Skip to main content

SPECT Imaging: Basics and New Trends

  • Reference work entry
  • First Online:
Handbook of Particle Detection and Imaging
  • 3429 Accesses

Abstract

Single photon emission computed tomography (SPECT) is widely used as a means of imaging the distribution of administered radiotracers that have single-photon emission. The most widely used SPECT systems are based on the Anger gamma camera, usually involving dual detectors that rotate around the patient. Several factors affect the quality of SPECT images (e.g., resolution and noise) and the ability to perform absolute quantification (e.g., attenuation, scatter, motion, and resolution). There is a trend to introduce dual-modality systems and organ-specific systems, both developments that enhance diagnostic capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27–33

    Article  ADS  Google Scholar 

  • Bailey DL (1998) Transmission scanning in emission tomography. Eur J Nucl Med 25:774–787

    Article  Google Scholar 

  • Barrett HH, Furenlid LR, Freed M, Hesterman JY, Kupinski MA, Clarkson E, Whitaker MK (2008) Adaptive SPECT. IEEE Trans Med Imaging 27:775–788

    Article  Google Scholar 

  • Beekman FJ, van der Have F (2007) The pinhole: gateway to ultra-high resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34:151–161

    Article  Google Scholar 

  • Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    Google Scholar 

  • Busca P, Occhipinti M, Trigilio P, Cozzi G, Fiorini C, Piemonte C, Ferri A, Gola A, Nagy K, Bukki T, Rieger J (2015) Experimental evaluation of a SiPM-based scintillation detector for MR-compatible SPECT systems. IEEE Trans Nucl Sci 62:2122–2128

    Article  ADS  Google Scholar 

  • Carminati M, Baratelli FM, Occhipinit M, Erlandsson K et al (2019) Validation and performance assessment of a preclinical SiPM-based SPECT/MRI insert. IEEE Trans Rad Plasma Med Sci 3:483–490

    Google Scholar 

  • Chen Y, Vastenhouw B, Wu C, Goorden MC, Beekman FJ (2017) Optimized image acquisition for dopamine transporter imaging with ultra-high resolution clinical pinhole SPECT proc dedicated brain imaging workshop. In: IEEE NSS/MIC meeting (abstract #4326)

    Google Scholar 

  • Clarkson E, Kupinski MA, Barrett HH, Furenlid LR (2008) A task based approach to adaptive and multimodality imaging. Proc IEEE 96:500–511

    Article  Google Scholar 

  • Conka Nurdan T, Nurdan K, Brill AB, Walenta AH (2015) Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy. J Instrumentation 10:C07018

    Google Scholar 

  • Cutler SJ, Perez KL, Barnhart HX, Tornai MP (2010) Observer detection limits for a dedicated SPECT breast imaging system. Phys Med Biol 55:1903–1916

    Article  Google Scholar 

  • Deprez K, Vandenberghe S, Van Audenhaege K, Van Vaerenbergh J, Van Holen R (2013) Rapid additive manufacturing of MR compatible multi-pinhole collimators with selective laser melting of tungsten powder. Med Phys 40:012501

    Article  Google Scholar 

  • Erlandsson K, Kacperski K, van Gramberg D, Hutton BF (2009) Evaluation of the performance characteristics of D-SPECT: a novel SPECT system designed for nuclear cardiology. Phys Med Biol 54:2635–2649

    Article  Google Scholar 

  • Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, O’Connor MK, Verdes L, Garcia EV (2009) Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol 16:927–934

    Article  Google Scholar 

  • Freed M, Kupinski MA, Furenlid LR, Wilson DW, Barrett HH (2008) A prototype instrument for single pinhole small-animal adaptive SPECT imaging. Med Phys 35:1912–1925

    Article  Google Scholar 

  • Gambhir SS, Berman DS, Ziffer J, Nagler M, Dickman D, Rousso B, Sandler M, Patton J, Hutton B, Dichterman E, Ziv O, Melman H, Zilberstein Y, Ben Haim S, Ben Haim S (2009) A novel high sensitivity rapid acquisition single photon molecular imaging camera. J Nucl Med 50:635–643

    Article  Google Scholar 

  • Goorden MC, Rentmeester MC, Beekman FJ (2009) Theoretical analysis of full-ring multi-pinhole brain SPECT. Phys Med Biol 54:6593–6610

    Article  Google Scholar 

  • Hamamura MJ, Ha S, Roeck WW, Muftuler LT, Wagenaar DJ, Meier D, Patt BE, Nalcioglu O (2010) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 55:1563–1575

    Article  Google Scholar 

  • Hasegawa BH, Reilly SM, Gingold EL et al (1989) Design considerations for a simultaneous emission-transmission CT scanner. Radiology 173:414

    Google Scholar 

  • Hruska CB, O’Connor MK (2013) Nuclear imaging of the breast: translating achievements in instrumentation into clinical use. Med Phys 40:050901

    Article  Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  Google Scholar 

  • Hutton BF, Occhipinti M, Kuehne A, Mathe D et al (2018) Development of clinical simultaneous SPECT/MRI. Br J Radiol 90:20160690

    Google Scholar 

  • Lai X, Meng L-J (2018) Simulation study of the second generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design. Phys Med Biol 63:045008

    Article  Google Scholar 

  • LeFree MT, Vogel RA, Kirch DL, Steele PP (1981) Seven-pinhole tomography a technical description. J Nucl Med 22:4854

    Google Scholar 

  • Li J, Jaszczak RJ, Van Mullekom A, Scarfone C, Greer KL, Coleman RE (1996) Half-cone beam collimation for triple-camera SPECT systems. J Nucl Med 37:498502

    Google Scholar 

  • Lin J (2013) On artifact-free projection overlaps in multi-pinhole tomographic imaging. IEEE Trans Med Imaging 32:2215–2229

    Article  Google Scholar 

  • Mahmood ST, Erlandsson K, Cullum I, Hutton BF (2010) The potential for mixed multiplexed and non-multiplexed data to improve the reconstruction quality of a multi-slit-slat collimator SPECT system. Phys Med Biol 55:2247–2268

    Article  Google Scholar 

  • Mahmood S, Erlandsson K, Cullum I, Hutton BF (2011) Experimental results from a prototype slit-slat collimator with mixed multiplexed and non-multiplexed data. Phys Med Biol 56:4311–4331

    Article  Google Scholar 

  • McQuaid SJ, Hutton BF (2008) Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT. Eur J Nucl Med Mol Imaging 35:1117–1123

    Article  Google Scholar 

  • Meikle SR, Kench P, Weisenberger AG et al (2002) A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci 49:21672171

    Article  Google Scholar 

  • Mettivier G, Russo P, Cesarelli M, Ospizio R et al (2011) Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging in the breast. Nucl Instrum Methods Phys Res Sect A 629:350–356

    Article  ADS  Google Scholar 

  • Metzler SD, Accorsi R, Novak JR, Ayan AS, Jaszczak RJ (2006) On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med 47:18841890

    Google Scholar 

  • Rogulski MM, Barberm HB, Barrett HH, Shoemaker RL, Woolfenden JM (1993) Ultra-high-resolution brain SPECT imaging: simulation results. IEEE Trans Nucl Sci 40:11231129

    Article  Google Scholar 

  • Salvado D, Erlandsson K, Bousse A, Occhipinti M, Busca P, Fiorini C, Hutton BF (2015) Collimator design for a brain SPECT/MRI insert. IEEE Trans Nucl Sci 62:1716–1724

    Article  ADS  Google Scholar 

  • Shah JP, Mann SD, McKinley RL, Tornai MP (2014) Design of a nested SPECT-CT system with fully suspended CT sub-system for dedicated breast imaging. Proc. SPIE 9033. Medical Imaging 2014: Physics of Medical Imaging, 90335O. https://doi.org/10.1117/12.2043739

  • Van Audenhaege K, Vanhove C, Vandenberghe S, Van Holen R (2015a) The evaluation of data completeness and image quality in multiplexing multi-pinhole SPECT. IEEE Trans Med Imaging 34:474–486

    Article  Google Scholar 

  • Van Audenhaege K, Van Holen R, Vandenberghe S, Vanhove C (2015b) Review of SPECT collimator selection, optimization and fabrication for clinical and preclinical imaging. Med Phys 42:4796–4813

    Article  Google Scholar 

  • Vunckx K, Suetens P, Nuyts J (2008) Effect of overlapping projections on reconstruction image quality in multipinhole SPECT. IEEE Trans Med Imaging 27:972–983

    Article  Google Scholar 

  • Xu J, Liu C, Wang Y, Frey E, Tsui BMW (2007) Quantitative rotating multi segment slant-hole SPECT mammography with attenuation and collimator-response compensation. IEEE Trans Med Imaging 26:906–916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Hutton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hutton, B.F. (2021). SPECT Imaging: Basics and New Trends. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-93785-4_37

Download citation

Publish with us

Policies and ethics