Skip to main content

Pulmonary Function Tests in Children

  • Reference work entry
  • First Online:
Airway Diseases

Abstract

Pulmonary function tests (PFT) are very important and frequently used tests for evaluating respiratory physiology and lung diseases in childhood. Appropriate testing for the child’s age and disease provides information about many aspects of clinical conditions, such as the severity of the lung disease, prognosis, and response to treatment. Therefore, PFTs have become an integral part of pediatric pulmonary diseases routine practice. Tests are not per se diagnostic, but can help determine the type of disease based on the function affected, when regarded in view of the relevant history and physical findings. They can also be used in pediatric patients for risk assessment before anesthesia and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Czovek D. Pulmonary function test in infants and children. . In: Robert William Wilmott RD, Albert Li, Felix Ratjen, Peter Sly, Heather J. Zar, Andrew Bush, ed. Kendig’s disorders of respiratory tract in children 9th Philadelphia: Elsevier; 2018. p. 174–211.

    Google Scholar 

  2. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med. 2019;200(8):e70–88.

    PubMed  Google Scholar 

  3. Beydon N, Davis SD, Lombardi E, Allen JL, Arets HG, Aurora P, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175(12):1304–45.

    PubMed  Google Scholar 

  4. Stocks J, Kirkby J, Lum S. How to avoid misinterpreting lung function tests in children: a few practical tips. Paediatr Respir Rev. 2014;15(2):170–80.

    PubMed  Google Scholar 

  5. Frey U, Stocks J, Coates A, Sly P, Bates J. Specifications for equipment used for infant pulmonary function testing. ERS/ATS task force on standards for Infant respiratory function testing. European Respiratory Society/ American Thoracic Society. Eur Respir J. 2000;16(4):731–40.

    CAS  PubMed  Google Scholar 

  6. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22.

    CAS  PubMed  Google Scholar 

  7. Vilozni D, Efrati O, Hakim F, Adler A, Livnat G, Bentur L. FRC measurements using body plethysmography in young children. Pediatr Pulmonol. 2009;44(9):885–91.

    PubMed  Google Scholar 

  8. Castile RG, Iram D, McCoy KS. Gas trapping in normal infants and in infants with cystic fibrosis. Pediatr Pulmonol. 2004;37(5):461–9.

    PubMed  Google Scholar 

  9. Zhang X, Jiang G, Wang L, Liu L, Shi P, Wan C, et al. Lung function measurements using body plethysmography in young children with acute lower respiratory tract infection. Zhonghua er ke za zhi = Chinese J Pediatrics. 2014;52(7):525–30.

    Google Scholar 

  10. Robin B, Kim YJ, Huth J, Klocksieben J, Torres M, Tepper RS, et al. Pulmonary function in bronchopulmonary dysplasia. Pediatr Pulmonol. 2004;37(3):236–42.

    PubMed  Google Scholar 

  11. Meneely GR, Kaltreider NL. The volume of the lung determined by helium dilution. Description of the method and comparison with other procedures. J Clin Invest. 1949;28(1):129–39.

    CAS  PubMed  Google Scholar 

  12. Beydon N, Amsallem F, Bellet M, Boulé M, Chaussain M, Denjean A, et al. Pulmonary function tests in preschool children with cystic fibrosis. Am J Respir Crit Care Med. 2002;166(8):1099–104.

    PubMed  Google Scholar 

  13. Beydon N, Pin I, Matran R, Chaussain M, Boulé M, Alain B, et al. Pulmonary function tests in preschool children with asthma. Am J Respir Crit Care Med. 2003;168(6):640–4.

    PubMed  Google Scholar 

  14. Greenough A, Pool J, Price JF. Changes in functional residual capacity in response to bronchodilator therapy among young asthmatic children. Pediatr Pulmonol. 1989;7(1):8–11.

    CAS  PubMed  Google Scholar 

  15. Lo J, Zivanovic S, Lunt A, Alcazar-Paris M, Andradi G, Thomas M, et al. Longitudinal assessment of lung function in extremely prematurely born children. Pediatr Pulmonol. 2018;53(3):324–31.

    PubMed  Google Scholar 

  16. Harris C, Zivanovic S, Lunt A, Calvert S, Bisquera A, Marlow N, et al. Lung function and respiratory outcomes in teenage boys and girls born very prematurely. Pediatr Pulmonol. 2020;55(3):682–9.

    PubMed  Google Scholar 

  17. Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS workshop on lung volume measurements. Official statement of the European Respiratory Society. Eur Respir J. 1995;8(3):492–506.

    CAS  PubMed  Google Scholar 

  18. Stocks J, Godfrey S, Beardsmore C, Bar-Yishay E, Castile R. Plethysmographic measurements of lung volume and airway resistance. ERS/ATS task force on standards for Infant respiratory function testing. European Respiratory Society/ American Thoracic Society. Eur Respir J. 2001;17(2):302–12.

    CAS  PubMed  Google Scholar 

  19. Vilozni D, Bentur L, Efrati O, Minuskin T, Barak A, Szeinberg A, et al. Spirometry in early childhood in cystic fibrosis patients. Chest. 2007;131(2):356–61.

    PubMed  Google Scholar 

  20. Veras TN, Pinto LA. Feasibility of spirometry in preschool children. Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia. 2011;37(1):69–74.

    PubMed  Google Scholar 

  21. Busi LE, Restuccia S, Tourres R, Sly PD. Assessing bronchodilator response in preschool children using spirometry. Thorax. 2017;72(4):367–72.

    PubMed  Google Scholar 

  22. Cooper BG. An update on contraindications for lung function testing. Thorax. 2011;66(8):714–23.

    PubMed  Google Scholar 

  23. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.

    PubMed  Google Scholar 

  24. Nève V, Hulo S, Edmé JL, Boileau S, Baquet G, Pouessel G, et al. Utility of measuring FEV0.75/FVC ratio in preschoolers with uncontrolled wheezing disorder. Eur Respir J. 2016;48(2):420–7.

    PubMed  Google Scholar 

  25. Pesant C, Santschi M, Praud JP, Geoffroy M, Niyonsenga T, Vlachos-Mayer H. Spirometric pulmonary function in 3- to 5-year-old children. Pediatr Pulmonol. 2007;42(3):263–71.

    PubMed  Google Scholar 

  26. Altalag ARJ, Wilcox P, Aboulhosn K. Spirometry. In: Altalag ARJ, Wilcox P, Aboulhosn K, editors. Pulmonary function test in clinical practice. 2nd ed. Springer; 2019. p. 1–40.

    Google Scholar 

  27. Koumbourlis CA. Interpretation of pulmonary function tests in clinical practise. In: Davis SD, Eber E, Koumbourlis CA, editors. Diagnostic tests in pediatric pulmonology applications and interpretation. New York: Springer Science+Business Media; 2015. p. 109–35.

    Google Scholar 

  28. Baldwin DN, Pillow JJ, Stocks J, Frey U. Lung-function tests in neonates and infants with chronic lung disease: tidal breathing and respiratory control. Pediatr Pulmonol. 2006;41(5):391–419.

    PubMed  Google Scholar 

  29. Stocks J. Infant and preschool pulmonary function tests. In: Davis SD, Eber E, Koumbourlis AC, editors. Diagnostic tests in pediatric pulmonology applications and interpretation. New York: Springer Science+Business Media; 2015. p. 137–58.

    Google Scholar 

  30. Sly PD, Tepper R, Henschen M, Gappa M, Stocks J. Tidal forced expirations. ERS/ATS task force on standards for Infant respiratory function testing. European Respiratory Society/American Thoracic Society. Eur Respir J. 2000;16(4):741–8.

    CAS  PubMed  Google Scholar 

  31. Marchal F, Crance JP. Measurement of ventilatory system compliance in infants and young children. Respir Physiol. 1987;68(3):311–8.

    CAS  PubMed  Google Scholar 

  32. Marchal F, Haouzi P, Gallina C, Crance JP. Measurement of ventilatory system resistance in infants and young children. Respir Physiol. 1988;73(2):201–9.

    CAS  PubMed  Google Scholar 

  33. Kirkby J, Stanojevic S, Welsh L, Lum S, Badier M, Beardsmore C, et al. Reference equations for specific airway resistance in children: the Asthma UK initiative. Eur Respir J. 2010;36(3):622–9.

    CAS  PubMed  Google Scholar 

  34. Lowe L, Murray CS, Custovic A, Simpson BM, Kissen PM, Woodcock A. Specific airway resistance in 3-year-old children: a prospective cohort study. Lancet (London, UK). 2002;359(9321):1904–8.

    Google Scholar 

  35. Klug B, Bisgaard H. Specific airway resistance, interrupter resistance, and respiratory impedance in healthy children aged 2–7 years. Pediatr Pulmonol. 1998;25(5):322–31.

    CAS  PubMed  Google Scholar 

  36. Aurora P, Bush A, Gustafsson P, Oliver C, Wallis C, Price J, et al. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am J Respir Crit Care Med. 2005;171(3):249–56.

    PubMed  Google Scholar 

  37. Nielsen KG, Pressler T, Klug B, Koch C, Bisgaard H. Serial lung function and responsiveness in cystic fibrosis during early childhood. Am J Respir Crit Care Med. 2004;169(11):1209–16.

    PubMed  Google Scholar 

  38. Bisgaard H, Nielsen KG. Plethysmographic measurements of specific airway resistance in young children. Chest. 2005;128(1):355–62.

    PubMed  Google Scholar 

  39. Nielsen KG, Bisgaard H. Discriminative capacity of bronchodilator response measured with three different lung function techniques in asthmatic and healthy children aged 2–5 years. Am J Respir Crit Care Med. 2001;164(4):554–9.

    CAS  PubMed  Google Scholar 

  40. Lowe LA, Simpson A, Woodcock A, Morris J, Murray CS, Custovic A. Wheeze phenotypes and lung function in preschool children. Am J Respir Crit Care Med. 2005;171(3):231–7.

    PubMed  Google Scholar 

  41. Mahut B, Peiffer C, Bokov P, Delclaux C, Beydon N. Use of specific airway resistance to assess bronchodilator response in children. Respirology (Carlton, Vic). 2011;16(4):666–71.

    PubMed  Google Scholar 

  42. Mele L, Sly PD, Calogero C, Bernardini R, Novembre E, Azzari C, et al. Assessment and validation of bronchodilation using the interrupter technique in preschool children. Pediatr Pulmonol. 2010;45(7):633–8.

    PubMed  Google Scholar 

  43. Black J, Baxter-Jones AD, Gordon J, Findlay AL, Helms PJ. Assessment of airway function in young children with asthma: comparison of spirometry, interrupter technique, and tidal flow by inductance plethsmography. Pediatr Pulmonol. 2004;37(6):548–53.

    CAS  PubMed  Google Scholar 

  44. Beydon N, M’Buila C, Bados A, Peiffer C, Bernard A, Zaccaria I, et al. Interrupter resistance short-term repeatability and bronchodilator response in preschool children. Respir Med. 2007;101(12):2482–7.

    PubMed  Google Scholar 

  45. Terheggen-Lagro SW, Arets HG, van der Laag J, van der Ent CK. Radiological and functional changes over 3 years in young children with cystic fibrosis. Eur Respir J. 2007;30(2):279–85.

    CAS  PubMed  Google Scholar 

  46. Oswald-Mammosser M, Charloux A, Donato L, Albrech C, Speich JP, Lampert E, et al. Interrupter technique versus plethysmography for measurement of respiratory resistance in children with asthma or cystic fibrosis. Pediatr Pulmonol. 2000;29(3):213–20.

    CAS  PubMed  Google Scholar 

  47. Usemann J, Demann D, Anagnostopoulou P, Korten I, Gorlanova O, Schulzke S, et al. Interrupter technique in infancy: higher airway resistance and lower short-term variability in preterm versus term infants. Pediatr Pulmonol. 2017;52(10):1355–62.

    PubMed  Google Scholar 

  48. Bates JH, Irvin CG, Farré R, Hantos Z. Oscillation mechanics of the respiratory system. Compr Physiol. 2011;1(3):1233–72.

    PubMed  Google Scholar 

  49. Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z, Desager K, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22(6):1026–41.

    CAS  PubMed  Google Scholar 

  50. Brennan S, Hall GL, Horak F, Moeller A, Pitrez PM, Franzmann A, et al. Correlation of forced oscillation technique in preschool children with cystic fibrosis with pulmonary inflammation. Thorax. 2005;60(2):159–63.

    CAS  PubMed  Google Scholar 

  51. Oostveen E, Dom S, Desager K, Hagendorens M, De Backer W, Weyler J. Lung function and bronchodilator response in 4-year-old children with different wheezing phenotypes. Eur Respir J. 2010;35(4):865–72.

    CAS  PubMed  Google Scholar 

  52. Robinson PD, Brown NJ, Turner M, Van Asperen P, Selvadurai H, King GG. Increased day-to-day variability of forced oscillatory resistance in poorly controlled or persistent pediatric asthma. Chest. 2014;146(4):974–81.

    PubMed  Google Scholar 

  53. Marotta A, Klinnert MD, Price MR, Larsen GL, Liu AH. Impulse oscillometry provides an effective measure of lung dysfunction in 4-year-old children at risk for persistent asthma. J Allergy Clin Immunol. 2003;112(2):317–22.

    PubMed  Google Scholar 

  54. Thamrin C, Gangell CL, Udomittipong K, Kusel MM, Patterson H, Fukushima T, et al. Assessment of bronchodilator responsiveness in preschool children using forced oscillations. Thorax. 2007;62(9):814–9.

    PubMed  Google Scholar 

  55. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013;41(3):507–22.

    CAS  PubMed  Google Scholar 

  56. Tepper RS, Asdell S. Comparison of helium dilution and nitrogen washout measurements of functional residual capacity in infants and very young children. Pediatr Pulmonol. 1992;13(4):250–4.

    CAS  PubMed  Google Scholar 

  57. Kraemer R, Zehnder M, Meister B. Intrapulmonary gas distribution in healthy children. Respir Physiol. 1986;65(2):127–37.

    CAS  PubMed  Google Scholar 

  58. Bouhuys A. Pulmonary nitrogen clearance in relation to age in healthy males. J Appl Physiol. 1963;18:297–300.

    CAS  PubMed  Google Scholar 

  59. Larsson A, Jonmarker C, Werner O. Ventilation inhomogeneity during controlled ventilation Which index should be used?. J Appl Physiol (Bethesda, Md: 1985). 1988;65(5):2030–9.

    CAS  Google Scholar 

  60. Paiva M, Engel LA. Model analysis of gas distribution within human lung acinus. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(2):418–25.

    CAS  PubMed  Google Scholar 

  61. Saidel GM, Salmon RB, Chester EH. Moment analysis of multibreath lung washout. J Appl Physiol. 1975;38(2):328–34.

    CAS  PubMed  Google Scholar 

  62. Verbanck S, Schuermans D, Van Muylem A, Paiva M, Noppen M, Vincken W. Ventilation distribution during histamine provocation. J Appl Physiol (Bethesda, Md: 1985). 1997;83(6):1907–16.

    CAS  Google Scholar 

  63. Gustafsson PM, De Jong PA, Tiddens HA, Lindblad A. Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax. 2008;63(2):129–34.

    CAS  PubMed  Google Scholar 

  64. Hall GL, Logie KM, Parsons F, Schulzke SM, Nolan G, Murray C, et al. Air trapping on chest CT is associated with worse ventilation distribution in infants with cystic fibrosis diagnosed following newborn screening. PLoS One. 2011;6(8):e23932.

    CAS  PubMed  Google Scholar 

  65. Owens CM, Aurora P, Stanojevic S, Bush A, Wade A, Oliver C, et al. Lung clearance index and HRCT are complementary markers of lung abnormalities in young children with CF. Thorax. 2011;66(6):481–8.

    CAS  PubMed  Google Scholar 

  66. Macleod KA, Horsley AR, Bell NJ, Greening AP, Innes JA, Cunningham S. Ventilation heterogeneity in children with well controlled asthma with normal spirometry indicates residual airways disease. Thorax. 2009;64(1):33–7.

    CAS  PubMed  Google Scholar 

  67. Sonnappa S, Bastardo CM, Wade A, Saglani S, McKenzie SA, Bush A, et al. Symptom-pattern phenotype and pulmonary function in preschool wheezers. J Allergy Clin Immunol. 2010;126(3):519–26.e1–7.

    PubMed  Google Scholar 

  68. Hülskamp G, Lum S, Stocks J, Wade A, Hoo AF, Costeloe K, et al. Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: a multicentre study. Thorax. 2009;64(3):240–5.

    PubMed  Google Scholar 

  69. Sinhal S, Galati J, Baldwin DN, Stocks J, Pillow JJ. Reproducibility of multiple breath washout indices in the unsedated preterm neonate. Pediatr Pulmonol. 2010;45(1):62–70.

    PubMed  Google Scholar 

  70. Latzin P, Roth S, Thamrin C, Hutten GJ, Pramana I, Kuehni CE, et al. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants. PLoS One. 2009;4(2):e4635.

    PubMed  Google Scholar 

  71. Viegi G, Baldi S, Begliomini E, Ferdeghini EM, Pistelli F. Single breath diffusing capacity for carbon monoxide: effects of adjustment for inspired volume dead space, carbon dioxide, hemoglobin and carboxyhemoglobin. Respiration; Int Rev Thoracic Diseases. 1998;65(1):56–62.

    CAS  Google Scholar 

  72. Marrades RM, Diaz O, Roca J, Campistol JM, Torregrosa JV, Barberà JA, et al. Adjustment of DLCO for hemoglobin concentration. Am J Respir Crit Care Med. 1997;155(1):236–41.

    CAS  PubMed  Google Scholar 

  73. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A, MacIntyre NR, Thompson BR, Wanger J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kartal Öztürk, G., Demir, E., Gidaris, D. (2023). Pulmonary Function Tests in Children. In: Cingi, C., Yorgancıoğlu, A., Bayar Muluk, N., Cruz, A.A. (eds) Airway Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-22483-6_114-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22483-6_114-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22482-9

  • Online ISBN: 978-3-031-22483-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics