent based alkyds and their end user applications. Wiley, Chichester

    Google Scholar 

  • Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L (2008a) The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the maritime provinces of Canada. Can J Plant Sci 88:111–119

    Article  Google Scholar 

  • Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L (2008b) The effect of seeding rate, seeding date and seeder type on the performance of Camelina sativa L. in the maritime provinces of Canada. Can J Plant Sci 88:501–508

    Article  Google Scholar 

  • Vanbeneden N, Gils F, Delvaux F, Delvaux FR (2008) Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem 107(1):221–230

    Article  Google Scholar 

  • Vanharanta M, Voutilainen S, Lakka TA, van der Lee M, Adlercreutz H, Salonen JT (1999) Risk of acute coronary events according to serum concentrations of enterolactone: a prospective population-based case-control study. Lancet 354(9196):2112–2115

    Article  Google Scholar 

  • Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crop Prod 21(2):193–202

    Article  Google Scholar 

  • Vella MN, Stratton LM, Sheeshka J, Duncan AM (2013) Exploration of functional food consumption in older adults in relation to food matrices, bioactive ingredients, and health. J Nutr Gerontol Geriatr 32(2):122–144

    Article  Google Scholar 

  • Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55(401):1401–1410

    Article  Google Scholar 

  • Vollmann J, Damboeck A, Eckl A, Schrems H, Ruckenbauer P (1996) Improvement of Camelina sativa, an underexploited oilseed. In: Progress in new crops, vol 1. ASHS Press, Alexandria, pp 357–362

    Google Scholar 

  • Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H (2007) Agronomic evaluation of Camelina genotypes selected for seed quality characteristics. Ind Crop Prod 26(3):270–277

    Article  Google Scholar 

  • von Wettstein-Knowles P (2012) Plant waxes. eLS-Wiley, Chichester. https://doi.org/10.1002/9780470015902:a0001919

    Book  Google Scholar 

  • Walter RH (1997) Polysaccharide dispersions: chemistry and technology in food. Academic press, Elsevier, Cambridge, Massachusetts, United States

    Google Scholar 

  • Waraich EA, Ahmed Z, Ahmad R, Saifullah MYA, Naeem MS, Rengel Z (2013) Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: a review. Aust J Crop Sci 7(10):1551

    Google Scholar 

  • Welch AS, Shakya-Shrestha MAH, Lentjes NJW, Khaw K (2010) Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish eating and non-fish eating meat-eaters, vegetarians and vegans and the precursor product ratio of α linolenic acid to long chain n-3 polyunsaturated fatty acids: results from the EPIC-Norflik cohort. Am J Clin Nutr 92:1040–1051

    Article  Google Scholar 

  • Willför S, Hemming J, Reunanen M, Eckerman C, Holmbom B (2003) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 57(1):27–36

    Article  Google Scholar 

  • Winchester N, McConnachie D, Wollersheim C, Waitz IA (2013) Market cost of renewable jet fuel adoption in the United States. MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA

    Google Scholar 

  • Wittkop B, Snowdon R, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170(1–2):131–140

    Article  Google Scholar 

  • Wu X, Leung DY (2011) Optimization of biodiesel production from Camelina oil using orthogonal experiment. Appl Energy 88(11):3615–3624

    Article  Google Scholar 

  • Wysocki DJ, Chastain TG, Schillinger WF, Guy SO, Karow RS (2013) Camelina: seed yield response to applied nitrogen and sulfur. Field Crop Res 145:60–66

    Article  Google Scholar 

  • Yang J, Caldwell C, Corscadden K, He QS, Li J (2016) Industr Crops Prod 81:162–168

    Article  Google Scholar 

  • Ye CL, Anderson DM, Lall SP (2016) The effects of Camelina oil and solvent extracted Camelina meal on the growth, carcass composition and hindgut histology of Atlantic salmon (Salmo salar) parr in freshwater. Aquaculture 450:397–404

    Article  Google Scholar 

  • Zaleckas E, Makarevičienė V, Sendžikienė E (2012) Possibilities of using Camelina sativa oil for producing biodiesel fuel. Transport 27(1):60–66

    Article  Google Scholar 

  • Zanetti F, Monti A, Berti MT (2013) Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Ind Crop Prod 50:580–595

    Article  Google Scholar 

  • Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6(2):113–119

    Article  Google Scholar 

  • Zubr J, Matthäus B (2002) Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crop Prod 15(2):155–162

    Article  Google Scholar 

  • Zubr J (2010) Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutr food sci 40:523–531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetanjali Kaushik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chaturvedi, S., Bhattacharya, A., Khare, S.K., Kaushik, G. (2018). Camelina sativa: An Emerging Biofuel Crop. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics