Skip to main content

The Chemical Synthesis of Site-Specifically Modified Proteins Via Diselenide-Selenoester Ligation

  • Protocol
  • First Online:
Peptide Conjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2355))

Abstract

Peptide ligation techniques enable the controlled chemical synthesis of native and engineered proteins, including examples that display site-specific post-translational modifications (PTMs) and non-proteinogenic functionality. Diselenide-selenoester ligation (DSL) is a recent addition to the synthetic methodology that offers several advantages over existing strategies. The standard DSL reaction involves the additive-free ligation of a peptide carrying an N-terminal selenocysteine (Sec) residue with a fragment bearing a C-terminal selenoester. This operationally simple ligation proceeds rapidly at sterically hindered junctions and is efficient across a broad pH range. The incorporation of deselenization and oxidative deselenization techniques into the DSL protocol enables conversion of the Sec residue at the ligation site to alanine (Ala) and serine (Ser), respectively, thus enhancing the scope and versatility of the method. In this chapter, we describe the application of DSL to the one-pot chemical synthesis of proteins via both two-component and three-component ligation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dawson PE, Muir TW, Clark-Lewis I, Kent S (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    Article  CAS  Google Scholar 

  2. Kent SB (2009) Total chemical synthesis of proteins. Chem Soc Rev 38(2):338–351

    Article  CAS  Google Scholar 

  3. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 119(48):9408–9412

    Article  Google Scholar 

  4. Lee M, Neukirchen S, Cabrele C, Reiser O (2017) Visible-light photoredox-catalyzed desulfurization of thiol-and disulfide-containing amino acids and small peptides. J Pept Sci 23(7–8):556–562

    Article  CAS  Google Scholar 

  5. Gao X-F, Du J-J, Liu Z, Guo J (2016) Visible-light-induced specific desulfurization of cysteinyl peptide and glycopeptide in aqueous solution. Org Lett 18(5):1166–1169

    Article  CAS  Google Scholar 

  6. Chisholm TS, Clayton D, Dowman LJ, Sayers J, Payne RJ (2018) Native chemical ligation–photodesulfurization in flow. J Am Chem Soc 140(29):9020–9024

    Article  CAS  Google Scholar 

  7. Conibear AC, Watson EE, Payne RJ, Becker CF (2018) Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 47(24):9046–9068

    Article  CAS  Google Scholar 

  8. Kulkarni SS, Sayers J, Premdjee B, Payne RJ (2018) Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2(4):1–17

    Article  Google Scholar 

  9. Hondal RJ, Nilsson BL, Raines RT (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123(21):5140–5141

    Article  CAS  Google Scholar 

  10. Gieselman MD, Xie L, van der Donk WA (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org Lett 3(9):1331–1334

    Article  CAS  Google Scholar 

  11. Quaderer R, Sewing A, Hilvert D (2001) Selenocysteine-mediated native chemical ligation. Helv Chim Acta 84(5):1197–1206

    Article  CAS  Google Scholar 

  12. Durek T, Alewood PF (2011) Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew Chem Int Ed 50(50):12042–12045

    Article  CAS  Google Scholar 

  13. Mitchell NJ, Malins LR, Liu X, Thompson RE, Chan B, Radom L, Payne RJ (2015) Rapid additive-free selenocystine–selenoester peptide ligation. J Am Chem Soc 137(44):14011–14014

    Article  CAS  Google Scholar 

  14. Chisholm TS, Kulkarni SS, Hossain KR, Cornelius F, Clarke RJ, Payne RJ (2019) Peptide ligation at high dilution via reductive diselenide-selenoester ligation. J Am Chem Soc 142(2):1090–1100

    Article  Google Scholar 

  15. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  Google Scholar 

  16. Metanis N, Keinan E, Dawson PE (2010) Traceless ligation of cysteine peptides using selective deselenization. Angew Chem Int Ed 49(39):7049–7053

    Article  CAS  Google Scholar 

  17. Mitchell NJ, Kulkarni SS, Malins LR, Wang S, Payne RJ (2017) One-pot ligation–oxidative deselenization at selenocysteine and selenocystine. Chem Eur J 23:946–952

    Article  CAS  Google Scholar 

  18. Malins LR, Mitchell NJ, McGowan S, Payne RJ (2015) Oxidative deselenization of selenocysteine: applications for programmed ligation at serine. Angew Chem Int Ed 54:12716–12721

    Article  CAS  Google Scholar 

  19. Dery S, Reddy PS, Dery L, Mousa R, Dardashti RN, Metanis N (2015) Insights into the deselenization of selenocysteine into alanine and serine. Chem Sci 6(11):6207–6212

    Article  CAS  Google Scholar 

  20. Mitchell NJ, Sayers J, Kulkarni SS, Clayton D, Goldys AM, Ripoll-Rozada J, Pereira PJB, Chan B, Radom L, Payne RJ (2017) Accelerated protein synthesis via one-pot ligation-deselenization chemistry. Chem 2(5):703–715

    Article  CAS  Google Scholar 

  21. Malins LR, Payne RJ (2012) Synthesis and utility of β-selenol-phenylalanine for native chemical ligation–deselenization chemistry. Org Lett 14(12):3142–3145

    Article  CAS  Google Scholar 

  22. Wang X, Corcilius L, Premdjee B, Payne RJ (2019) Synthesis and utility of β-selenophenylalanine and β-selenoleucine in diselenide-selenoester ligation (DSL). J Org Chem 85:1567–1578

    Article  Google Scholar 

  23. Dardashti RN, Kumar S, Sternisha SM, Reddy PS, Miller BG, Metanis N (2020) Selenolysine: a new tool for traceless isopeptide bond formation. Chem Eur J 26(22):4952

    Article  CAS  Google Scholar 

  24. Sayers J, Karpati PM, Mitchell NJ, Goldys AM, Kwong SM, Firth N, Chan B, Payne RJ (2018) Construction of challenging proline–proline junctions via diselenide–selenoester ligation chemistry. J Am Chem Soc 140(41):13327–13334

    Article  CAS  Google Scholar 

  25. McDonald DM, Hanna CC, Ashhurst AS, Corcilius L, Byrne SN, Payne RJ (2018) Synthesis of a self-adjuvanting MUC1 vaccine via diselenide-selenoester ligation-deselenization. ACS Chem Biol 13(12):3279–3285

    Article  CAS  Google Scholar 

  26. Watson EE, Ripoll-Rozada J, Lee AC, Wu MC, Franck C, Pasch T, Premdjee B, Sayers J, Pinto MF, Martins PM (2019) Rapid assembly and profiling of an anticoagulant sulfoprotein library. Proc Natl Acad Sci U S A 116(28):13873–13878

    Article  CAS  Google Scholar 

  27. Kulkarni SS, Watson EE, Premdjee B, Conde-Frieboes KW, Payne RJ (2019) Diselenide–selenoester ligation for chemical protein synthesis. Nat Protoc 14:2229–2257

    Article  CAS  Google Scholar 

  28. Kajihara Y, Yoshihara A, Hirano K, Yamamoto N (2006) Convenient synthesis of a sialylglycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide. Carbohydr Res 341(10):1333–1340

    Article  CAS  Google Scholar 

  29. Hackenberger CP (2006) The reduction of oxidized methionine residues in peptide thioesters with NH4I–Me2S. Org Biomol Chem 4(11):2291–2295

    Article  CAS  Google Scholar 

  30. Thompson RE, Liu X, Alonso-García N, Pereira PJB, Jolliffe KA, Payne RJ (2014) Trifluoroethanethiol: an additive for efficient one-pot peptide ligation− desulfurization chemistry. J Am Chem Soc 136(23):8161–8164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the EPSRC (EP/S028323/1, EP/S017739/1) and the University of Nottingham (PhD studentship for RG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Griffiths, R.C., Mitchell, N.J. (2021). The Chemical Synthesis of Site-Specifically Modified Proteins Via Diselenide-Selenoester Ligation. In: Hussein, W.M., Stephenson, R.J., Toth, I. (eds) Peptide Conjugation. Methods in Molecular Biology, vol 2355. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1617-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1617-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1616-1

  • Online ISBN: 978-1-0716-1617-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics