Skip to main content

Side-Chain Anchoring Strategies for the Synthesis of Peptide Thioesters and Selenoesters

  • Protocol
  • First Online:
Chemical Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2530))

Abstract

Peptides bearing C-terminal thioester and selenoester functionalities are essential precursors for the chemical synthesis of larger proteins using ligation chemistry, including native chemical ligation (NCL) and diselenide-selenoester ligation (DSL). The use of a side-chain anchoring thioesterification or selenoesterification approach offers a robust method to access peptide thioesters or peptide selenoesters in excellent yields and in high purity. Importantly, this methodology overcomes solubility issues and epimerization of the C-terminal amino acid residue that can occur using solution-phase approaches. Detailed methods for the solid-phase synthesis of peptide thioesters and selenoesters using a side-chain anchoring approach are outlined in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dawson P, Muir T, Clark-Lewis I, Kent S (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    Article  CAS  Google Scholar 

  2. Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38(2):338–351

    Article  CAS  Google Scholar 

  3. Bondalapati S, Jbara M, Brik A (2016) Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat Chem 8(5):407–418

    Article  CAS  Google Scholar 

  4. Kulkarni SS, Sayers J, Premdjee B, Payne RJ (2018) Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2(4):1–17

    Article  Google Scholar 

  5. Conibear AC, Watson EE, Payne RJ, Becker CF (2018) Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 47(24):9046–9068

    Article  CAS  Google Scholar 

  6. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123(4):526–533

    Article  CAS  Google Scholar 

  7. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46(48):9248–9252

    Article  CAS  Google Scholar 

  8. Premdjee B, Payne RJ (2017) Synthesis of proteins by native chemical ligation–desulfurization strategies. In: Chemical ligation: tools for biomolecule synthesis and modification. Wiley, Hoboken

    Google Scholar 

  9. Malins LR, Payne RJ (2015) Synthetic amino acids for applications in peptide ligation–desulfurization chemistry. Aust J Chem 68(4):521–537

    Article  CAS  Google Scholar 

  10. Watson EE, Malins LR, Payne RJ (2021) Expanding native chemical ligation methodology with synthetic amino acid derivatives. In: Total chemical synthesis of proteins. Wiley, pp 119–159

    Chapter  Google Scholar 

  11. Malins LR, Payne RJ (2014) Modern extensions of native chemical ligation for chemical protein synthesis. In: Protein ligation and total synthesis I. Springer, Berlin, pp 27–87

    Chapter  Google Scholar 

  12. Durek T, Alewood PF (2011) Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew Chem Int Ed 50(50):12042–12045

    Article  CAS  Google Scholar 

  13. Mitchell NJ, Malins LR, Liu X, Thompson RE, Chan B, Radom L, Payne RJ (2015) Rapid additive-free selenocystine–selenoester peptide ligation. J Am Chem Soc 137(44):14011–14014

    Article  CAS  Google Scholar 

  14. Kajihara Y, Yoshihara A, Hirano K, Yamamoto N (2006) Convenient synthesis of a sialylglycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide. Carbohydr Res 341(10):1333–1340

    Article  CAS  Google Scholar 

  15. Bollhagen R, Schmiedberger M, Barlos K, Grell E (1994) A new reagent for the cleavage of fully protected peptides synthesised on 2-chlorotrityl chloride resin. J Chem Soc Chem Commun 22:2559–2560

    Article  Google Scholar 

  16. Flood DT, Hintzen JC, Bird MJ, Cistrone PA, Chen JS, Dawson PE (2018) Leveraging the Knorr Pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation. Angew Chem Int Ed 57(36):11634–11639

    Article  CAS  Google Scholar 

  17. Li Y, Liu J, Zhou Q, Zhao J, Wang P (2021) Preparation of peptide selenoesters from their corresponding acyl hydrazides. Chin J Chem 39(7):1861–1866

    Article  CAS  Google Scholar 

  18. Macmillan D, Adams A, Premdjee B (2011) Shifting native chemical ligation into reverse through N→ S acyl transfer. Isr J Chem 51(8–9):885–899

    Article  CAS  Google Scholar 

  19. Ollivier N, Dheur J, Mhidia R, Blanpain A, Melnyk O (2010) Bis (2-sulfanylethyl) amino native peptide ligation. Org Lett 12(22):5238–5241

    Article  CAS  Google Scholar 

  20. Sato K, Shigenaga A, Tsuji K, Tsuda S, Sumikawa Y, Sakamoto K, Otaka A (2011) N-Sulfanylethylanilide peptide as a crypto-thioester peptide. Chembiochem 12(12):1840–1844

    Article  CAS  Google Scholar 

  21. Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y (2007) N-alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett 48(1):25–28

    Article  CAS  Google Scholar 

  22. Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L (2011) Protein chemical synthesis by ligation of peptide hydrazides. Angew Chem Int Ed 50(33):7645–7649

    Article  CAS  Google Scholar 

  23. Zheng J-S, Tang S, Qi Y-K, Wang Z-P, Liu L (2013) Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protoc 8(12):2483–2495

    Article  CAS  Google Scholar 

  24. Ingenito R, Bianchi E, Fattori D, Pessi A (1999) Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J Am Chem Soc 121(49):11369–11374

    Article  CAS  Google Scholar 

  25. Elashal HE, Sim YE, Raj M (2017) Serine promoted synthesis of peptide thioester-precursor on solid support for native chemical ligation. Chem Sci 8(1):117–123

    Article  CAS  Google Scholar 

  26. Mende F, Seitz O (2007) Solid-phase synthesis of peptide thioesters with self-purification. Angew Chem Int Ed 46(24):4577–4580

    Article  CAS  Google Scholar 

  27. Shelton PT, Jensen KJ (2013) Synthesis of C-terminal peptide thioesters using Fmoc-based solid-phase peptide chemistry. In: Peptide synthesis and applications. Springer, pp 119–129

    Chapter  Google Scholar 

  28. Ghassemian A, Vila-Farrés X, Alewood PF, Durek T (2013) Solid phase synthesis of peptide-selenoesters. Bioorg Med Chem 21(12):3473–3478

    Article  CAS  Google Scholar 

  29. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed 47(36):6851–6855

    Article  CAS  Google Scholar 

  30. Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE (2015) Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J Am Chem Soc 137(22):7197–7209

    Article  CAS  Google Scholar 

  31. Wang JX, Fang GM, He Y, Qu DL, Yu M, Hong ZY, Liu L (2015) Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis. Angew Chem Int Ed 54(7):2194–2198

    Article  CAS  Google Scholar 

  32. Ficht S, Payne RJ, Guy RT, Wong CH (2008) Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies. Chem Eur J 14(12):3620–3629

    Article  CAS  Google Scholar 

  33. Hanna CC, Kulkarni SS, Watson EE, Premdjee B, Payne RJ (2017) Solid-phase synthesis of peptide selenoesters via a side-chain anchoring strategy. Chem Commun 53(39):5424–5427

    Article  CAS  Google Scholar 

  34. Kulkarni SS, Watson EE, Premdjee B, Conde-Frieboes KW, Payne RJ (2019) Diselenide–selenoester ligation for chemical protein synthesis. Nat Protoc 14(7):2229–2257

    Article  CAS  Google Scholar 

  35. Kambanis L, Chisholm TS, Kulkarni SS, Payne RJ (2021) Rapid one-pot iterative diselenide–selenoester ligation using a novel coumarin-based photolabile protecting group. Chem Sci 12(29):10014–10021

    Article  CAS  Google Scholar 

  36. Cherkupally P, Acosta GA, Ramesh S, Beatriz G, Govender T, Kruger HG, Albericio F (2014) Solid-phase peptide synthesis (SPPS), C-terminal vs side-chain anchoring: a reality or a myth. Amino Acids 46(8):1827–1838

    Article  CAS  Google Scholar 

  37. Sayers J, Payne RJ, Winssinger N (2018) Peptide nucleic acid-templated selenocystine–selenoester ligation enables rapid miRNA detection. Chem Sci 9(4):896–903

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Payne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kambanis, L., Kulkarni, S.S., Payne, R.J. (2022). Side-Chain Anchoring Strategies for the Synthesis of Peptide Thioesters and Selenoesters. In: Li, X. (eds) Chemical Protein Synthesis. Methods in Molecular Biology, vol 2530. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2489-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2489-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2488-3

  • Online ISBN: 978-1-0716-2489-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics