Skip to main content

Instrumentation for Single-Photon Emission Computed Tomography (SPECT)

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology
  • 59 Accesses

Abstract

This chapter reviews the underlying physical principles of single-photon emission tomography (SPECT) and the design and operation as well as the capabilities and limitations of current SPECT scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACF:

Attenuation correction factor

APD:

Avalanche photodiode

ASIC:

Application-specific integrated circuit

COR:

Center of rotation

CsI(Tl):

Thallium-doped cesium iodide

CT:

X-ray computed tomography

CZT:

Cadmium zinc telluride

ESSE:

Effective scatter source estimation

eV:

Electron volt

FBP:

Filtered back-projection

FL:

Focal length

FOV:

Field of view

FWHM:

Full-width half-maximum

GAP:

General all-purpose

keV:

Kilo-electron volt (103 eV)

LEAP:

Low-energy all-purpose

LEHR:

Low-energy high-resolution

LEHS:

low-energy high-sensitivity

LOR:

Line of response

MeV:

Mega-electron volt (106 eV)

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

NaI(Tl):

Thallium-doped sodium iodide

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PET/MR:

Positron emission tomography/magnetic resonance

PMT:

Photomultiplier tube

RF:

Radiofrequency

ROI:

Region of interest

SAD:

Source-to-aperture distance

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/computed tomography

SPECT/MR:

Single-photon emission computed tomography/magnetic resonance

TEW:

Triple-energy window

References

  1. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia, PA: Saunders; 2012.

    Google Scholar 

  2. Zanzonico PB. Technical requirements for SPECT: equipment and quality control. In: Kramer EL, Sanger JJ, editors. Clinical applications in SPECT. New York, NY: Raven Press; 1995. p. 7–41.

    Google Scholar 

  3. Zanzonico P. Radionuclide imaging. In: Cherry S, Badawy R, Qi J, editors. Essentials of in vivo biomedical imaging. Boca Raton, FL: CRC Press; 2015. p. 1765–224.

    Google Scholar 

  4. Zanzonico P. Instrumentation for single-photon emission computed tomography. In: Strauss HW, Mariani G, Volteranni G, Larson SM, editors. Nuclear oncology: from pathophysiology to clinical applications. 2nd ed. New York, NY: Springer; 2017.

    Google Scholar 

  5. Travin MI. Cardiac cameras. Semin Nucl Med. 2011;41:182–201.

    Article  Google Scholar 

  6. Slomka PJ, Berman DS, Germano G. New cardiac cameras: single-photon emission CT and PET. Semin Nucl Med. 2014;44:232–51.

    Article  Google Scholar 

  7. Slomka PJ, Pan T, Berman DS, et al. Advances in SPECT and PET hardware. Prog Cardiovasc Dis. 2015;57:566–78.

    Article  Google Scholar 

  8. Frey EC, Humm JL, Ljungberg M. Accuracy and precision of radioactivity quantification in nuclear medicine images. Semin Nucl Med. 2012;42:208–18.

    Article  Google Scholar 

  9. Tsui BM, Zhao X, Frey EC, et al. Quantitative single-photon emission computed tomography: basics and clinical considerations. Semin Nucl Med. 1994;24:38–65.

    Article  CAS  Google Scholar 

  10. Dewaraja YK, Frey EC, Sgouros G, et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3D dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53:1310–25.

    Article  CAS  Google Scholar 

  11. Ljungberg M, Pretorius PH. SPECT/CT: an update on technological developments and clinical applications. Br J Radiol. 2018;90:1–15.

    Google Scholar 

  12. Wu J, Liu C. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys Med Biol. 2019;64:1–37.

    Google Scholar 

  13. Hamamura MJ, Ha S, Roeck WW, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol. 2010;55:1563–75.

    Article  Google Scholar 

  14. Hamamura MJ, Ha S, Roeck WW, et al. Initial investigation of preclinical integrated SPECT and MR imaging. Technol Cancer Res Treat. 2010;9:21–8.

    Article  Google Scholar 

  15. Ha S, Hamamura MJ, Roeck WW, et al. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI. Phys Med Biol. 2010;55:2495–504.

    Article  Google Scholar 

  16. Hamamura MJ, Roeck WW, Ha S, et al. Simultaneous in vivo dynamic contrast-enhanced magnetic resonance and scintigraphic imaging. Phys Med Biol. 2011;56:N63–9.

    Article  Google Scholar 

  17. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. BioMed Res Int. 2015;2015:1–11.

    Google Scholar 

  18. Firestone RB, Shirley VS (Eds). Table 11 of isotopes. 8th ed. New York, NY: John Wiley & Sons; 1996.

    Google Scholar 

  19. Eckerman KF, Endo A. MIRD: radionuclide data and decay schemes. 2nd ed. Reston, VA: Society of Nuclear Medicine; 2008.

    Google Scholar 

  20. Saha GS. Physics and radiobiology of nuclear medicine. New York, NY: Springer; 1993. p. 107–23.

    Book  Google Scholar 

  21. Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49:1114–31.

    Article  Google Scholar 

  22. Greer K, Jaszczak RJ, Harris C, et al. Quality control in SPECT. J Nucl Med Technol. 1985;13:76–85.

    Google Scholar 

  23. Harkness BA, Rogers WL, Clinthorne NH, et al. SPECT: quality control and artifact identification. J Nucl Med Technol. 1983;11:55–60.

    Google Scholar 

  24. Ogawa K, Harata Y, Ichihara T, et al. A practical method for position-dependent Compton-scatter correction in single photon-emission CT. IEEE Trans Med Imaging. 1991;10:408–12.

    Article  CAS  Google Scholar 

  25. Frey EC, Tsui B. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE Trans Med Imaging. 1996;2:1082.

    Google Scholar 

  26. Beekman FJ, de Jong HW, van Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging. 2002;21:867–77.

    Article  Google Scholar 

  27. Dewaraja YK, Ljungberg M, Fessler JA. 3-D Monte Carlo-based scatter compensation in quantitative I-131 SPECT reconstruction. IEEE Trans Nucl Sci. 2006;53:181–8.

    Article  Google Scholar 

  28. Ouyang J, El Fakhri G, Moore SC. Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111In SPECT. Med Phys. 2008;35:2029–40.

    Article  CAS  Google Scholar 

  29. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978;25:638–43.

    Article  Google Scholar 

  30. Sorenson JA. Quantitative measurement of radioactivity in whole-body counting. In: Hine GJS, editor. Instrumentation of nuclear medicine. Waltham, MA: Academic Press; 1974. p. 311–48.

    Google Scholar 

  31. Israel O, Goldsmith SJ (Eds). Hybrid SPECT/CT: imaging in clinical practice. New York, NY: Taylor & Francis; 2006.

    Google Scholar 

  32. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

    Article  CAS  Google Scholar 

  33. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.

    Article  Google Scholar 

  34. Lyra M, Ploussi A. Filtering in SPECT image reconstruction. Int J Biomed Imaging. 2011;2011:1–14.

    Article  Google Scholar 

  35. NEMA. Performance measurements of scintillation counters. NEMA standards publication NU1-2001. Rosslyn, VA: National Electrical Manufacturers Association (NEMA); 2001.

    Google Scholar 

  36. Flux G, Bardies M, Monsieurs M, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.

    Article  Google Scholar 

  37. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897–903.

    Article  Google Scholar 

  38. Van den Wyngaert T, Elvas F, De Schepper S, Kennedy JA, Israel O. SPECT/CT: standing on the shoulders of giants: it is time to reach for the sky. J Nucl Med. 2020;61:1284–91.

    Article  Google Scholar 

  39. Shcherbinin S, Celler A, Belhocine T, et al. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53:4595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Zanzonico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zanzonico, P. (2022). Instrumentation for Single-Photon Emission Computed Tomography (SPECT). In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_5-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_5-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Instrumentation for Single-Photon Emission Computed Tomography (SPECT)
    Published:
    10 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_5-2

  2. Original

    Instrumentation for Single-Photon Emission Imaging
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_5-1