Skip to main content

Optimum Design and Tuning Applications in Structural Engineering via Swarm Intelligence

  • Chapter
  • First Online:
Advances in Swarm Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1054))

  • 601 Accesses

Abstract

As all engineering disciplines, structural engineering problems are needed to be optimized and due to the nonlinear behavior of these problems, it is not possible to solve them mathematically, but metaheuristic methods are very successful in iterative optimization by assuming values for the design variables within a desired range of the user. In structural engineering problems, metaheuristic methods including swarm-intelligence-based algorithms are used in two groups of problems. Design optimization is the first group and the design like dimension, amount of material and orientations are optimally found for minimizing objectives related to cost, weight, CO2 emission and others. In these problems, constraints are found via design codes like steel and reinforced concrete structure design regulations. This group belongs to a design of a structure. The second group includes optimum tuning and it generally covers structural control applications. This group involves the optimum tuning of the additional control system of the structure that can be added to the newly constructed structure for better performance or existing ones to correct the failure or increase the existing performance. The role of engineers is to make the best possible structural design and optimization is important. More especially, tuning optimization is a must to provide acceptable performance. In this chapter, a review of existing studies about the design optimization of structural systems is presented for swarm intelligence-based algorithms. Then, optimum tuning applications are mentioned including the most important studies about tuned mass dampers. Finally, optimization problems are presented for design and tuning optimization. The RC retaining wall optimization was presented for two cases with and without toe projection and the optimization of a toe is 5% effective on reduction of cost. In span length optimization of frame structures, frame models with different stories have similar optimum span lengths. Active tuned mass dampers are up to 22.08% more effective than passive tuned mass dampers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet. B 26, 29–41 (1996)

    Article  Google Scholar 

  2. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)

    Google Scholar 

  5. Nakrani, S., Tovey, C.: On honey bees and dynamic server allocation in internet hosting centers. Adapt. Behav. 12(3–4), 223–240 (2004)

    Article  Google Scholar 

  6. Yang, X.S.: Engineering optimizations via nature-inspired virtual Bee algorithms. In: Lecture Notes in Computer Science, vol. 3562, p. 317. Springer, GmbH (2005)

    Google Scholar 

  7. Haddad, O.B., Afshar, A., Marino, M.A.: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20(5), 661–680 (2006)

    Google Scholar 

  8. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990)

    Article  MATH  Google Scholar 

  10. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks No. IV, pp. 1942–1948. Perth Australia (1995)

    Google Scholar 

  11. Erol, O.K., Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Article  Google Scholar 

  12. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Osamu, W., Thomas, Z. (eds.) Lecture Notes in Computer Sciences, vol. 5792, pp. 169–178. Chapter 14, Springer, London (2009)

    Google Scholar 

  13. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  14. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koumousis, V.K., Georgiou, P.G.: Genetic algorithms in discrete optimization of steel truss roofs. J. Comput. Civ. Eng. 8(3), 309–325 (1994)

    Article  Google Scholar 

  16. Rajan, S.D.: Sizing, shape, and topology design optimization of trusses using genetic algorithm. J. Struct. Eng. 121(10), 1480–1487 (1995)

    Article  Google Scholar 

  17. Coello, C.A., Christiansen, A.D.: Multiobjective optimization of trusses using genetic algorithms. Comput. Struct. 75(6), 647–660 (2000)

    Article  Google Scholar 

  18. Erbatur, F., Hasançebi, O., Tütüncü, I., Kılıç, H.: Optimal design of planar and space structures with genetic algorithms. Comput. Struct. 75(2), 209–224 (2000)

    Article  Google Scholar 

  19. Krishnamoorthy, C.S., Prasanna Venkatesh, P., Sudarshan, R.: Object-oriented framework for genetic algorithms with application to space truss optimization. J. Comput. Civ. Eng. 16(1), 66–75 (2002)

    Article  Google Scholar 

  20. Hasancebi, O.: Optimization of truss bridges within a specified design domain using evolution strategies. Eng. Optim. 39(6), 737–756 (2007)

    Article  Google Scholar 

  21. Kelesoglu, O.: Fuzzy multiobjective optimization of truss-structures using genetic algorithm. Adv. Eng. Softw. 38(10), 717–721 (2007)

    Article  Google Scholar 

  22. Šešok, D., Belevičius, R.: Global optimization of trusses with a modified genetic algorithm. J. Civ. Eng. Manag. 4(3), 147–154 (2008)

    Article  Google Scholar 

  23. Toğan, V., Daloğlu, A.T.: An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. Struct. 86(1), 1204–1218 (2008)

    Article  Google Scholar 

  24. Richardson, J.N., Adriaenssens, S., Bouillard, P., Coelho, R.F.: Multiobjective topology optimization of truss structures with kinematic stability repair. Struct. Multidiscip. Optim. 46(4), 513–532 (2012)

    Article  MATH  Google Scholar 

  25. Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107–128 (2015)

    Article  MathSciNet  Google Scholar 

  26. Schutte, J.F., Groenwold, A.A.: Sizing design of truss structures using particle swarms. Struct. Multidiscip. Optim. 25(4), 261–269 (2003)

    Article  Google Scholar 

  27. Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 85(7), 340–349 (2007)

    Article  Google Scholar 

  28. Perez, R.E., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85(19), 1579–1588 (2007)

    Article  Google Scholar 

  29. Camp, C.V., Bichon, B.J.: Design of space trusses using ant colony optimization. J. Struct. Eng. 130(5), 741–751 (2004)

    Article  Google Scholar 

  30. Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87(5), 267–283 (2009)

    Article  Google Scholar 

  31. Degertekin, S.O., Hayalioglu, M.S.: Sizing truss structures using teaching-learning-based optimization. Comput. Struct. 119, 177–188 (2013)

    Article  Google Scholar 

  32. Camp, C.V., Farshchin, M.: Design of space trusses using modified teaching–learning based optimization. Eng. Struct. 62–63, 87–97 (2014)

    Article  Google Scholar 

  33. Dede, T., Ayvaz, Y.: Combined size and shape optimization of structures with a new meta-heuristic algorithm. Appl. Soft Comput. 28, 250–258 (2015)

    Article  Google Scholar 

  34. Sonmez, M.: Artificial Bee Colony algorithm for optimization of truss structures. Appl. Soft Comput. 11(2), 2406–2418 (2011)

    Article  Google Scholar 

  35. Bekdaş, G., Nigdeli, S.M., Yang, X.S.: Sizing optimization of truss structures using flower pollination algorithm. Appl. Soft Comput. 37, 322–331 (2015)

    Article  Google Scholar 

  36. Miguel, L.F.F., Lopez, R.H., Miguel, L.F.F.: Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv. Eng. Softw. 56, 23–37 (2013)

    Article  Google Scholar 

  37. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  38. Talatahariand, S., Kaveh, A.: Improved bat algorithm for optimum design of large-scale truss structures. Iran Univ. Sci. Technol. 5(2), 241–254 (2015)

    Google Scholar 

  39. Camp, C.V.: Design of space trusses using Big Bang-Big Crunch optimization. J. Struct. Eng. 133(7), 999–1008 (2007)

    Article  Google Scholar 

  40. Kaveh, A., Talatahari, S.: Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput. Struct. 87(17), 1129–1140 (2009)

    Article  Google Scholar 

  41. Kaveh, A., Talatahari, S.: A discrete big bang-big crunch algorithm for optimal design of skeletal structures. Asian J. Civ. Eng. 11(1), 103–122 (2010)

    Google Scholar 

  42. Hasançebi, O., Kazemzadeh Azad, S.: Discrete size optimization of steel trusses using a refined big bang–big crunch algorithm. Eng. Optim. 46(1), 61–83 (2014)

    Article  MathSciNet  Google Scholar 

  43. Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–147 (2014)

    Article  Google Scholar 

  44. Ho-Huu, V., Nguyen-Thoi, T., Le-Anh, L., Nguyen-Trang, T.: An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures. Adv. Eng. Softw. 92, 48–56 (2016)

    Article  Google Scholar 

  45. Tort, C., Şahin, S., Hasançebi, O.: Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER. Comput. Struct. 179, 75–94 (2017)

    Article  Google Scholar 

  46. Yücel, M., Bekdaş, G., Nigdeli, S.M.: Prediction of optimum 3-bar truss model parameters with an ANN model. In: International Conference on Harmony Search Algorithm, pp. 317–324. Springer, Singapore (2020)

    Google Scholar 

  47. Bekdaş, G., Yücel, M., Nigdeli, S.M.: Estimation of optimum design of structural systems via machine learning. Front. Struct. Civ. Eng. (2021). https://doi.org/10.1007/s11709-021-0774-0

  48. Bekdaş, G., Yucel, M., Nigdeli, S.M.: Evaluation of metaheuristic-based methods for optimization of truss structures via various algorithms and lèvy flight modification. Buildings 11(2), 49 (2021)

    Article  Google Scholar 

  49. Tejani, G.G., Savsani, V.J., Patel, V.K., Mirjalili, S.: Truss optimization with natural frequency bounds using improved symbiotic organisms search. Knowl. Based Syst. 143, 162–178 (2018)

    Article  Google Scholar 

  50. Tejani, G.G., Pholdee, N., Bureerat, S., Prayogo, D.: Multiobjective adaptive symbiotic organisms search for truss optimization problems. Knowl. Based Syst. 161, 398–414 (2018)

    Article  Google Scholar 

  51. Pierezan, J., dos Santos Coelho, L., Mariani, V.C., de Vasconcelos Segundo, E.H., Prayogo, D.: Chaotic coyote algorithm applied to truss optimization problems. Comput. Struct. 242, 106353 (2021)

    Article  Google Scholar 

  52. Kumar, S., Tejani, G.G., Pholdee, N., Bureerat, S.: Multi-objective modified heat transfer search for truss optimization. Eng. Comput. 37(4), 3439–3454 (2021)

    Article  Google Scholar 

  53. Tejani, G.G., Kumar, S., Gandomi, A.H.: Multi-objective heat transfer search algorithm for truss optimization. Eng. Comput. 37(1), 641–662 (2021)

    Article  Google Scholar 

  54. Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete continuous beams using genetic algorithms. Comput. Struct. 84, 34–48 (2005)

    Article  Google Scholar 

  55. Fedghouche, F., Tiliouine, B.: Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2. Eng. Struct. 42, 43–50 (2012)

    Article  Google Scholar 

  56. Camp, C.V., Pezeshk, S., Hansson, H.: Flexural design of reinforced concrete frames using a genetic algorithm. J. Struct. Eng. 129(1), 105–115 (2003)

    Article  Google Scholar 

  57. Leps, M., Sejnoha, M.: New approach to optimization of reinforced concrete beams. Comput. Struct. 81(18), 1957–1966 (2003)

    Article  Google Scholar 

  58. Sahab, M.G., Ashour, A.F., Toropov, V.V.: Cost optimisation of reinforced concrete flat slab buildings. Eng. Struct. 27(3), 313–322 (2005)

    Article  Google Scholar 

  59. Akin, A., Saka, M.P.: Optimum detailed design of reinforced concrete continuous beams using the harmony search algorithm. In: Proceedings of the Tenth International Conference on Computational Structures Technology, p. 131. Valencia, Civil-Comp Press, Stirlingshire ,UK (2010)

    Google Scholar 

  60. Bekdaş, G., Nigdeli, S.M.: Cost optimization of T-shaped reinforced concrete beams under flexural effect according to ACI 318. In: 3rd European Conference of Civil Engineering, pp. 122–126. Paris, France, WSEAS (2012). ISBN: 978–1–61804–137–1

    Google Scholar 

  61. Bekdaş, G., Nigdeli, S.M.: Optimization of slender reinforced concrete columns. Proc. Appl. Math. Mech. 14(1), 183–1884 (2014)

    Article  Google Scholar 

  62. Nigdeli, S.M., Bekdas, G., Kim, S., Geem, Z.W.: A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Struct. Eng. Mech. 54(6), 1097–1109 (2015)

    Article  Google Scholar 

  63. Nigdeli, S.M., Bekdaş, G.: Optimum design of RC continuous beams considering unfavourable live-load distributions. KSCE J. Civ. Eng. 21(4), 1410–1416 (2017)

    Article  Google Scholar 

  64. Yücel, M., Nigdeli, S.M., Kayabekir, A.E., Bekdaş, G.: Optimization and artificial neural network models for reinforced concrete members. In: Carbas, S., Toktas, A., Ustun, D. (eds.) Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer Tracts in Nature-Inspired Computing. Springer, Singapore (2021a). https://doi.org/10.1007/978-981-33-6773-9_9

  65. Ceranic, B., Freyer, C., Baines, R.W.: An application of simulated annealing to the optimum design reinforced concrete retaining structure. Comput. Struct. 79(17), 1569–1581 (2001)

    Article  Google Scholar 

  66. Yepes, V., Alcala, J., Perea, C., Gonzalez-Vidosa, F.: A parametric study of optimum earth-retaining walls by simulated annealing. Eng. Struct. 30(3), 821–830 (2008)

    Article  Google Scholar 

  67. Ahmadi-Nedushan, B., Varaee, H.: Optimal design of reinforced concrete retaining walls using a swarm intelligence technique. In: The First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, pp. 1–12. UK, Civil-Comp Press, Stirlingshire, Scotland (2009)

    Google Scholar 

  68. Kaveh, A., Abadi, A.S.M.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civ. Eng. 9(1), 1–8 (2011)

    Google Scholar 

  69. Ghazavi, M., Salavati, V.: Sensitivity analysis and design of reinforced concrete cantilever retaining walls using bacterial foraging optimization algorithm. In: 3rd International Symposium on Geotechnical Safety and Risk (ISGSR), pp. 307–314. Karlsruhe, München, Germany, Bundesanstalt für Wasserbau (2011)

    Google Scholar 

  70. Yepes, V., Gonzalez-Vidosa, F., Alcala, J., Villalba, P.: CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J. Comput. Civ. Eng. 26(3), 378–386 (2011)

    Article  Google Scholar 

  71. Camp, C.V., Akin, A.: Design of retaining walls using big bang–big crunch optimization. J. Struct. Eng. 138(3), 438–448 (2012)

    Article  Google Scholar 

  72. Kayabekir, A.E., Arama, Z.A., Bekdaş, G., Nigdeli, S.M., Geem, Z.W.: Eco-friendly design of reinforced concrete retaining walls: multi-objective optimization with harmony search applications. Sustainability 12(15), 6087 (2020)

    Article  Google Scholar 

  73. Yücel, M., Kayabekir, A.E., Bekdas, G., Nigdeli, S.M., Kim, S., Geem, Z.W.: Adaptive-hybrid harmony search algorithm for multi-constrained optimum eco-design of reinforced concrete retaining walls. Sustainability 2021(13), 1639 (2021)

    Article  Google Scholar 

  74. Yücel, M., Bekdaş, G., Nigdeli, S.M., Kayabekir, A.E.: An artificial intelligence-based prediction model for optimum design variables of reinforced concrete retaining walls. Int. J. Geomech. 21(12), 04021244 (2021)

    Article  Google Scholar 

  75. Pezeshk, S., Camp, C.V., Chen, D.: Design of nonlinear framed structures using genetic optimization. J. Struct. Eng. 126(3), 382–388 (2000)

    Article  Google Scholar 

  76. Li, W., Li, Q., Steven, G.P., Xie, Y.M.: An evolutionary approach to elastic contact optimization of frame structures. Finite Elem. Anal. Des. 40(1), 61–81 (2003)

    Article  Google Scholar 

  77. Camp, C.V., Bichon, B.J., Stovall, S.P.: Design of steel frames using ant colony optimization. J. Struct. Eng. 131(3), 369–379 (2005)

    Article  Google Scholar 

  78. Saka, M.P.: Optimum design of steel frames using stochastic search techniques based on natural phenomena: a review. Civ. Eng. Comput. Tools Tech. 6, 105–147 (2007)

    Article  Google Scholar 

  79. Perea, C., Alcala, J., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A.: Design of reinforced concrete bridge frames by heuristic optimization. Adv. Eng. Softw. 39(8), 676–688 (2008)

    Article  Google Scholar 

  80. Rajeev, S., Krishnamoorthy, C.S.: Genetic algorithm-based methodology for design optimization of reinforced concrete frames. Comput. Aided Civ. Infrastruct. Eng. 13, 63–74 (1998)

    Article  Google Scholar 

  81. Lee, C., Ahn, J.: Flexural design of reinforced concrete frames by genetic algorithm. J. Struct. Eng. 129(6), 762–774 (2003)

    Article  Google Scholar 

  82. Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete frames using genetic algorithms. Eng. Optim. 39(4), 471–494 (2007)

    Article  Google Scholar 

  83. Paya, I., Yepes, V., González-Vidosa, F., Hospitaler, A.: Multiobjective optimization of concrete frames by simulated annealing. Comput. Aided Civ. Infrastruct. Eng. 23(8), 596–610 (2008)

    Article  MATH  Google Scholar 

  84. Akin, A., Saka, M.P.: Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318–05 provisions. Comput. Struct. 147, 79–95 (2015)

    Article  Google Scholar 

  85. Kaveh, A., Sabzi, O.: A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames. Int. J. Civil Eng. 9(3), 193–206 (2011)

    Google Scholar 

  86. Paya-Zaforteza, I., Yepes, V., Hospitaler, A., Gonzalez-Vidosa, F.: CO2-optimization of reinforced concrete frames by simulated annealing. Eng. Struct. 31(7), 1501–1508 (2009)

    Google Scholar 

  87. Camp, C.V., Huq, F.: CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng. Struct. 48, 363–372 (2013)

    Article  Google Scholar 

  88. Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., Alizadeh, Y.: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput. Methods Appl. Mech. Eng. 197(33), 3080–3091 (2008)

    Article  MATH  Google Scholar 

  89. Hasançebi, O., Çarbaş, S., Saka, M.P.: Improving the performance of simulated annealing in structural optimization. Struct. Multidiscip. Optim. 41(2), 189–203 (2010)

    Article  Google Scholar 

  90. Toğan, V.: Design of planar steel frames using teaching–learning based optimization. Eng. Struct. 34, 225–232 (2012)

    Article  Google Scholar 

  91. Kociecki, M., Adeli, H.: Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures. Eng. Appl. Artif. Intell. 32, 218–227 (2014)

    Article  Google Scholar 

  92. Talatahari, S., Gandomi, A.H., Yang, X.S., Deb, S.: Optimum design of frame structures using the eagle strategy with differential evolution. Eng. Struct. 91, 16–25 (2015)

    Article  Google Scholar 

  93. Aydoğdu, İ, Akın, A., Saka, M.P.: Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution. Adv. Eng. Softw. 92, 1–14 (2016)

    Article  Google Scholar 

  94. Saka, M.P., Carbas, S., Aydogdu, I., Akin, A.: Use of swarm intelligence in structural steel design optimization. In: Yang, X.S., Bekdaş, G., Nigdeli S.M. (eds.) Metaheuristics and Optimization in Civil Engineering, vol. 7, pp. 43–73. Springer International Publishing, London (2016)

    Google Scholar 

  95. Bekdaş, G., Nigdeli, S.M.: Modified harmony search for optimization of reinforced concrete frames. In: International Conference on Harmony Search Algorithm, pp. 213–221. Springer, Singapore (2017)

    Google Scholar 

  96. Ulusoy, S., Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M.: Optimum design of reinforced concrete multi-story multi-span frame structures under static loads. Int. J. Eng. Technol 10(5), 403–407 (2018)

    Article  Google Scholar 

  97. Kayabekir, A.E.: Yapı Mühendisliğinde Metasezgisel Algoritmalar ile Optimizasyon Uygulamaları, MSc Thesis, Istanbul University, Istanbul, Turkey (2018)

    Google Scholar 

  98. Rakıcı, E., Bekdaş, G., Nigdeli, S.M.: Optimal cost design of single-story reinforced concrete frames using jaya algorithm. In: International Conference on Harmony Search Algorithm, pp. 179–186. Springer, Singapore (2020)

    Google Scholar 

  99. Ulusoy, S., Niğdeli, S.M., Bekdaş, G.: Optimization of PID controller parameters for active control of single degree of freedom structures. Challenge 5(4), 130–140 (2019)

    Google Scholar 

  100. Ulusoy, S., Bekdas, G., Nigdeli, S.M.: Active structural control via metaheuristic algorithms considering soil-structure interaction. Struct. Eng. Mech. 75(2), 175–191 (2020)

    Google Scholar 

  101. Ulusoy, S., Nigdeli, S.M., Bekdaş, G.: Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness. J. Build. Eng. 33, 101647 (2021)

    Article  Google Scholar 

  102. Ulusoy, S., Bekdaş, G., Nigdeli, S.M., Kim, S., Geem, Z.W.: Performance of optimum tuned PID controller with different feedback strategies on active-controlled structures. Appl. Sci. 11(4), 1682 (2021b)

    Google Scholar 

  103. Ulusoy, S., Kayabekir, A.E., Nigdeli, S.M., Bekdaş, G.: Metaheuristic-based structural control methods and comparison of applications. In: Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications, pp. 251–276. Springer, Singapore (2021c)

    Google Scholar 

  104. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill, New York, USA (1956)

    MATH  Google Scholar 

  105. Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)

    Article  Google Scholar 

  106. Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 26(6), 617–636 (1997)

    Article  Google Scholar 

  107. Hadi, M.N., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998)

    Article  Google Scholar 

  108. Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329(23), 4880–4890 (2010)

    Article  Google Scholar 

  109. Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31(4), 749–769 (2002)

    Article  Google Scholar 

  110. Desu, N.B., Deb, S.K., Dutta, A.: Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct. Control. Health Monit. 13(5), 897–916 (2006)

    Article  Google Scholar 

  111. Pourzeynali, S., Lavasani, H.H., Modarayi, A.H.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29(3), 346–357 (2007)

    Article  Google Scholar 

  112. Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31(3), 715–728 (2009)

    Article  Google Scholar 

  113. Leung, A.Y., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dynam. 37(9), 1223–1246 (2008)

    Article  Google Scholar 

  114. Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)

    Article  Google Scholar 

  115. Bekdaş, G., Nigdeli, S.M.: Optimization of tuned mass damper with harmony search. In: Gandomi, A.H., Yang, X.S., Alavi A.H., Talatahari, S. (eds.) Metaheuristic Applications in Structures and Infrastructures, vol. 14, pp. 345–372. Elsevier, Londra (2013a)

    Google Scholar 

  116. Bekdaş, G., Nigdeli, S.M.: Mass ratio factor for optimum tuned mass damper strategies. Int. J. Mech. Sci. 71, 68–84 (2013)

    Article  Google Scholar 

  117. Nigdeli, S.M., Bekdas, G.: Optimum tuned mass damper design for preventing brittle fracture of RC buildings. Smart Struct. Syst. 12(2), 137–155 (2013)

    Article  Google Scholar 

  118. Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013)

    Article  Google Scholar 

  119. Farshidianfar, A.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6, 339–356 (2013)

    Article  Google Scholar 

  120. Bekdaş, G., Nigdeli, S.M.: Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction. Soil Dyn. Earthq. Eng. 92, 443–461 (2017)

    Article  Google Scholar 

  121. Bekdaş, G., Nigdeli, S.M., Yang, X.S.: A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Eng. Struct. 159, 89–98 (2018)

    Article  Google Scholar 

  122. Bekdaş, G., Kayabekir, A.E., Nigdeli, S.M., Toklu, Y.C.: Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dyn. Earthq. Eng. 116, 552–562 (2019)

    Article  Google Scholar 

  123. Nigdeli, S.M., Bekdas, G.: Optimum tuned mass damper approaches for adjacent structures. Earthq. Struct. 7(6), 1071–1091 (2014)

    Article  Google Scholar 

  124. Nigdeli, S.M., Bekdaş, G.: Optimum design of multiple positioned tuned mass dampers for structures constrained with axial force capacity. Struct. Design Tall Spec. Build. 28(5), e1593 (2019)

    Article  Google Scholar 

  125. Yucel, M., Bekdaş, G., Nigdeli, S.M., Sevgen, S.: Estimation of optimum tuned mass damper parameters via machine learning. J. Build. Eng. 26, 100847 (2019)

    Article  Google Scholar 

  126. Ahlawat, A.S., Ramaswamy, A.: Multiobjective optimal fuzzy logic control system for response control of wind-excited tall buildings. J. Eng. Mech. 130(4), 524–530 (2004)

    Google Scholar 

  127. Yang, J.N., Agrawal, A.K., Samali, B., Wu, J.C.: Benchmark problem for response control of wind-excited tall buildings. J. Eng. Mech. 130(4), 437–446 (2004)

    Google Scholar 

  128. Ozer, H.O., Sayin, A., Korkmaz, N., Yagız, N.: Sliding mode control optimized by genetic algorithm for building model. In: 11th Biennial International Conference on Vibration Problems (ICOVP-2013). Lisbon, Portugal (2013)

    Google Scholar 

  129. Amini, F., Hazaveh, N.K., Rad, A.A.: Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput. Aided Civil Infrastruct. Eng. 28(7), 542–557 (2013)

    Article  Google Scholar 

  130. Venanzi, I., Ubertini, F., Materazzi, A.L.: Optimal design of an array of active tuned mass dampers for wind-exposed high-rise buildings. Struct. Control. Health Monit. 20(6), 903–917 (2013)

    Article  Google Scholar 

  131. Shariatmadar, H., Meshkat Razavi, H.: Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method. Struct. Eng. Mech. 51 (2014)

    Google Scholar 

  132. Soleymani, M., Khodadadi, M.: Adaptive fuzzy controller for active tuned mass damper of a benchmark tall building subjected to seismic and wind loads. Struct. Design Tall Spec. Build. 23(10), 781–800 (2014)

    Article  Google Scholar 

  133. Li, C., Cao, B.: Hybrid active tuned mass dampers for structures under the ground acceleration. Struct. Control. Health Monit. 22(4), 757–777 (2015)

    Article  Google Scholar 

  134. Heidari, A.H., Etedali, S., Javaheri-Tafti, M.R.: A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Front. Struct. Civ. Eng. 12(1), 44–57 (2018)

    Article  Google Scholar 

  135. Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., Geem, Z.W.: Optimum design of PID controlled active tuned mass damper via modified harmony search. Appl. Sci. 10(8), 2976 (2020)

    Article  Google Scholar 

  136. Kayabekir, A.E., Nigdeli, S.M., Bekdaş, G.: Robustness of Structures with active tuned mass dampers optimized via modified harmony search for time delay. In: International Conference on Harmony Search Algorithm, pp. 53–60. Springer, Singapore (2020)

    Google Scholar 

  137. Kayabekir, A.E., Nigdeli, S.M., Bekdaş, G.: A hybrid metaheuristic method for optimization of active tuned mass dampers. Comput. Aided Civil Infrastruct. Eng. (2021)

    Google Scholar 

  138. Kayabekir, A.E., Toklu, Y.C., Bekdaş, G., Nigdeli, S.M., Yücel, M., Geem, Z.W.: A novel hybrid harmony search approach for the analysis of plane stress systems via total potential optimization. Appl. Sci. 10(7), 2301 (2020)

    Article  Google Scholar 

  139. Toklu, Y.C., Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., Yücel, M.: Analysis of plane-stress systems via total potential optimization method considering nonlinear behavior. J. Struct. Eng. 146(11), 04020249 (2020)

    Article  Google Scholar 

  140. Nigdeli, S.M., Bekdaş, G., Toklu, Y.C.: Total potential energy minimization using metaheuristic algorithms for spatial cable systems with increasing second order effects. In: 12th International Congress on Mechanics (HSTAM2019), pp. 22–25 (2019)

    Google Scholar 

  141. Toklu, Y.C., Bekdaş, G., Kayabekir, A.E., Nigdeli, S.M., Yücel, M.: Total potential optimization using metaheuristics: analysis of cantilever beam via plane-stress members. In: International Conference on Harmony Search Algorithm, pp. 127–138. Springer, Singapore (2020)

    Google Scholar 

  142. Toklu, Y.C., Bekdaş, G., Yücel, M., Nigdeli, S.M., Kayabekir, A.E., Kim, S., Geem, Z.W.: Total potential optimization using metaheuristic algorithms for solving nonlinear plane strain systems. Appl. Sci. 11(7), 3220 (2021)

    Article  Google Scholar 

  143. Toklu, Y.C., Bekdaş, G., Kayabekir, A.E., Nigdeli, S.M., Yücel, M.: Total potential optimization using hybrid metaheuristics: a tunnel problem solved via plane stress members. In: Advances in Structural Engineering—Optimization, pp. 221–236. Springer, Cham (2021)

    Google Scholar 

  144. Bekdaş, G., Kayabekir, A.E., Nigdeli, S.M., Toklu, Y.C.: Advanced energy-based analyses of trusses employing hybrid metaheuristics. Struct. Design Tall Spec. Build. 28(9), e1609 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebrail Bekdaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bekdaş, G., Nigdeli, S.M., Kayabekir, A.E. (2023). Optimum Design and Tuning Applications in Structural Engineering via Swarm Intelligence. In: Biswas, A., Kalayci, C.B., Mirjalili, S. (eds) Advances in Swarm Intelligence. Studies in Computational Intelligence, vol 1054. Springer, Cham. https://doi.org/10.1007/978-3-031-09835-2_6

Download citation

Publish with us

Policies and ethics