Skip to main content

Instrumentation for Single-Photon Emission Imaging

Nuclear Oncology

Abstract

This chapter reviews the underlying physical principles of single-photon emission tomography (SPECT) and the design and operation as well as the capabilities and limitations of SPECT scanners used clinically and preclinically [1–4]. This is the “companion” chapter to the earlier chapter on positron emission tomography (PET) instrumentation; the material in that chapter on the basic principles of radiation detectors, iterative image reconstruction, and multimodality imaging applies as well to SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACF:

Attenuation correction factor

APD:

Avalanche photodiode

ASIC:

Application-specific integrated circuit

COR:

Center of rotation

CsI(Tl):

Thallium-doped cesium iodide

CT:

X-ray computed tomography

CZT:

Cadmium zinc telluride

ESSE:

Effective scatter source estimation

eV:

Electron volt

FBP:

Filtered back-projection

FL:

Focal length

FOV:

Field of view

FWHM:

Full-width half-maximum

GAP:

General all-purpose

keV:

Kilo-electron volt (103 eV)

LEAP:

Low-energy all-purpose

LEHR:

Low-energy high-resolution

LEHS:

low-energy high-sensitivity

LOR:

Line of response

MeV:

Mega-electron volt (106 eV)

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

NaI(Tl):

Thallium-doped sodium iodide

PET-MR:

Positron emission tomography-magnetic resonance

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PMT:

Photomultiplier tube

RF:

Radiofrequency

ROI:

Region of interest

SAD:

Source-to-aperture distance

SPECT-MR:

Single-photon emission computed tomography-magnetic resonance

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/computed tomography

TEW:

Triple-energy window

References

  1. Zanzonico P. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177:349–64.

    Article  CAS  PubMed  Google Scholar 

  2. Zanzonico P. Radionuclide imaging. In: Cherry S, Badawy R, Qi J, editors. Essentials of in vivo biomedical imaging. Boca Raton: CRC Press; 2015. p. 1765–224.

    Google Scholar 

  3. Zanzonico P, Heller S. Physics, instrumentation, and radiation protection. In: Biersack H-JF, Leonard M, editors. Clinical nuclear medicine. Heidelberg: Springer; 2007. p. 1–33.

    Chapter  Google Scholar 

  4. Zanzonico PB. Technical requirements for SPECT: equipment and quality control. In: Kramer EL, Sanger JJ, editors. Clinical applications in SPECT. New York: Raven Press; 1995. p. 7–41.

    Google Scholar 

  5. Firestone RB, Shirley VS, editors. Table 11 of isotopes. 8th ed. New York: Wiley; 1996.

    Google Scholar 

  6. Weber D, Eckerman K, Dillman L, et al. MIRD: radionuclide data and decay schemes. New York: Society of Nuclear Medicine; 1989. p. 447.

    Google Scholar 

  7. Slomka PJ, Berman DS, Germano G. New cardiac cameras: single-photon emission CT and PET. Semin Nucl Med. 2014;44:232–51.

    Article  PubMed  Google Scholar 

  8. Slomka PJ, Pan T, Berman DS, et al. Advances in SPECT and PET hardware. Prog Cardiovasc Dis. 2015;57:566–78.

    Article  PubMed  Google Scholar 

  9. Saha GS. Physics and radiobiology of nuclear medicine. New York: Springer; 1993. p. 107–23.

    Book  Google Scholar 

  10. Frey EC, Humm JL, Ljungberg M. Accuracy and precision of radioactivity quantification in nuclear medicine images. Semin Nucl Med. 2012;42:208–18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsui BM, Zhao X, Frey EC, et al. Quantitative single-photon emission computed tomography: basics and clinical considerations. Semin Nucl Med. 1994;24:38–65.

    Article  CAS  PubMed  Google Scholar 

  12. Dewaraja YK, Frey EC, Sgouros G, et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3D dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53:1310–25, in press.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med. 2004;34:87–111.

    Article  PubMed  Google Scholar 

  14. Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49:1114–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greer K, Jaszczak RJ, Harris C, et al. Quality control in SPECT. J Nucl Med Technol. 1985;13:76–85.

    Google Scholar 

  16. Harkness BA, Rogers WL, Clinthorne NH, et al. SPECT: quality control and artifact identification. J Nucl Med Technol. 1983;11:55–60.

    Google Scholar 

  17. Meikle SR, Badawi RD. Quantitative techniques in PET. In: Bailey DL et al., editors. Positron emission tomography: basic sciences. London: Springer; 2005. p. 93–126.

    Chapter  Google Scholar 

  18. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer; 1998. p. 55–109.

    Chapter  Google Scholar 

  19. Ogawa K, Harata Y, Ichihara T, et al. A practical method for position-dependent Compton-scatter correction in single photon-emission CT. IEEE Trans Med Imaging. 1991;10:408–12.

    Article  CAS  PubMed  Google Scholar 

  20. Frey EC, Tsui B. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE; 1996.

    Google Scholar 

  21. Beekman FJ, de Jong HW, van Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging. 2002;21:867–77.

    Article  PubMed  Google Scholar 

  22. Dewaraja YK, Ljungberg M, Fessler JA. 3-D Monte Carlo-based scatter compensation in quantitative I-131 SPECT reconstruction. IEEE Trans Nucl Sci. 2006;53:181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ouyang J, El Fakhri G, Moore SC. Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111In SPECT. Med Phys. 2008;35:2029–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shcherbinin S, Celler A, Belhocine T, et al. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53:4595.

    Article  CAS  PubMed  Google Scholar 

  25. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978;25:638–43.

    Article  Google Scholar 

  26. Sorenson JA. Quantitative measurement of radioactivity in whole-body counting. In: Hine GJ, Soresnon JA, editors. Instrumentation of nuclear medicine. Waltham: Academic; 1974. p. 311–48.

    Google Scholar 

  27. Israel O, Goldsmith SJ, editors. Hybrid SPECT/CT: imaging in clinical practice. New York: Taylor & Francis; 2006. p. 244.

    Google Scholar 

  28. Defrise M, Kinahan P. Data acquisition and image reconstruction for 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer; 1998. p. 11–53.

    Chapter  Google Scholar 

  29. Defrise M, Kinahan PE, Michel CJ. Image reconstruction algorithms in PET. In: Bailey DL et al., editors. Positron emission tomography: basic sciences. London: Springer; 2005. p. 63–91.

    Chapter  Google Scholar 

  30. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

    Article  CAS  PubMed  Google Scholar 

  31. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.

    Article  PubMed  Google Scholar 

  32. Sgouros G, Frey E, Wahl R, et al. Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med. 2008;38:321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Flux G, Bardies M, Monsieurs M, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.

    Article  PubMed  Google Scholar 

  34. Hamamura MJ, Ha S, Roeck WW, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol. 2010;55:1563–75.

    Article  PubMed  Google Scholar 

  35. Hamamura MJ, Ha S, Roeck WW, et al. Initial investigation of preclinical integrated SPECT and MR imaging. Technol Cancer Res Treat. 2010;9:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ha S, Hamamura MJ, Roeck WW, et al. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI. Phys Med Biol. 2010;55:2495–504.

    Article  PubMed  Google Scholar 

  37. Hamamura MJ, Roeck WW, Ha S, et al. Simultaneous in vivo dynamic contrast-enhanced magnetic resonance and scintigraphic imaging. Phys Med Biol. 2011;56:N63–9.

    Article  PubMed  Google Scholar 

  38. Travin MI. Cardiac cameras. Semin Nucl Med. 2011;41:182–201.

    Article  PubMed  Google Scholar 

  39. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897–903.

    Article  PubMed  Google Scholar 

  40. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: Saunders; 2012.

    Google Scholar 

  41. Hines H, Kayayan R, Colsher J, et al. Recommendations for implementing SPECT instrumentation quality control. Nuclear Medicine Section – National Electrical Manufacturers Association (NEMA). Eur J Nucl Med. 1999;26:527–32.

    Article  CAS  PubMed  Google Scholar 

  42. Hines H, Kayayan R, Colsher J, et al. National Electrical Manufacturers Association recommendations for implementing SPECT instrumentation quality control. J Nucl Med. 2000;41:383–9.

    CAS  PubMed  Google Scholar 

  43. NEMA. Performance measurements of scintillation counters. NEMA Standards Publication NU1-2001. Rosslyn: National Electrical Manufacturers Association (NEMA); 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Zanzonico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Zanzonico, P. (2016). Instrumentation for Single-Photon Emission Imaging. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Instrumentation for Single-Photon Emission Computed Tomography (SPECT)
    Published:
    10 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_5-2

  2. Original

    Instrumentation for Single-Photon Emission Imaging
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_5-1