Skip to main content

Current Evidence for Disease Prevention and Treatment by Protocatechuic Acid (PCA) and Its Precursor Protocatechuic Aldehyde (PCAL) in Animals and Humans

  • Reference work entry
  • First Online:
Plant Antioxidants and Health

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Protocatechuic acid (PCA) and its precursor protocatechuic aldehyde (PCAL) are widely distributed polyphenols found in edible plants, fruits, and vegetables. PCA is the major human metabolite of cyanidin-glucosides derived from anthocyanins (ACN). Evidence suggests, that both PCA and PCAL influence the profile of the gut microbiota which contributes to the improvement of health benefits for humans. As agents used by plants in the self-defense, they have antibacterial and antiviral activity. Consumption of these substances is associated with lowered risk of some chronic conditions such as cardiovascular diseases. In aging-related states such as neurodegeneration, a reduction in amyloid deposition associated with Alzheimer’s disease was observed. Both PCA and PCAL have been shown to have antioxidant activity in vitro and in vivo, and beneficial effects in chronic inflammation. Both have been shown to be effective in cancer chemoprevention. The preventive effect of PCA in experimental models of the metabolic syndrome is of great importance, thanks to the antidiabetic effect and reducing obesity. PCA and PCAL show antiatherogenic activity; moreover, PCA acts as an anti-aggregating agent, reducing the risk of thrombosis. In preclinical studies, a beneficial effect of PCA in inhibiting osteoporosis has been found. It should be taken into account, that phenolic acids as dietary components, inter alia, show anticancer activity by reversing epigenetics-related changes, that lead to the activation of oncogenes and inactivation of suppressive genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-MT:

3-methoxy-4-hydroxyphenethylamine, 3-methoxytyramine

ABCA1 :

ATP-binding cassette transporter A1

ABCG1:

ATP-binding cassette transporter G1

ACN:

Anthocyanins

AGE:

Advanced glycation end products

Akt (PKB):

Protein kinase B

AMPK:

Adenosine 5′-monophosphate-activated protein kinase

ANF:

Atrial natriuretic factor

ApoE:

Apolipoprotein E

ARE:

Antioxidant response element

ATF:

Activating transcription factor

Bak 1:

Bcl-2 homologous antagonist/killer

Bax:

Apoptosis regulator BAX/bcl-2-like protein 4

Bcl-2:

B-cell lymphoma 2

Bcl-xL:

B-cell lymphoma-extra large

BdNF :

Brain-derived neurotrophic factor

C3G:

Cyanidin-3-O-β-glucoside

Casp:

Caspase; cysteine-aspartic acid protease

CAT:

Catalase

CDK:

Cyclin-dependent kinase

c-Fos:

Proto-oncogene c-Fos

Cmax :

Maximum plasma concentration

COMT:

Catechol-O-methyl transferase

CREB:

cAMP-response element binding protein

c-Src:

Proto-oncogene tyrosine-protein kinase Src

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

GPx:

Glutathione peroxidase

GSK:

Glycogen synthase kinase

HDAC:

Histone deacetylase

HMBG 1:

High-mobility group box 1 protein

ICAM-1:

Intercellular adhesion molecule 1

IRE1α:

Inositol-requiring enzyme 1 α

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

LC-MS-MS:

Liquid chromatography electrospray ionization tandem mass spectrometry

LDH:

Lactic dehydrogenase

LDL:

Low-density lipoprotein

MAPK:

Mitogen-activated protein kinase

MHCβ:

Major histocompatibility complex with β chain

miRNA:

MicroRNA

MPTP:

1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

mTOR:

Mechanistic target of rapamycin

NFATc1:

Nuclear factor of activated T cells 1

NFκB:

Nuclear factor kappa B

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

p27KIP1:

Cyclin-dependent kinase inhibitor

p38:

MAPKp38 mitogen-activated protein kinase

p65:

Transcription factor p65

PARP:

Poly (ADP-ribose) polymerase

PCA:

Protocatechuic acid

PCAL:

Protocatechuic aldehyde

PDGF:

Platelet-derived growth factor

PERK:

Protein kinase R-like endoplasmic reticulum kinase

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase CRAGE

PPAR-ϒ:

Peroxisome proliferator-activated receptor gamma

PTX3:

Pentraxin-3

RAGE:

Receptor for advanced glycation end products

RANK:

Receptor activator of nuclear factor-κb

RANKL:

Receptor activator of nuclear factor-κb ligand

RCT:

Reverse cholesterol transport

ROS:

Reactive oxygen species

Sir 2:

Silent information regulator 2

SIRT1:

NAD-dependent deacetylase sirtuin-1

SLC7A5:

Large neutral amino acids transporter small subunit 1

SOD:

Superoxide dismutase

STAT:

Signal transducer and activator of transcription

TNF-α:

Tumor necrosis factor alpha

TRAF6:

Tumor necrosis factor receptor-associated factor 6

TROLOX:

Equivalent antioxidant capacity

α-SMA:

α-smooth muscle actin

References

  1. Scalbert A, Manach C, Morand C, Remesy C (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306

    Article  CAS  PubMed  Google Scholar 

  2. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81:243S–255S

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ:349:g4490. https://doi.org/10.1136/bmj.g4490. Erratum in: BMJ 2014;349:5472

  4. Zhou Z, Liu Y, Miao AD, Wang SQ (2005) Protocatechuic aldehyde suppresses TNF-alpha-induced ICAM-1 and VCAM-1 expression in human umbilical vein endothelial cells. Eur J Pharmacol 513:1–8

    Article  CAS  PubMed  Google Scholar 

  5. Hu J, Webster D, Cao J, Shao A (2018) The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol 95:412–433

    Article  CAS  PubMed  Google Scholar 

  6. García-Cortés M, Robles-Díaz M, Ortega-Alonso A, Medina-Caliz I, Andrade RJ (2016) Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics. Int J Mol Sci 17:537. https://doi.org/10.3390/ijms17040537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roytman MM, Poerzgen P, Navarro V (2018) Botanicals and hepatotoxicity. Clin Pharmacol Ther 104:458–469

    Article  PubMed  Google Scholar 

  8. Satyanarayana U, Kumar AN, Naidu JN, Viswa Prasad DK (2014) Antioxidant supplementation for health – a boon or a bane? J NTR Univ Health Sci 3:221–230

    Article  Google Scholar 

  9. Mursu J, Robien K, Harnack LJ, Park K, Jacobs DR Jr (2011) Dietary supplements and mortality rate in older women: the Iowa Women’s Health Study. Arch Intern Med 171:1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bjelakovic G, Nikolova D, Gluud C (2014) Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care 17:40–44. https://doi.org/10.1097/MCO.0000000000000009

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga MR, Wang X, Martínez M, Anadón A, Martínez MA (2021) Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chem 353:129488. https://doi.org/10.1016/j.foodchem.2021.129488

    Article  CAS  PubMed  Google Scholar 

  12. Shen L, Ji HF, Zhang HY (2007) How to understand the dichotomy of antioxidants. Biochem Biophys Res Commun 362:543–545

    Article  CAS  PubMed  Google Scholar 

  13. Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N (2019) Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8:793. https://doi.org/10.3390/cells8080793

    Article  CAS  PubMed Central  Google Scholar 

  14. Ndhlala AR, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930. https://doi.org/10.3390/molecules15106905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162. https://doi.org/10.3389/fphar.2018.01162

    Article  PubMed  PubMed Central  Google Scholar 

  16. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931. https://doi.org/10.1155/2016/5698931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masella R, Santangelo C, D’Archivio M, Li Volti G, Giovannini C, Galvano F (2012) Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem 19:2901–2917

    Article  CAS  PubMed  Google Scholar 

  18. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014:952943. https://doi.org/10.1155/2014/952943

    Article  PubMed  PubMed Central  Google Scholar 

  19. Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N (2015) Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med 2015:593902. https://doi.org/10.1155/2015/593902

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E (2017) Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci 22:72–82

    Article  PubMed  Google Scholar 

  21. Song J, He Y, Luo C, Feng B, Ran F, Xu H, Ci Z, Xu R, Han L, Zhang D (2020) New progress in the pharmacology of protocatechuic acid: a compound ingested in daily foods and herbs frequently and heavily. Pharmacol Res 161:105109. https://doi.org/10.1016/j.phrs.2020.105109

    Article  CAS  PubMed  Google Scholar 

  22. Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, Cherubini A, Carrieri B, Kirkup B, Kroon P, Zamora-Ros R, Liberona NH, Andres-Lacueva C, Riso P (2019) Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 11:1355. https://doi.org/10.3390/nu11061355

    Article  CAS  PubMed Central  Google Scholar 

  23. Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, Tjønneland A, Kyrø C, Fagherazzi G, Boutron-Ruault MC, Touillaud M, Katzke V, Kühn T, Boeing H, Förster J, Trichopoulou A, Valanou E, Peppa E, Palli D, Agnoli C, Ricceri F, Tumino R, de Magistris MS, Peeters PH, Bueno-de-Mesquita HB, Engeset D, Skeie G, Hjartåker A, Menéndez V, Agudo A, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Sonestedt E, Nilsson LM, Landberg R, Key TJ, Khaw KT, Wareham NJ, Lu Y, Slimani N, Romieu I, Riboli E, Scalbert A (2016) Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr 55:1359–1375

    Article  CAS  PubMed  Google Scholar 

  24. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713

    Article  CAS  PubMed  Google Scholar 

  25. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols—food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  26. Liu C, Wang W, Lin W, Ling W, Wang D (2016) Established atherosclerosis might be a prerequisite for chicory and its constituent protocatechuic acid to promote endothelium-dependent vasodilation in mice. Mol Nutr Food Res 60:2141–2150

    Article  CAS  PubMed  Google Scholar 

  27. Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int 136:109298. https://doi.org/10.1016/j.foodres.2020.109298

    Article  CAS  PubMed  Google Scholar 

  28. Juurlink BH, Azouz HJ, Aldalati AM, AlTinawi BMH, Ganguly P (2014) Hydroxybenzoic acid isomers and the cardiovascular system. Nutr J 13:63. https://doi.org/10.1186/1475-2891-13-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rossetto M, Lante A, Vanzani P, Spettoli P, Scarpa M, Rigo A (2005) Red chicories as potent scavengers of highly reactive radicals: a study on their phenolic composition and peroxyl radical trapping capacity and efficiency. J Agric Food Chem 53:8169–8175

    Article  CAS  PubMed  Google Scholar 

  30. Buda V, Brezoiu AM, Berger D, Pavel IZ, Muntean D, Minda D, Dehelean CA, Soica C, Diaconeasa Z, Folescu R, Danciu C (2020) Biological evaluation of black chokeberry extract free and embedded in two mesoporous silica-type matrices. Pharmaceutics 12:838. https://doi.org/10.3390/pharmaceutics12090838

    Article  CAS  PubMed Central  Google Scholar 

  31. Boskou G, Salta FN, Chrysostomou S, Mylona A, Chiou A, Andrikopoulos NK (2006) Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem 94:558–564

    Article  CAS  Google Scholar 

  32. Takahama U, Oniki T, Hirota S (2001) Phenolic components of brown scales of onion bulbs produce hydrogen peroxide by autooxidation. J Plant Res 114:395–402

    Article  CAS  Google Scholar 

  33. Barros L, Duenas M, Ferreira IC, Baptista P, Santos-Buelga C (2009) Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol 47:1076–1079

    Article  CAS  PubMed  Google Scholar 

  34. Sarikurkcu C, Locatelli M, Tartaglia A, Ferrone V, Juszczak AM, Ozer MS, Tepe B, Tomczyk M (2020) Enzyme and biological activities of the water extracts from the plants Aesculus hippocastanum, Olea europaea and Hypericum perforatum that are used as folk remedies in Turkey. Molecules 5:1202. https://doi.org/10.3390/molecules25051202

  35. Wu X, Pittman HE III, Hager T, Hager A, Howard L, Prior RL (2009) Phenolic acids in black raspberry and in the gastrointestinal tract of pigs following ingestion of black raspberry. Mol Nutr Food Res 53(Suppl 1):S76–S84

    Article  PubMed  Google Scholar 

  36. Hiemori M, Koh E, Mitchell AE (2009) Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). J Agric Food Chem 5:1908–1914

    Google Scholar 

  37. Aalim H, Luo Z (2021) Insight into rice (Oryza sativa L.) cooking: phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. Food Biosci 40:100917. https://doi.org/10.1016/j.fbio.2021.100917

  38. Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. CRFSFS 12:483–508

    CAS  Google Scholar 

  39. Speciale A, Cimino F, Saija A, Canali R, Virgili F (2014) Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr 9:404. https://doi.org/10.1007/s12263-014-0404-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Rio D, Costa LG, Lean ME, Crozier A (2010) Polyphenols and health: what compounds are involved? Nutr Metab Cardiovasc Dis 20:1–6

    Article  PubMed  CAS  Google Scholar 

  41. Man AWC, Zhou Y, Xia N, Li H (2020) Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism. Nutrients 12:3054. https://doi.org/10.3390/nu12103054

    Article  CAS  PubMed Central  Google Scholar 

  42. Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC (2019) Dietary anthocyanins and stroke: a review of pharmacokinetic and pharmacodynamic studies. Nutrients 11:1479. https://doi.org/10.3390/nu11071479

    Article  CAS  PubMed Central  Google Scholar 

  43. de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD (2014) The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol 171:3268–3282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun YJ, Huang QQ, Li P, Zhang JJ (2015) Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) – mimicking the M(II)-substituted quercetin 2,3-dioxygenase. Dalton Trans 2015(44):13926–11338

    Article  Google Scholar 

  45. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853

    Article  CAS  PubMed  Google Scholar 

  46. Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon P, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97(995):1003

    Google Scholar 

  47. Fang J (2014) Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: extensive presystemic metabolism reduces apparent bioavailability. J Agric Food Chem 62:3904–3911

    Article  CAS  PubMed  Google Scholar 

  48. Han Y, Xiong Z, Yang C, Liu M, Li F (2007) Determination of protocatechuic acid in rat plasma by high performance liquid chromatography. Se Pu 25:207–210

    CAS  PubMed  Google Scholar 

  49. Tsuda T, Horio F, Osawa T (1999) Absorption and metabolism of cyanidin 3-O-beta-D-glucoside in rats. FEBS Lett 449:179–182

    Article  CAS  PubMed  Google Scholar 

  50. Vitaglione P, Donnarumma G, Napolitano A, Galvano F, Gallo A, Scalfi L, Fogliano V (2007) Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J Nutr 137:2043–2048

    Article  CAS  PubMed  Google Scholar 

  51. Koli R, Erlund I, Jula A, Marniemi J, Mattila P, Alfthan G (2010) Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J Agric Food Chem 58:3927–3932

    Article  CAS  PubMed  Google Scholar 

  52. Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737

    Google Scholar 

  53. Galvano F, Vitaglione P, Li Volti G, Di Giacomo C, Gazzolo D, Vanella L, La Fauci L, Fogliano V (2008) Protocatechuic acid: the missing human cyanidins’ metabolite. Mol Nutr Food Res 52:386–387

    Article  CAS  PubMed  Google Scholar 

  54. Pietta PG, Simonetti P, Gardana C, Brusamolino A, Morazzoni P, Bombardelli E (1998) Catechin metabolites after intake of green tea infusions. Biofactors 8:111–118

    Article  CAS  PubMed  Google Scholar 

  55. Nozaki A, Kimura T, Ito H, Hatano T (2009) Interaction of polyphenolic metabolites with human serum albumin: a circular dichroism study. Chem Pharm Bull (Tokyo) 57:1019–1023

    Article  CAS  Google Scholar 

  56. Hanske L, Engst W, Loh G, Sczesny S, Blaut M, Braune A (2013) Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br J Nutr 109:1433–1441

    Article  CAS  PubMed  Google Scholar 

  57. Braga ARC, de Souza Mesquita LM, Martins PLR, Habu S, Rosso VV (2018) Lactobacillus fermentation of jussara pulp leads to the enzymatic conversion of anthocyanins increasing antioxidant activity. J Food Compos Anal 69:162–170

    Google Scholar 

  58. Keppler K, Humpf HU (2005) Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13:5195–5205

    Article  CAS  PubMed  Google Scholar 

  59. Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 111:967–981

    Article  CAS  PubMed  Google Scholar 

  60. Lin CY, Tsai SJ, Huang CS, Yin MC (2011) Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. J Agric Food Chem 59:5117–5124

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Yan K, Ma X, Li W, Chu Y, Guo J, Li S, Zhou S, Zhu Y, Liu C (2016) Simultaneous determination and pharmacokinetic study of protocatechuic aldehyde and its major active metabolite protocatechuic acid in rat plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr Sci 54:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, Owumi SE, Olopade JO (2016) Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct 7:913–921

    Article  CAS  PubMed  Google Scholar 

  63. Tian X, Schaich KM (2013) Effects of molecular structure on kinetics and dynamics of the Trolox equivalent antioxidant capacity assay with ABTS. J Agric Food Chem 61:5511–5519

    Article  CAS  PubMed  Google Scholar 

  64. Li X, Wang X, Chen D, Chen S (2011) Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct Food Health Dis 7:232–244

    Article  Google Scholar 

  65. Galano A, Pérez-González A (2012) On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theor Chem Acc 131:1–13

    Google Scholar 

  66. Ueda J, Saito N, Shimazu Y, Ozawa T (1996) A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch Biochem Biophys 333:377–384

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Z, Li G, Szeto SSW, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, Michael Siu KW, Yuen Lee SM, Chu IK (2015) Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 84:331–343

    Article  CAS  PubMed  Google Scholar 

  68. Yin X, Zhang X, Lv C, Li C, Yu Y, Wang X, Han F (2015) Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 5:14507. https://doi.org/10.1038/srep14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma L, Wang G, Chen Z, Li Z, Yao J, Zhao H, Wang S, Ma Z, Chang H, Tian X (2014) Modulating the p66shc signaling pathway with protocatechuic acid protects the intestine from ischemia reperfusion injury and alleviates secondary liver damage. Sci World J 2014:387640. https://doi.org/10.1155/2014/387640

    Article  Google Scholar 

  70. Cheng YT, Lin JA, Jhang JJ, Yen GC (2019) Protocatechuic acid-mediated DJ-1/PARK7 activation followed by PI3K/mTOR signaling pathway activation as a novel mechanism for protection against ketoprofen-induced oxidative damage in the gastrointestinal mucosa. Free Radic Biol Med 130:35–47

    Article  CAS  PubMed  Google Scholar 

  71. Crespo I, San-Miguel B, Mauriz JL, Ortiz de Urbina JJ, Almar M, Tuñón MJ, González-Gallego J (2017) Protective effect of protocatechuic acid on TNBS-induced colitis in mice is associated with modulation of the SphK/S1P signaling pathway. Nutrients 9:288. https://doi.org/10.3390/nu9030288

    Article  CAS  PubMed Central  Google Scholar 

  72. Safaeian L, Emami R, Hajhashemi V, Haghighatian Z (2018) Antihypertensive and antioxidant effects of protocatechuic acid in deoxycorticosterone acetate-salt hypertensive rats. Biomed Pharmacother 100:147–155

    Article  CAS  PubMed  Google Scholar 

  73. Lende AB, Kshirsagar AD, Deshpande AD, Muley MM, Patil RR, Bafna PA, Naik SR (2011) Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology 19:255–263

    Article  CAS  PubMed  Google Scholar 

  74. Varì R, D’Archivio M, Filesi C, Carotenuto S, Scazzocchio B, Santangelo C, Giovannini C, Masella R (2011) Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J Nutr Biochem 22:409–417

    Article  PubMed  CAS  Google Scholar 

  75. Mandalari G, Bisignano C, D’Arrigo M, Ginestra G, Arena A, Tomaino A, Wickham MS (2010) Antimicrobial potential of polyphenols extracted from almond skins. Lett Appl Microbiol 51:83–89

    CAS  PubMed  Google Scholar 

  76. Jalali O, Best M, Wong A, Schaeffer B, Bauer B, Johnson L (2020) Protocatechuic acid as a topical antimicrobial for surgical skin antisepsis. JBJS Open Access 5:e19.00079. https://doi.org/10.2106/JBJS.OA.19.00079

    Article  PubMed Central  Google Scholar 

  77. Jalali O, Best M, Wong A, Schaeffer B, Bauer B, Johnson L (2020) Reduced bacterial burden of the skin surrounding the shoulder joint following topical protocatechuic acid application. JBJS Open Access 5:e19.00078. https://doi.org/10.2106/JBJS.OA.19.00078

    Article  PubMed Central  Google Scholar 

  78. Alvarado-Martinez Z, Bravo P, Kennedy N-F, Krishna M, Hussain S, Young AC, Biswas D (2020) Antimicrobial and antivirulence impacts of phenolics on Salmonella enterica serovar typhimurium. Antibiotics 9:668. https://doi.org/10.3390/antibiotics9100668

    Article  CAS  PubMed Central  Google Scholar 

  79. Bernal-Mercado AT, Gutierrez-Pacheco MM, Encinas-Basurto D, Mata-Haro V, Lopez-Zavala AA, Islas-Osuna MA, Gonzalez-Aguilar GA, Ayala-Zavala JF (2020) Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia coli on silicone surfaces. J Appl Microbiol 128:387–400

    Article  CAS  PubMed  Google Scholar 

  80. Srivastava N, Tiwari S, Bhandari K, Biswal AK, Rawat AKS (2020) Novel derivatives of plant monomeric phenolics: act as inhibitors of bacterial cell-to-cell communication. Microb Pathog 141:103856. https://doi.org/10.1016/j.micpath.2019.103856

    Article  CAS  PubMed  Google Scholar 

  81. Wu S, Wang Q, Wang J, Duan B, Tang Q, Sun Z, Han J, Shan C, Wang Z, Hao Z (2020) Protocatechuic aldehyde from Salvia miltiorrhiza exhibits an anti-inflammatory effect through inhibiting MAPK signalling pathway. BMC Complement Med Ther 20:347. https://doi.org/10.1186/s12906-020-03090-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, Turroni S, Cocolin L, Brigidi P, Neviani E, Gobbetti M, O’Toole PW, Ercolini D (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821

    Article  PubMed  CAS  Google Scholar 

  83. Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1:718–725

    Article  PubMed  PubMed Central  Google Scholar 

  84. Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cassidy A, Minihane AM (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105:10–22

    Article  CAS  PubMed  Google Scholar 

  86. Hair R, Sakaki JR, Chun OK (2021) Anthocyanins, microbiome and health benefits in aging. Molecules 26:537. https://doi.org/10.3390/molecules26030537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hervert-Hernandez D, Goni I (2011) Dietary polyphenols and human gut microbiota: a review. Food Rev Int 27:154–169

    Article  CAS  Google Scholar 

  88. Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP, de Pascual-Teresa S (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890

    Article  CAS  PubMed  Google Scholar 

  89. Igwe EO, Charlton KE, Probst YC, Kent K, Netzel ME (2019) A systematic literature review of the effect of anthocyanins on gut microbiota populations. J Hum Nutr Diet 32:53–62

    Article  CAS  PubMed  Google Scholar 

  90. Ho L, Zhao D, Ono K, Ruan K, Mogno I, Tsuji M, Carry E, Brathwaite J, Sims S, Frolinger T, Westfall S, Mazzola P, Wu Q, Hao K, Lloyd TE, Simon JE, Faith J, Pasinetti GM (2019) Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. J Nutr Biochem 64:170–181

    Article  CAS  PubMed  Google Scholar 

  91. Morais CA, de Rosso VV, Estadella D, Pisani LP (2016) Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 33:1–7

    Article  CAS  PubMed  Google Scholar 

  92. Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB (2018) Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in High-Fat-Diet-Fed rats. J Nutr 148:209–219

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ajiboye TO, Habibu RS, Saidu K, Haliru FZ, Ajiboye HO, Aliyu NO, Ibitoye OB, Uwazie JN, Muritala HF, Bello SA, Yusuf II, Mohammed AO (2017) Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiol Open 6:e00472. https://doi.org/10.1002/mbo3.472

    Article  CAS  Google Scholar 

  94. Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78. https://doi.org/10.3390/nu8020078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stevens JF, Maier CS (2016) The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev 15:425–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jenner AM, Rafter J, Halliwell B (2005) Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med 38:763–772

    Article  CAS  PubMed  Google Scholar 

  97. Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ (2017) Dietary anthocyanins against obesity and inflammation. Nutrients 9:1089. https://doi.org/10.3390/nu9101089

    Article  CAS  PubMed Central  Google Scholar 

  98. Jeong JB, Lee SH (2013) Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem Biophys Res Commun 430:381–386

    Article  CAS  PubMed  Google Scholar 

  99. Lee JR, Lee MH, Eo HJ, Park GH, Song HM, Kim MK, Lee JW, Jeong JB (2014) The contribution of activating transcription factor 3 to apoptosis of human colorectal cancer cells by protocatechualdehyde, a naturally occurring phenolic compound. Arch Biochem Biophys 564:203–210. https://doi.org/10.1016/j.abb.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  100. Choi J, Jiang X, Jeong JB, Lee SH (2014) Anticancer activity of protocatechualdehyde in human breast cancer cells. J Med Food 17:842–848

    Article  CAS  PubMed  Google Scholar 

  101. Zhong S, Li YG, Ji DF, Lin TB, Lv ZQ (2016) Protocatechualdehyde induces S-phase arrest and apoptosis by stimulating the p27(KIP1)-cyclin A/D1-CDK2 and mitochondrial apoptotic pathways in HT-29 cells. Molecules 21:934. https://doi.org/10.3390/molecules21070934

    Article  CAS  PubMed Central  Google Scholar 

  102. Sankaranarayanan R, Valiveti CK, Kumar DR, Van Slambrouck S, Kesharwani SS, Seefeldt T, Scaria J, Tummala H, Bhat GJ (2019) The flavonoid metabolite 2,4,6-trihydroxybenzoic acid is a CDK inhibitor and an anti-proliferative agent: a potential role in cancer prevention. Cancers (Basel) 11:427. https://doi.org/10.3390/cancers11030427

    Article  CAS  Google Scholar 

  103. GBD 2017 Diet Collaborators (2019) Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393:1958–1972

    Article  Google Scholar 

  104. Habtemariam S, Varghese GK (2014) The antidiabetic therapeutic potential of dietary polyphenols. Curr Pharm Biotechnol 15:391–400

    Article  CAS  PubMed  Google Scholar 

  105. Jamar G, Estadella D, Pisani LP (2017) Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors 43:507–516

    Article  CAS  PubMed  Google Scholar 

  106. Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ (2017) Dietary anthocyanins against obesity and inflammation. Nutrients 9:1089. https://doi.org/10.3390/nu9101089

    Article  CAS  PubMed Central  Google Scholar 

  107. Adedara IA, Fasina OB, Ayeni MF, Ajayi OM, Farombi EO (2019) Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol 125:170–181

    Article  CAS  PubMed  Google Scholar 

  108. Alegbe EO, Teralı K, Olofinsan KA, Surgun S, Ogbaga CC, Ajiboye TO (2019) Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J Food Biochem 43:e12927. https://doi.org/10.1111/jfbc.12927

    Article  CAS  PubMed  Google Scholar 

  109. Tagliazucchi D, Martini S, Conte A (2019) Protocatechuic and 3,4-dihydroxyphenylacetic acids inhibit protein glycation by binding lysine through a metal-catalyzed oxidative mechanism. J Agric Food Chem 67:7821–7831

    Article  CAS  PubMed  Google Scholar 

  110. Jia Y, Wu C, Kim YS, Yang SO, Kim Y, Kim J-S, Jeong M-Y, Lee JH, Kim B, Lee S, Kim J, Oh H-S, So M-Y, Yoon YE, Thach TT, Park TH, Lee S-J (2020) A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Commun Biol 3:514. https://doi.org/10.1038/s42003-020-01231-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scazzocchio B, Varì R, Filesi C, D’Archivio M, Santangelo C, Giovannini C, Iacovelli A, Silecchia G, Li Volti G, Galvano F, Masella R (2011) Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 60:2234–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scazzocchio B, Varì R, Filesi C, Del Gaudio I, D’Archivio M, Santangelo C, Iacovelli A, Galvano F, Pluchinotta FR, Giovannini C, Masella R (2015) Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Mol Nutr Food Res 59:1472–1481

    Article  CAS  PubMed  Google Scholar 

  113. Leyva-Jiménez FJ, Ruiz-Malagón AJ, Molina-Tijeras JA, Diez-Echave P, Vezza T, Hidalgo-García L, Lozano-Sánchez J, Arráez-Román D, Cenis JL, Lozano-Pérez AA, Rodríguez-Nogales A, Segura-Carretero A, Gálvez J (2020) Comparative study of the antioxidant and anti-inflammatory effects of leaf extracts from four different Morus alba genotypes in high fat diet-induced obesity in mice. Antioxidants (Basel) 9:733. https://doi.org/10.3390/antiox9080733

    Article  CAS  Google Scholar 

  114. Wang YH, Han YP, Yu HT, Pu XP, Du GH (2014) Protocatechualdehyde prevents methylglyoxal-induced mitochondrial dysfunction and AGEs-RAGE axis activation in human lens epithelial cells. Eur J Pharmacol 738:374–383

    Article  CAS  PubMed  Google Scholar 

  115. Grzelak-Błaszczyk K, Milala J, Kołodziejczyk K, Sójka M, Czarnecki A, Kosmala M, Klewicki R, Fotschki B, Jurgoński A, Juśkiewicz J (2020) Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats. Food Funct 11:3585–3597

    Article  PubMed  Google Scholar 

  116. Li L, Liu S, Tang H, Song S, Lu L, Zhang P, Li X (2020) Effects of protocatechuic acid on ameliorating lipid profiles and cardio-protection against coronary artery disease in high fat and fructose diet fed in rats. J Vet Med Sci 82:1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moon CY, Ku CR, Cho YH, Lee EJ (2012) Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis. Biochem Biophys Res Commun 423:116–121

    Article  CAS  PubMed  Google Scholar 

  118. Zhou Z, Liu Y, Miao AD, Wang SQ (2005) Protocatechuic aldehyde suppresses TNF-alpha-induced ICAM-1 and VCAM-1 expression in human umbilical vein endothelial cells. Eur J Pharmacol 513:1–8

    Article  CAS  PubMed  Google Scholar 

  119. Wang D, Wei X, Yan X, Jin T, Ling W (2010) Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem 58:12722–12728

    Article  CAS  PubMed  Google Scholar 

  120. Wang D, Zou T, Yang Y, Yan X, Ling W (2011) Cyanidin-3-O-β-glucoside with the aid of its metabolite protocatechuic acid, reduces monocyte infiltration in apolipoprotein E-deficient mice. Biochem Pharmacol 82:713–719

    Article  CAS  PubMed  Google Scholar 

  121. Liu Y, Wang X, Pang J, Zhang H, Luo J, Qian X, Chen Q, Ling W (2019) Attenuation of atherosclerosis by protocatechuic acid via inhibition of M1 and promotion of M2 macrophage polarization. J Agric Food Chem 67:807–818

    Article  CAS  PubMed  Google Scholar 

  122. Lin MC, Ou TT, Chang CH, Chan KC, Wang CJ (2015) Protocatechuic acid inhibits oleic acid-induced vascular smooth muscle cell proliferation through activation of AMP-activated protein kinase and cell cycle arrest in G0/G1 phase. J Agric Food Chem 63:235–241

    Article  CAS  PubMed  Google Scholar 

  123. Zheng J, Li Q, He L, Weng H, Su D, Liu X, Ling W, Wang D (2020) Protocatechuic acid inhibits vulnerable atherosclerotic lesion progression in older Apoe−/−mice. J Nutr 150:1167–1177

    Article  PubMed  Google Scholar 

  124. Xiao G, Zhang M, Peng X, Jiang G (2021) Protocatechuic acid attenuates cerebral aneurysm formation and progression by inhibiting TNF-alpha/Nrf-2/NF-kB-mediated inflammatory mechanisms in experimental rats. Open Life Sci 16:128–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wei G, Guan Y, Yin Y, Duan J, Zhou D, Zhu Y, Quan W, Xi M, Wen A (2013) Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36:592–602

    Article  CAS  PubMed  Google Scholar 

  126. Guo C, Wang S, Duan J, Jia N, Zhu Y, Ding Y, Guan Y, Wei G, Yin Y, Xi M, Wen A (2017) Protocatechualdehyde protects against cerebral ischemia-reperfusion-induced oxidative injury via protein kinase C epsilon/Nrf2/HO-1 pathway. Mol Neurobiol 54:833–845

    Article  CAS  PubMed  Google Scholar 

  127. Kale S, Sarode LP, Kharat A, Ambulkar S, Prakash A, Sakharkar AJ, Ugale RR (2021) Protocatechuic acid prevents early hour ischemic reperfusion brain damage by restoring imbalance of neuronal cell death and survival proteins. J Stroke Cerebrovasc Dis 30:102207. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105507

    Article  Google Scholar 

  128. Fang X, Liu Y, Lu J, Hong H, Yuan J, Zhang Y, Wang P, Liu P, Ye J (2018) Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn Schmiedeberg’s Arch Pharmacol 391:1373–1385

    Article  CAS  Google Scholar 

  129. Wan YJ, Guo Q, Liu D, Jiang Y, Zeng KW, Tu PF (2019) Protocatechualdehyde reduces myocardial fibrosis by directly targeting conformational dynamics of collagen. Eur J Pharmacol 855:183–191

    Article  CAS  PubMed  Google Scholar 

  130. Wan YJ, Wang YH, Guo Q, Jiang Y, Tu PF, Zeng K-W (2020) Protocatechualdehyde protects oxygen-glucose deprivation/reoxygenation-induced myocardial injury via inhibiting PERK/ATF6α/IRE1α pathway. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2020.173723

  131. Kim K, Bae ON, Lim KM, Noh JY, Kang S, Chung KY, Chung JH (2012) Novel antiplatelet activity of protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation. J Pharmacol Exp Ther 343:704–711

    Article  CAS  PubMed  Google Scholar 

  132. Ngo T, Kim K, Bian Y, Nam G, Park HJ, Lee K, Cho GS, Ryu JM, Lim KM, Chung JH (2020) Antithrombotic effect of SP-8008, a benzoic acid derivative, through the selective inhibition of shear stress-induced platelet aggregation. Br J Pharmacol 177:929–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Muley MM, Thakare VN, Patil RR, Bafna PA, Naik SR (2013) Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model. Life Sci 93:51–57

    Article  CAS  PubMed  Google Scholar 

  134. Kho AR, Choi BY, Lee SH, Hong DK, Lee SH, Jeong JH, Park KH, Song HK, Choi HC, Suh SW (2018) Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. Int J Mol Sci 19:1420. https://doi.org/10.3390/ijms19051420

    Article  CAS  PubMed Central  Google Scholar 

  135. Kangtao Y, Bais S (2018) Neuroprotective effect of protocatechuic acid through MAO-B inhibition in aluminium chloride induced dementia of Alzheimer’s type in rats. Int J Pharmacol 14:879–888

    Article  CAS  Google Scholar 

  136. Krzysztoforska K, Piechal A, Blecharz-Klin K, Pyrzanowska J, Joniec-Maciejak I, Mirowska-Guzel D, Widy-Tyszkiewicz E (2019) Administration of protocatechuic acid affects memory and restores hippocampal and cortical serotonin turnover in rat model of oral D-galactose-induced memory impairment. Behav Brain Res 368:111896. https://doi.org/10.1016/j.bbr.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  137. Krzysztoforska K, Piechal A, Blecharz-Klin K, Pyrzanowska J, Joniec-Maciejak I, Mirowska-Guzel D, Widy-Tyszkiewicz E (2020) Effect of protocatechuic acid on cognitive processes and central nervous system neuromodulators in the hippocampus, prefrontal cortex, and striatum of healthy rats. Nutr Neurosci 21:1–12. https://doi.org/10.1080/1028415X.2020.1859728

    Article  Google Scholar 

  138. Scalise M, Galluccio M, Console L, Pochini L, Indiveri C, The Human SLC7A5 (LAT1) (2018) The intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem 6:243. https://doi.org/10.3389/fchem.2018.00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim YS, Seo HW, Lee MH, Kim DK, Jeon H, Cha DS (2014) Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans. Arch Pharm Res 37:245–252

    Article  CAS  PubMed  Google Scholar 

  140. Dilberger B, Passon M, Asseburg H, Silaidos CV, Schmitt F, Schmiedl T, Schieber A, Eckert GP (2019) Polyphenols and metabolites enhance survival in rodents and nematodes-impact of mitochondria. Nutrients 11:1886. https://doi.org/10.3390/nu11081886

    Article  CAS  PubMed Central  Google Scholar 

  141. Dilberger B, Weppler S, Eckert GP (2020) Impact of phenolic acids on the energy metabolism and longevity in C. elegans. bioRxiv. https://doi.org/10.1101/2020.06.23.166314

  142. Sunthonkun P, Palajai R, Somboon P, Suan CL, Ungsurangsri M, Soontorngun N (2019) Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci Rep 9:18061. https://doi.org/10.1038/s41598-019-54448-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ojeda-Rodríguez A, Zazpe I, Alonso-Pedrero L, Zalba G, Martínez-González MA, Marti A (2020) Higher adherence to an empirically derived Mediterranean dietary pattern is positively associated with telomere length: the Seguimiento Universidad de Navarra (SUN) project. Br J Nutr 124:1–10

    Google Scholar 

  144. Choi JR, Kim JH, Lee S, Cho EJ, Kim HY (2020) Protective effects of protocatechuic acid against cognitive impairment in an amyloid beta-induced Alzheimer’s disease mouse model. Food Chem Toxicol 144:111571. https://doi.org/10.1016/j.fct.2020.111571

    Article  CAS  PubMed  Google Scholar 

  145. Huang L, Zhong X, Qin S, Deng M (2020) Protocatechuic acid attenuates β secretase activity and okadaic acid induced autophagy via the Akt/GSK 3β/MEF2D pathway in PC12 cells. Mol Med Rep 21:1328–1335

    CAS  PubMed  Google Scholar 

  146. Rahman MA, Rahman MS, Rahman MH, Rasheduzzaman M, Mamun-Or-Rashid A, Uddin MJ, Rahman MR, Hwang H, Pang MG, Rhim H (2021) Modulatory effects of autophagy on APP processing as a potential treatment target for Alzheimer’s disease. Biomedicines 9:5. https://dx.doi.org/10.3390

    Article  CAS  Google Scholar 

  147. Shi S-h, Zhao X, Liu A, Liu B, Li H, Wu B, K-s B, Jia Y (2015) Protective effect of n-butanol extract from Alpinia oxyphylla on learning and memory impairments. Physiol Behav 139:13–20

    Article  CAS  PubMed  Google Scholar 

  148. Li J, Du Q, Li N, Du S, Sun Z (2020) Alpiniae oxyphyllae fructus and Alzheimer’s disease: an update and current perspective on this traditional Chinese medicine. Biomed Pharmacother 135:111167. https://doi.org/10.1016/j.biopha.2020.111167

    Article  CAS  PubMed  Google Scholar 

  149. Wang Y, Wang M, Fan K, Li T, Yan T, Wu B, Bi K, Jia Y (2018) Protective effects of Alpiniae oxyphyllae fructus extracts on lipopolysaccharide-induced animal model of Alzheimer’s disease. J Ethnopharmacol 217:98–106

    Article  CAS  PubMed  Google Scholar 

  150. Wu T, Fang X, Xu J, Jiang Y, Cao F, Zhao L (2020) Synergistic effects of ginkgolide B and protocatechuic acid on the treatment of Parkinson’s disease. Molecules 25:3976. https://doi.org/10.3390/molecules25173976

    Article  CAS  PubMed Central  Google Scholar 

  151. Koza LA, Winter AN, Holsopple J, Baybayon-Grandgeorge AN, Pena C, Olson JR, Mazzarino RC, Patterson D, Linseman DA (2020) Protocatechuic acid extends survival, improves motor function, diminishes gliosis, and sustains neuromuscular junctions in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutrients 12:1824. https://doi.org/10.3390/nu12061824

    Article  CAS  PubMed Central  Google Scholar 

  152. Kaewmool C, Udomruk S, Phitak T, Pothacharoen P, Kongtawelert P (2020a) Cyanidin-3-O-glucoside protects PC12 cells against neuronal apoptosis mediated by LPS-stimulated BV2 microglial activation. Neurotox Res 37:111–125

    Article  CAS  PubMed  Google Scholar 

  153. Yan J, Luo A, Gao J, Tang X, Zhao Y, Zhou B, Zhou Z, Li S (2019) The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res 11:1555–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  155. Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S (2020b) Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J Neuroimmunol 341:577164. https://doi.org/10.1016/j.jneuroim.2020.577164

    Article  CAS  PubMed  Google Scholar 

  156. Kargar Shouroki F, Neghab M, Mozdarani H, Alipour H, Yousefinejad S, Fardid R (2019) Genotoxicity of inhalational anesthetics and its relationship with the polymorphisms of GSTT1, GSTM1, and GSTP1 genes. Environ Sci Pollut Res Int 26:3530–3541

    Article  CAS  PubMed  Google Scholar 

  157. Neghab M, Kargar-Shouroki F, Mozdarani H, Yousefinejad S, Alipour H, Fardid R (2020) Association between genotoxic properties of inhalation anesthetics and oxidative stress biomarkers. Toxicol Ind Health 36:454–466

    Article  CAS  PubMed  Google Scholar 

  158. Tian Y, Chen KY, Liu LD, Dong YX, Zhao P, Guo SB (2018) Sevoflurane exacerbates cognitive impairment induced by Aβ1-40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus. Mediat Inflamm 9:3802324. https://doi.org/10.1155/2018/3802324

    Article  CAS  Google Scholar 

  159. Gao Y, Ma L, Han T, Wang M, Zhang D, Wang Y (2020) Protective role of protocatechuic acid in sevoflurane-induced neuron apoptosis, inflammation and oxidative stress in mice. Restor Neurol Neurosci 38:323–331

    CAS  PubMed  Google Scholar 

  160. Al Olayan EM, Aloufi AS, AlAmri OD, El-Habit OH, Abdel Moneim AE (2020) Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: role of oxidative stress, inflammation and apoptosis. Sci Total Environ 723:137969. https://doi.org/10.1016/j.scitotenv.2020.137969

    Article  CAS  PubMed  Google Scholar 

  161. Wei M, Chu X, Gua M, Yang X, Xie X, Liu F, Chen C, Deng X (2013) Protocatechuic acid suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model. Int Immunopharmacol 15:780–788

    Article  CAS  PubMed  Google Scholar 

  162. Anderson K, Ryan N, Siddiqui A, Pero T, Volpedo G, Cooperstone JL, Oghumu S (2020) Black raspberries and protocatechuic acid mitigate DNFB-induced contact hypersensitivity by down-regulating dendritic cell activation and inhibiting mediators of effector responses. Nutrients 12:1701. https://doi.org/10.3390/nu12061701

    Article  CAS  PubMed Central  Google Scholar 

  163. Peiffer DS, Zimmerman NP, Wang LS, Ransom BW, Carmella SG, Kuo CT, Siddiqui J, Chen JH, Oshima K, Huang YW, Hecht SS, Stoner GD (2014) Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev Res (Phila) 7:574–584

    Article  CAS  Google Scholar 

  164. Zhang L, Ji Y, Kang Z, Lv C, Jiang W (2015) Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. Toxicol Appl Pharmacol 283:50–56

    Article  CAS  PubMed  Google Scholar 

  165. Jang SA, Song HS, Kwon JE, Baek HJ, Koo HJ, Sohn EH, Lee SR, Kang SC (2018) Protocatechuic acid attenuates trabecular bone loss in ovariectomized mice. Oxid Med Cell Longev 2018:7280342. https://doi.org/10.1155/2018/7280342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang J, Fu B, Chen X, Chen D, Yang H (2020) Protocatechuic acid attenuates anterior cruciate ligament transection-induced osteoarthritis by suppressing osteoclastogenesis. Exp Ther Med 19:232–240

    PubMed  Google Scholar 

  167. Yang Y, Chi Z, Gao R, Lei Z (2018) The roles of natural compounds in epigenetics. Nat Prod Commun 13:1067–1072

    Google Scholar 

  168. Izzo S, Naponelli V, Bettuzzi S (2020) Flavonoids as epigenetic modulators for prostate cancer prevention. Nutrients 12:1010. https://doi.org/10.3390/nu12041010

    Article  CAS  PubMed Central  Google Scholar 

  169. Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192:119–125

    Article  CAS  PubMed  Google Scholar 

  170. Wang LS, Kuo CT, Cho SJ, Seguin C, Siddiqui J, Stoner K, Weng YI, Huang TH, Tichelaar J, Yearsley M, Stoner GD, Huang YW (2013) Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells. Nutr Cancer 65:118–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Anantharaju PG, Reddy BD, Padukudru MA, Kumari Chitturi CM, Vimalambike MG, Madhunapantula SV (2017) Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC). Cancer Biol Ther 18:492–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Declaration of Interest Statement

The author declare that she has no competing interests. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Widy-Tyszkiewicz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Widy-Tyszkiewicz, E. (2022). Current Evidence for Disease Prevention and Treatment by Protocatechuic Acid (PCA) and Its Precursor Protocatechuic Aldehyde (PCAL) in Animals and Humans. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-78160-6_36

Download citation

Publish with us

Policies and ethics