Skip to main content

Amplified Fragment Length Polymorphism: Applications and Recent Developments

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Abstract

AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ritland C, Ritland K (2000) DNA-fragment markers in plants. In: Baker AJ (ed) Molecular methods in ecology, 6th edn. Blackwell Science, Oxford, London

    Google Scholar 

  3. Savelkoul PH, Aarts HJ, de Haas J et al (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37(10):3083–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Das S, Rajagopal J, Bhatia S, Srivastava PS et al (1999) Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers. J Biosci 24:433–440

    Article  CAS  Google Scholar 

  5. Lombard V, Baril CP, Dubreuil P et al (2000) Genetic relationship and fingerprinting of rapeseed cultivars by AFLP: consequences for varietal registration. Crop Sci 40:1417–1425

    Article  CAS  Google Scholar 

  6. El-Esawi MA, Germaine K, Bourke P et al (2016) AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. C R Biol 339:163–170

    Article  PubMed  Google Scholar 

  7. Qi X, Stam P, Lindhout P et al (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384

    Article  CAS  PubMed  Google Scholar 

  8. Nag A, Ahuja PS, Sharma RK et al (2014) Genetic diversity of high-elevation populations of an endangered medicinal plant. AoB Plants 7

    Google Scholar 

  9. Maughan PJ, Saghai MMA, Buss GR (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet 93(3):392–401

    Article  CAS  PubMed  Google Scholar 

  10. Polanco C, Ruiz ML (2002) AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci 162:817–824

    Article  CAS  Google Scholar 

  11. Peng M, Zong X, Wang C et al (2015) Genetic diversity of strawberry (Fragaria ananassa Duch.) from the Motuo County of the Tibet plateau determined by AFLP markers. Biotechnol Biotechnol Equip 29(5):876–881

    Article  CAS  Google Scholar 

  12. Bian F, Pang Y, Wang Z et al (2015) Genetic diversity of the rare plant Anemone shikokiana (Makino) Makino (Ranunculaceae) inferred from AFLP markers. Plant Syst Evol 301(2):677–684

    Article  Google Scholar 

  13. Singh SK, Katoch R, Kapila RK et al (2015) Genetic and biochemical diversity among Valerian jatamansi populations from Himachal Pradesh. Sci World J 863913:10

    Google Scholar 

  14. Krishnamurthy SL, Prashanth Y, Rao AM (2015) Assessment of AFLP marker based genetic diversity in chilli (Capsicum annuum L and C. Baccatum L.). Indian J Biotech 14:49–54

    CAS  Google Scholar 

  15. Wu FQ, Shen SK, Zhang XJ et al (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest rhododendron. Ecol Evol 5(15):3003–3022

    Google Scholar 

  16. Li B, Wang A, Zhang P et al (2019) Genetic diversity and population structure of endangered Glehnia littoralis (Apiaceae) in China based on AFLP analysis. Biotechnol Biotechnol Equip 33(1):331–337

    Article  Google Scholar 

  17. Divakaran M, Babu KN, Ravindran PN et al (2006) Interspecific hybridization in vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci Horti 108(4):414–422

    Article  CAS  Google Scholar 

  18. Huh MK, Huh HW (2001) AFLP fingerprinting of Brassica campestris L. ssp. napus var. nippo-oleifera Makino from Korea. Korean J Biol Sci 5:101–106

    Article  CAS  Google Scholar 

  19. Srivastava A, Gupta V, Pental D et al (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199

    Article  CAS  Google Scholar 

  20. Negi MS, Sabharwal V, Bhat SR (2004) Utility of AFLP markers for the assessment of genetic diversity within Brassica nigra germplasm. Plant Breed 123:13–16

    Article  CAS  Google Scholar 

  21. Warwick SI, James T, Falk KC et al (2008) AFLP-based molecular characterization of Brassica rapa and diversity in Canadian spring turnip rape cultivars. Plant Genet Resour 6:11–21

    Article  CAS  Google Scholar 

  22. Liu RH, Meng JL et al (2006) RFLP and AFLP analysis of inter-and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement. Acta Genet Sin 33(9):814–823

    Article  PubMed  Google Scholar 

  23. Jiang Y, Tian E, Li R et al (2007) Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 126:487–491

    Article  CAS  Google Scholar 

  24. Takuno S, Kawahara T, Ohnishi O et al (2007) Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metzgas revealed by AFLP analysis. Genet Resour Crop Evol 54:279–285

    Article  CAS  Google Scholar 

  25. Zhao J, Wang X, Deng B et al (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110(7):1301–1314

    Article  PubMed  Google Scholar 

  26. Sorkheh K, Masaeli M, Chaleshtori MH (2016) AFLP-based analysis of genetic diversity, population structure, and relationships with agronomic traits in rice germplasm from north region of Iran and world core germplasm set. Biochem Genet 54(2):177–193

    Article  CAS  PubMed  Google Scholar 

  27. Pioto F, Costa R, França S et al (2015) Genetic diversity by AFLP analysis within Jatropha curcas L. populations in the state of São Paulo, Brazil. Biomass Bioenergy 80:316–320

    Article  Google Scholar 

  28. DeHaan LR, Ehlke NJ, Sheaffer CC (2003) Illinois bundle flower genetic diversity determined by AFLP analysis. Crop Sci 43:402–408

    Article  Google Scholar 

  29. Mariette S, Chagne D, Lezier C et al (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479

    Article  CAS  PubMed  Google Scholar 

  30. Martos V, Royo C, Rharrabti Y et al (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91:107–116

    Article  Google Scholar 

  31. Andrade F, Gonçalves L, Miglioranza E (2016) AFLP analysis of genetic diversity in determinate and indeterminate snap bean accessions. Acta Sci Agron 38:29

    Article  Google Scholar 

  32. Opara UL, Jacobson D, Al-Saady NA (2010) Analysis of genetic diversity in banana cultivars (Musa cvs.) from the south of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ 11:332–341

    Article  CAS  Google Scholar 

  33. Wong C, Kiew R, Loj JP et al (2001) Genetic diversity of the wild banana Musa acuminata Colla in Malaysia as evidenced by AFLP. Annals Bot 88:1017–1025

    Article  CAS  Google Scholar 

  34. Ude G, Pillay M, Ogundiwin E et al (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255

    Article  CAS  PubMed  Google Scholar 

  35. Wang XL, Chiang T, Roux N et al (2007) Genetic diversity of wild banana (Musa balbisiana Colla) in China as revealed by AFLP markers. Genet Res Crop Evol 54:1125–1132

    Article  Google Scholar 

  36. Ahmad F, Megia R, Poerba Y et al (2014) Genetic diversity of Musa balbisiana Colla in Indonesia based on AFLP marker. HAYATI J Biosci 21:39–47

    Article  Google Scholar 

  37. Zawko G, Krauss SL, Dixon KW et al (2001) Conservation genetics of the rare and endangered Leucopogon obtectus (Ericaceae). Mol Ecol 10:2389–2396

    Article  CAS  PubMed  Google Scholar 

  38. Van Ee BW, Jelinski N, Berry PE et al (2006) Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data. Mol Ecol 15:2735–2751

    Article  PubMed  CAS  Google Scholar 

  39. Ronikier M (2002) The use of AFLP markers in conservation genetics-a case study on Pulsatilla vernalis in the polish lowlands. Cell Mol Biol Lett 7:677–684

    CAS  PubMed  Google Scholar 

  40. Li X, Ding X, Chu B et al (2008) Genetic diversity analysis and conservation of the endangered Chinese endemic herb Dendrobium officinale Kimura et Migo (Orchidaceae) based on AFLP. Genetica 133:159–166

    Article  CAS  PubMed  Google Scholar 

  41. Travis SE, Maschinski J, Keim P et al (1996) An analysis of genetic variation in Astragalus cremnophylax var cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735–745

    Article  CAS  PubMed  Google Scholar 

  42. Tatikonda L, Wani SP, Kannan S et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513

    Article  CAS  PubMed  Google Scholar 

  43. Elameen A, Klemsdal SS, Dragland S (2008) Genetic diversity in a germplasm collection of Roseroot (Rhodiola rosea) in Norway studied by AFLP. Biochem Syst Ecol 36:706–715

    Article  CAS  Google Scholar 

  44. Huh MK, Ohnishi O (2002) Genetic diversity and genetic relationships of east Asian natural populations of wild radish revealed by AFLP. Breeding Sci 52:79–88

    Article  CAS  Google Scholar 

  45. Bhattacharyya P, Ghosh S, Mandi SS et al (2017) Genetic variability and association of AFLP markers with some important biochemical traits in Dendrobium thyrsiflorum, a threatened medicinal orchid. S Afr J Bot 109:214–222

    Article  CAS  Google Scholar 

  46. Vaishnav V, Wali SA, Tripathi SB et al (2018) Preliminary investigation on AFLP marker-wood density trait association in teak (Tectona grandis L. f.). Ann For Res 61(1):1–15

    Article  Google Scholar 

  47. Sharma SK, Knox MR, Ellis THN (1996) AFLP analysis of the diversity and phylogeny of lens and its comparison with RAPD analysis. Theor Appl Genet 93:751–758

    Article  CAS  PubMed  Google Scholar 

  48. Mitchell ML, Stodart BJ, Virgona JM et al (2015) Genetic diversity within a population of Microlaena stipoides, as revealed by AFLP markers. Aust J Bot 62:580–586

    Article  CAS  Google Scholar 

  49. Olet EA, Lye KA, Heun M et al (2011) Amplified fragment length polymorphisms (AFLPs) analysis of species of solanum section solanum (Solanaceae) from Uganda. Afr Biotech 10:6387–6395

    Google Scholar 

  50. Kardolus JP, Van Eck HJ, Van den Berg RG (1998) The potential of AFLPs in biosystematics: a first application in solanum taxonomy (Solanaceae). Plant Syst Evol 210:87–103

    Article  Google Scholar 

  51. Lara-Cabrera SI, Spooner DM (2004) Taxonomy of north and central American diploid wild potato (solanum sect. Petota) species: AFLP data. Plant Syst Evol 248:129–142

    Article  CAS  Google Scholar 

  52. Mace ES, Lester RN, Gebhardt CG (1999) AFLP analysis of genetic relationships among the cultivated eggplant, Solanum melongena L., and wild relatives (Solanaceae). Theor Appl Genet 99:626–633

    Article  CAS  PubMed  Google Scholar 

  53. Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99

    Article  PubMed  Google Scholar 

  54. Olet EA, Heun M, Lye KA (2005) African crop or poisonous nightshade; the enigma of poisonous or edible black nightshade solved. Afr J Ecol 43:158–161

    Article  Google Scholar 

  55. Manoko ML, Van den Berg RG, Feron RM et al (2008) Genetic diversity of the African hexaploid species Solanum scabrum mill. And Solanum nigrum L. (Solanaceae). Genet Resour Crop Evol 55:409–418

    Article  Google Scholar 

  56. Spooner DM, McLean K, Ramsay G et al (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS 102:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes solanum L. section Lycopersicon (mill.) Wettst. Taxon 54:43–61

    Article  Google Scholar 

  58. Schnell RJ, Olano CT, Campbell RJ et al (2002) AFLP analysis of genetic diversity within a jackfruit germplasm collection. Euphytica 125(1):89–102

    Article  Google Scholar 

  59. Bryan GJ, McLean K, Waugh R et al (2017) Levels of intra-specific AFLP diversity in tuber-bearing potato species with different breeding systems and ploidy levels. Front Genet 8:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Smith JSC, Smith OS (1992) Fingerprinting crop varieties. Adv Agron 47:85–140

    Article  CAS  Google Scholar 

  61. Paul S, Wachira FN, Powell W (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94:255–263

    Article  CAS  Google Scholar 

  62. Murtaza N (2006) Cotton genetic diversity study by AFLP markers. Electron J Biotechnol 9

    Google Scholar 

  63. Shaheen N, Pearce SR, Khan MA et al (2010) AFLP mediated genetic diversity of malvaceae species. J Med Plant Res 4(2):148–154

    CAS  Google Scholar 

  64. Rattanathawornkiti K, Kanchanaketu T, Suwanagul A et al (2016) Genetic relationship assessment of pineapple germplasm in Thailand revealed by AFLP markers. Genomics Genet 9(2):1–10

    Google Scholar 

  65. Hill M, Witsenboer H, Zabeau M (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93:1202–1210

    Article  CAS  PubMed  Google Scholar 

  66. Vieira EA, Carvalho FIF, Oliveira AC et al (2007) Path analysis among primary and secondary yield components in wheat. Rev Bras Fisioter 13(2):169–174

    Google Scholar 

  67. Ipek M, Seker M, Ipek A et al (2015) Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits. Genet Mol Res 14:2762–2774

    Article  CAS  PubMed  Google Scholar 

  68. Zhou H, Liao J, Xia YP et al (2013) Determination of genetic relationships between evergreen azalea cultivars in China using AFLP markers. J Zhejiang Univ Sci B 14:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu RQ, Tomooka N, Vaughan DA (2000) AFLP markers for characterizing the azuki bean complex. Crop Sci 40(3):808–815

    Article  CAS  Google Scholar 

  70. Stodart BJ, Mackay M, Raman H (2005) AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell) from different geographic regions. Aust J Agric Res 56:691–697

    Article  CAS  Google Scholar 

  71. Al-Saady NA, Al-Lawati AH, Al-Subhi AM et al (2010) Evaluation of genetic diversity in Omani banana cultivars (Musa cvs.) using AFLP markers. J Plant Sci 5(4):402–413

    Article  Google Scholar 

  72. Tang T, Zhong Y, Jian S et al (2003) Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed using AFLP markers. Ann Bot 92:409–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Esfahani ST, Shiran B, Balali G (2009) AFLP markers for the assessment of genetic diversity in European and North American potato varieties cultivated in Iran. Crop Breed Appl Biotech:9

    Google Scholar 

  74. Lebeda A, Doležalová I, Křístková E et al (2009) Wild lactuca germplasm for lettuce breeding: current status, gaps and challenges. Euphytica 170:15–34

    Article  Google Scholar 

  75. Coulibaly S, Pasquet RS, Papa R et al (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104(2-3):358–366

    Article  CAS  PubMed  Google Scholar 

  76. Keivani M, Ramezanpour SS, Soltanloo H et al (2010) Genetic diversity assessment of alfalfa (Medicago sativa L.) populations using AFLP markers. Aust J Crop Sci 4:491–497

    CAS  Google Scholar 

  77. Zargar M, Romanova E, Trifonova A et al (2017) AFLP-analysis of genetic diversity in soybean (Glycine max L. Merr.) cultivars of Russian and foreign selection. Agron Res 15:2217–2225

    Google Scholar 

  78. Oliveira TG, Pereira AMS, Coppede JS et al (2016) Genetic diversity analysis of Croton antisyphiliticus Mart. Using AFLP molecular markers. Genet Mol Res 15(1):1–8

    Article  Google Scholar 

  79. Goyat S, Grewal A, Singh D (2019) Sex-linked AFLP marker identification in dioecious Betelvine (Piper betle L.). J Horti Sci Biotech 94(4):422–427

    Article  CAS  Google Scholar 

  80. Christensen S, Von Bothmer R, Poulsen G (2011) AFLP analysis of genetic diversity in leafy kale (Brassica oleracea L. convar. Acephala (DC.) Alef.) land races, cultivars and wild populations in Europe. Genet Resour Crop Evol 58:657–666

    Article  Google Scholar 

  81. Teyer FS, Salazar MS, Esqueda M et al (2009) Genetic variability of wild Agave angustifolia populations based on AFLP: a basic study for conservation. J Arid Environ 73:611–616

    Article  Google Scholar 

  82. Sivaprakash KR, Prashanth SR, Mohanty BP et al (2004) Genetic diversity of black gram (Vigna mungo) landraces as evaluated by amplified fragment length polymorphism markers. Curr Sci 86:1411–1416

    Google Scholar 

  83. Koopman WJM, Zevenbergen MJ, Van den Berg RG et al (2001) Species relationships in Lactuca sp (Lactuceae, Asteraceae) inferred form AFLP fingerprints. Am J Bot 88:1881–1887

    Article  CAS  PubMed  Google Scholar 

  84. Guo YP, Sauke J, Mittermayr R et al (2005) AFLP analyses demonstrate genetic divergence, hybridization, and multiple polyploidization in the evolution of Achillea (Asteraceae-anthemideae). New Phytol 166:273–290

    Article  CAS  PubMed  Google Scholar 

  85. Tiwari JK, Chandel P, Gupta S (2013) Analysis of genetic stability of in vitro propagated potato micro tubers using DNA markers. Physiol Mol Biol Plants 19(4):587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith NR, Trigiano RN, Windham MT et al (2007) AFLP markers identify Cornus florida cultivars and lines. J Am Soc Hortic Sci 132:90–96

    Article  CAS  Google Scholar 

  87. Duarte-Delgado D, Chacón MI, Núñez V et al (2011) Preliminary assessment of AFLP fingerprinting of Rubus glaucus Benth. Elite genotypes. Agron Colomb 29:7–16

    Google Scholar 

  88. Mignouna HD, Abang MM, Fagbemi SA (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata Poir) germplasm characterisation. Ann Appl Biol 142:269–276

    Article  CAS  Google Scholar 

  89. Krauss SL (1999) Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Mol Ecol 8:217–226

    Article  CAS  Google Scholar 

  90. Sensi E, Vignani R, Rohde W et al (1996) Characterization of genetic biodiversity with Vitis vinifera L. Sangiovese and Colorino genotypes by AFLP and ISTR DNA marker technology. Vitis 35:183–188

    Google Scholar 

  91. Juárez AMJ, Ramírez-Malagón R, Gil-Vega KDC et al (2009) AFLP analysis of genetic variability in three reproductive forms of Agave tequilana. Rev Fitotecnia Mexicana 32:171–175

    Article  Google Scholar 

  92. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trees 10:389–394

    Google Scholar 

  93. Alizadeh M, Krishna H, Eftekhari M et al (2015) Assessment of clonal fidelity in micro propagated horticultural plants. J Chem Pharm Res 7(12):977–990

    CAS  Google Scholar 

  94. Chittora M, Sharma D, Veer C (2015) Molecular markers: an important tool to assess genetic fidelity in tissue culture grown long-term cultures of economically important fruit plants. Asian J Bio Sci 10(1):101–105

    Article  Google Scholar 

  95. Singh SR, Dalal S, Singh R, Dhawan AK et al (2013) Ascertaining clonal fidelity of micro propagated plants of Dendrocalamus hamiltonii Nees et Arn. Ex Munro using molecular markers. In Vitro Cell Dev Plant 49(5):572–583

    Article  CAS  Google Scholar 

  96. Mehta R, Sharma V, Sood A et al (2011) Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro-derived plantlets of Bambusa nutans wall, using AFLP markers. Eur J For Res 130:1–10

    Article  Google Scholar 

  97. Castillo N, Bassil N, Wada S et al (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256

    Article  Google Scholar 

  98. Mignouna D, Mank R, Ellis T et al (2002) A genetic linkage map of Guinea yam (Dioscorea rotundata Poir.) based on AFLP markers. Theor Appl Genet 105:716–725

    Article  CAS  PubMed  Google Scholar 

  99. Terashima K, Matsumoto T, Hayashi E et al (2002) A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycol Res 106:911–917

    Article  CAS  Google Scholar 

  100. Rouppe Van der Voort J, Wolters JP, Folkertsma R et al (1997) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on co-migrating AFLP markers. Theor Appl Genet 95:874–880

    Article  CAS  Google Scholar 

  101. Quarrie S, Laurie D, Zhu J (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35:155–165

    Article  CAS  PubMed  Google Scholar 

  102. Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to club root (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Gen 94:75–82

    Article  CAS  Google Scholar 

  103. Jin H, Domier L, Kolb F et al (1998) Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–415

    Article  CAS  PubMed  Google Scholar 

  104. Jin H, Domier L, Shen X (2000) Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations. Genome 43:94–101

    Article  CAS  PubMed  Google Scholar 

  105. Cho YG, McCouch SR, Kuiper M et al (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97:370–380

    Article  CAS  Google Scholar 

  106. Becker J, Vos P, Kuiper M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73

    Article  CAS  PubMed  Google Scholar 

  107. Peters J, Cnops G, Neyt P (2004) An AFLP-based genome-wide mapping strategy. Theor Appl Genet 108:321–327

    Article  CAS  PubMed  Google Scholar 

  108. Mackill D, Zhang Z, Redona E et al (1996) Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39:969–977

    Article  CAS  PubMed  Google Scholar 

  109. Ballvora A, Hesselbach J, Niewhner J et al (1995) Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Mol Gen Genet 249:82–90

    Article  CAS  PubMed  Google Scholar 

  110. Brigneti G, Garcia-Mas J, Baulcombe DC (1997) Molecular mapping of the potato virus Y resistance gene Rysto in potato. Theor Appl Genet 94:198–203

    Article  CAS  Google Scholar 

  111. Meksem K, Leister D, Peleman J et al (1995) A high resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249:74–81

    Article  CAS  PubMed  Google Scholar 

  112. van Eck HJ, van der Voort JR, Draaistra J et al (1995) The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breed 1:397–410

    Article  Google Scholar 

  113. Thomas CM, Vos P, Zabeau M (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J 8:785–794

    Article  CAS  PubMed  Google Scholar 

  114. Cnops G, Denboer B, Gerats A (1996) Chromosome landing at the Arabidopsis TORNADO1 locus using an AFLP-based strategy. Mol Gen Genet 253:32–41

    Article  CAS  PubMed  Google Scholar 

  115. Jeuken M, van Wijk R, Peleman J et al (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F2 populations. Theor Appl Genet 103:638–647

    Article  CAS  Google Scholar 

  116. Jeuken M, Lindhout P (2002) Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. Theor Appl Genet 105:384–391

    Article  CAS  PubMed  Google Scholar 

  117. Johnson WC, Jackson LE, Ochoa O et al (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    Article  CAS  Google Scholar 

  118. Cervera MT, Gusmao J, Steenackers M et al (1996) Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor Appl Genet 93:733–737

    Article  CAS  PubMed  Google Scholar 

  119. Mukeshimana G, Paneda A, Rodríguez-Suárez C (2005) Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica 144:291–299

    Article  Google Scholar 

  120. Qi X, Lindhout P et al (1997) Development of AFLP markers in barley. Mol Gen Genet 254:330–336

    Article  CAS  PubMed  Google Scholar 

  121. Castiglioni P, Pozzi C, Heun M et al (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Keim P, Schupp JM, Travis SE et al (1997) A high-density soybean genetic map based on AFLP markers. Crop Sci 37:537–543

    Article  CAS  Google Scholar 

  123. Hazen SP, Leroy P, Ward RW (2002) AFLP in Triticum aestivum L. patterns of genetic diversity and genome distribution. Euphytica 125:89–102

    Article  CAS  Google Scholar 

  124. Li G, Liu Y, Ehlers JD et al (2007) Identification of an AFLP fragment linked to rust resistance in asparagus bean and its conversion to a SCAR marker. Hort Sci 42:1153–1156

    CAS  Google Scholar 

  125. Wang Y, Bi B, Yuan QH et al (2012) Association of AFLP and SCAR markers with common leaf spot resistance in auto tetraploid alfalfa (Medicago sativa). Genet Mol Res 11:606–616

    Article  CAS  PubMed  Google Scholar 

  126. Miao L, Shou S, Cai J (2009) Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep 36:479–486

    Article  CAS  PubMed  Google Scholar 

  127. Liao Y, Sun B, Sun G et al (2009) AFLP and SCAR markers associated with peel color in eggplant. Sci Agric Sin 42:3996–4003

    CAS  Google Scholar 

  128. Peng SF, Lin YP, Lin BY (2005) Characterization of AFLP sequences from regions of maize B chromosome defined by 12 B-10L translocations. Genetics 169:375–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Altinkut A, Kazan K, Gozukirmizi N et al (2003) AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.). Genet Mol Biol 26:77–82

    Article  CAS  Google Scholar 

  130. Zhang Y, Guo L, Shu Z et al (2013) Identification of amplified fragment length polymorphism (AFLP) markers tightly associated with drought stress gene in male sterile and fertile Salvia miltiorrhiza Bunge. Int J Mol Sci 14:6518–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wei P, Feng H, Piao Z et al (2009) Identification of AFLP markers linked to Ms, a genic multiple allele inherited male-sterile gene in Chinese cabbage. Breed Sci 59(4):333–339

    Article  CAS  Google Scholar 

  132. Balta H, Karakas MO, Sentürk AF et al (2014) Identification of an AFLP marker linked with yellow rust resistance in wheat (Triticum aestivum L.). Turk J Biol 38:371–379

    Article  CAS  Google Scholar 

  133. Moon H (2006) Identification of AFLP markers linked to tomato spotted wilt virus resistance in tobacco. Dissertation, North Carolina State University

    Google Scholar 

  134. Ghosh S, Majumder PB, Mandi SS et al (2011) Species-specific AFLP markers for identification of Zingiber officinale, Z. montanumand and Z. zerumbet (Zingiberaceae). Genet Mol Res 10:218–229

    Article  CAS  PubMed  Google Scholar 

  135. Yang AH, Wei N, Fritsch PW et al (2016) AFLP genome scanning reveals divergent selection in natural populations of Liriodendron chinense (Magnoliaceae) along a latitudinal transect. Front Plant Sci 7:698

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang C, Sun M, Zhang X et al (2018) AFLP-based genetic diversity of wild orchard grass germplasm collections from Central Asia and Western China, and the relation to environmental factors. PLoS One 13:0195273

    Google Scholar 

  137. Jemelkova M, Kitner M, Křístková E et al (2018) Genetic variability and distance between Lactuca serriola L. populations from Sweden and Slovenia assessed by SSR and AFLP markers. Acta Bot Croatica 77:172–180

    Article  Google Scholar 

  138. Kuang H, van Eck HJ, Sicard D (2008) Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics 178(3):1547–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cao Y, Zhang Q, Chen Y et al (2013) Identification of differential expression genes in leaves of rice (Oryza sativa L.) in response to heat stress by cDNA-AFLP analysis. Bio med res Int. 576189

    Google Scholar 

  140. Medeiros CN, Gonçalves MC, Harakava R et al (2014) Sugarcane transcript profiling assessed by cDNA-AFLP analysis during the interaction with sugarcane mosaic virus. Adv Microbiol 4:511

    Article  CAS  Google Scholar 

  141. Xie L, Wang X, Peng M et al (2014) Isolation and detection of differential genes in hot pepper (Capsicum annuum L.) after space flight using AFLP markers. Biochem Syst Ecol 57:27–32

    Article  CAS  Google Scholar 

  142. Santos CAF, Gama RNC (2013) An AFLP estimation of the outcrossing rate of Spondias tuberosa (Anacardiaceae), an endemic species to the Brazilian semiarid region. Rev Biol Trop 61:577–582

    Google Scholar 

  143. Azizi A, Ardalani H, Honermeier B et al (2016) Statistical analysis of the associations between phenolic monoterpenes and molecular markers, AFLPs and SAMPLs in the spice plant oregano. Herba Pol 62:42–56

    Article  Google Scholar 

  144. Chandi A, Milla-Lewis S, Jordan D et al (2013) Use of AFLP markers to assess genetic diversity in palmer amaranth (Amaranthus palmeri) populations from North Carolina and Georgia. Weed Sci 61(1):136–145

    Article  CAS  Google Scholar 

  145. Paun O, Schonswetter P (2012) Amplified fragment length polymorphism (AFLP)–an invaluable finger printing technique for genomic, transcriptomic and epigenetic studies. Methods Mol Biol 862:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Haghpanah M, Kazemitabar SK, Hashemi SH et al (2016) Comparison of ISSR and AFLP markers in assessing genetic diversity among nettle (Urtica dioica L.) populations. J Plant Mol Breed 4:10–16

    Google Scholar 

  147. Sarwat M, Das S, Srivastava PS (2008) Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep 27:519–528

    Article  CAS  PubMed  Google Scholar 

  148. Ci X-q, Jun-qiu C, Qiao-ming L et al (2008) AFLP and ISSR analysis reveals high genetic variation and inter-population differentiation in fragmented populations of the endangered Litsea szemaois (Lauraceae) from south-West China. Plant Syst Evol 273:237–246

    Article  CAS  Google Scholar 

  149. Roy JK, Lakshmikumaran MS, Balyan HS et al (2004) AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochem Genet 42:43–59

    Article  CAS  PubMed  Google Scholar 

  150. Garcia AAF, Benchimol LL, Barbosa AMM et al (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27(4):579–588

    Article  CAS  Google Scholar 

  151. Abdelhamid S, Le CL, Conedera M et al (2014) The assessment of genetic diversity of Castanea species by RAPD, AFLP, ISSR, and SSR markers. Turk J Botany 38:835–850

    Article  CAS  Google Scholar 

  152. Minoo D, Babu KN, Ravindran PN et al (2006) Inter specific hybridization in vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci Horti 108:414–422

    Article  CAS  Google Scholar 

  153. Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  154. Li L, Wanapu C, Huang X et al (2011) Comparison of AFLP and SSR for genetic diversity analysis of Brassica napus hybrids. J Agri Sci 3(3):101–110

    Google Scholar 

  155. Maras M, Sustar-Vozlic J, Javornik B et al (2008) The efficiency of AFLP and SSR markers in genetic diversity estimation and gene pool classification of common bean (Phaseolus vulgaris L.). Acta Agric Slov 91:87–96

    Article  CAS  Google Scholar 

  156. Costa R, Pereira G, Garrido I et al (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchard grass (Dactylis glomerata L.) germplasm variations. PLoS One 11(4):e0152972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Koundal M, Sharma DR, Mohapatra T et al (2006) Comparative evaluation of RAPD and AFLP based genetic diversity in Brinjal (Solanum melongena). J Plant Biochem Biotechnol 15(1):15–19

    Article  CAS  Google Scholar 

  158. Pamidimarri DS, Singh S, Mastan SG et al (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364

    Article  CAS  Google Scholar 

  159. Avendaño R, José S, Rica C et al (2015) Genetic diversity analysis of Jatropha species from Costa Rica using AFLP markers. Am J Plant Sci 6:2426

    Article  CAS  Google Scholar 

  160. Poeaim S, Chaiyabut A, Poeaim A et al (2017) Genetic diversity and relationships among sugarcane (Saccharum sp.) from Thailand revealed by RAPD and AFLP markers. Indian J Sci Technol 10(28):1–9

    Article  CAS  Google Scholar 

  161. Qin Y, Kabir MA, Wang HW et al (2013) Assessment of genetic diversity and relationships based on RAPD and AFLP analyses in Miscanthus genera landraces. Can J Plant Sci 93:171–182

    Article  CAS  Google Scholar 

  162. Monte JV, De Nova PJ, Soler C et al (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135(2-3):233–238

    Article  CAS  PubMed  Google Scholar 

  163. Dessalegn Y, Liezel H, Maryke L et al (2009) Comparison of SSR and AFLP analysis for genetic diversity assessment of Ethiopian arabica coffee genotypes. S Afr J Plant Soil 26:119–125

    Article  CAS  Google Scholar 

  164. Gaudeul M, Till-Bottraud I, Barjon F et al (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92(6):508–518

    Article  CAS  PubMed  Google Scholar 

  165. Beyene Y, Botha AM, Myburg AA et al (2005) A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afr J Biotechnol 4:586–595

    CAS  Google Scholar 

  166. Singh A, Negi MS, Moses VK et al (2002) Molecular analysis of micropropagated neem plants using AFLP markers for ascertaining clonal fidelity. In Vitro Cell Dev Biol Plant 38:519–524

    Article  CAS  Google Scholar 

  167. Youssef M, James AC, Rivera-Madrid R et al (2011) Musa genetic diversity revealed by SRAP and AFLP. Mol Biotechnol 47:189–199

    Article  CAS  PubMed  Google Scholar 

  168. Labra M, Miele M, Ledda B et al (2004) Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci 167:725–731

    Article  CAS  Google Scholar 

  169. Milbourne D, Meyer R, Bradshaw JE et al (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  170. Lambertini C, Frydenberg J, Gustafsson MHG et al (2008) Herbarium specimens as a source of DNA for AFLP fingerprinting of Phragmites (Poaceae): possibilities and limitations. Plant Syst Evol 272:223–231

    Article  CAS  Google Scholar 

  171. Morgante M, Vogel J (1994) Compound microsatellite primers for the detection of genetic polymorphisms. U.S. patent, 08/326456, 1994

    Google Scholar 

  172. Witsenboer H, Michelmore RW, Vogel J et al (1997) Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936

    Article  CAS  PubMed  Google Scholar 

  173. Tseng YT, Lo HF, Hwang SY (2002) Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot Bull Acad Sinica 43

    Google Scholar 

  174. Negi MS, Sabharwal V, Wilson N et al (2006) Comparative analysis of the efficiency of SAMPL and AFLP in assessing genetic relationships among Withania somnifera genotypes. Curr Sci 91:464–471

    CAS  Google Scholar 

  175. Masiga DK, Turner CMR (2004) Amplified (restriction) fragment length polymorphism (AFLP) analysis. In: Parasite Genomics Protocols. Humana Press, New York

    Google Scholar 

  176. Cretazzo E, Meneghetti S, De Andrés MT et al (2010) Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assess the clonal selection of grapevine: the case study of Manto negro, Callet and moll, autochthonous cultivars of Majorca. Ann Appl Biol 157:213–227

    Article  CAS  Google Scholar 

  177. Albertini E, Porceddu A, Marconi G et al (2003) Microsatellite-AFLP for genetic mapping of complex polyploids. Genome 46:824–832

    Article  CAS  PubMed  Google Scholar 

  178. Whankaew S, Sraphet S, Thaikert R et al (2012) Characterization of microsatellite markers in cassava based on microsatellite-AFLP technique. Genet Mol Res 11:1319–1326

    Article  CAS  PubMed  Google Scholar 

  179. Ellis THN, Poyser SJ, Knox MR et al (1998) Polymorphism of insertion sites of Ty1-copia class retro transposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  180. Yang H, Shankar M, Buirchell B et al (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 105:265–270

    Article  CAS  PubMed  Google Scholar 

  181. Waugh R, McLean K, Flavell AJ et al (1997) Genetic distribution of Bare–1-like retro transposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  182. Queen RA, Gribbon BM, James C et al (2004) Retro transposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genomics 271:91–97

    Article  CAS  Google Scholar 

  183. Leigh F, Kalendar R, Lea V et al (2003) Comparison of the utility of barley retro transposon families for genetic analysis by molecular marker techniques. Mol Gen Genomics 269:464–474

    Article  CAS  Google Scholar 

  184. Yu GX, Wise RP (2000) An anchored AFLP-and retro transposon-based map of diploid Avena. Genome 43:736–749

    Article  CAS  PubMed  Google Scholar 

  185. Nagy ED, Molnar I, Schneider A et al (2006) Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome 49:289–296

    Article  CAS  PubMed  Google Scholar 

  186. Venturi S, Dondini L, Donini P et al (2006) Retro transposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112:440–444

    Article  CAS  PubMed  Google Scholar 

  187. Lanteri S, Acquadro A, Comino C et al (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:1532–1542

    Article  CAS  PubMed  Google Scholar 

  188. Syed NH, Sørensen AP, Antonise R et al (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112:517–527

    Article  CAS  PubMed  Google Scholar 

  189. Jing R, Knox MR, Lee JM et al (2005) Insertional polymorphism and antiquity of PDR1 retro transposon insertions in Pisum species. Genetics 171:741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tam SM, Mhiri C, Vogelaar A et al (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  191. Tahara M, Aoki T, Suzuka S et al (2004) Isolation of an active element from a high-copy-number family of retro transposons in the sweet potato genome. Mol Gen Genomics 272:116–127

    Article  CAS  Google Scholar 

  192. Petit M, Lim KY, Julio E et al (2007) Differential impact of retro transposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Gen Genomics 278:1–15

    Article  CAS  Google Scholar 

  193. Sanz AM, Gonzalez SG, Syed NH et al (2007) Genetic diversity analysis in Vicia species using retro transposon-based SSAP markers. Mol Gen Genomics 278:433–441

    Article  CAS  Google Scholar 

  194. Gao L, McCarthy EM, Ganko EW et al (2004) Evolutionary history of Oryza sativa LTR retro transposons: a preliminary survey of the rice genome sequences. BMC Genomics 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  195. García-Martínez J, Martínez-Izquierdo JA (2003) Study on the evolution of the Grande retro transposon in the Zea genus. Mol Biol Evol 20:831–841

    Article  PubMed  CAS  Google Scholar 

  196. Frey M, Stettner C, Gierl A (1998) A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J 13:17–721

    Article  Google Scholar 

  197. Edwards D, Coghill J, Batley J et al (2002) Amplification and detection of transposon insertion flanking sequences using fluorescent mu AFLP. BioTechniques 32:1090–1097

    Article  CAS  PubMed  Google Scholar 

  198. Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  199. Xiong LZ, Xu CG, Maroof MS et al (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  CAS  PubMed  Google Scholar 

  200. Peraza-Echeverria S, Herrera-Valencia VA, Kay AJ (2001) Detection of DNA methylation changes in micro propagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 161:359–367

    Article  CAS  PubMed  Google Scholar 

  201. Chakrabarty D, Yu KW, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    Article  CAS  Google Scholar 

  202. Portis E, Acquadro A, Comino C et al (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  203. Filek M, Janiak A, Szarejko I et al (2006) Does DNA methylation pattern mark generative development in winter rape? Zeitschrift für Naturforschung C 61:387–396

    Article  CAS  Google Scholar 

  204. Salmon A, Clotault J, Jenczewski E et al (2008) Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174:61–70

    Article  CAS  Google Scholar 

  205. Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  CAS  PubMed  Google Scholar 

  206. Li A, Hu BQ, Xue ZY et al (2011) DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol Biol Rep 29:784–793

    Article  CAS  Google Scholar 

  207. Guzy-Wrobelska J, Filek M, Kaliciak A et al (2013) Vernalization and photoperiod-related changes in the DNA methylation state in winter and spring rapeseed. Acta Physiol Plant 35:817–827

    Article  CAS  Google Scholar 

  208. Marconi G, Pace R, Traini A et al (2013) Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS One 8(9):75597

    Article  CAS  Google Scholar 

  209. Tang XM, Tao X, Wang Y et al (2014) Analysis of DNA methylation of perennial rye grass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Gen Genomics 289:1075–1084

    Article  CAS  Google Scholar 

  210. Li Z, Liu Z, Chen R et al (2015) DNA damage and genetic methylation changes caused by cd in Arabidopsis thaliana seedlings. Environ Toxicol Chem 34:2095–2103

    Article  CAS  PubMed  Google Scholar 

  211. Gimenez MD, Yañez-Santos AM, Paz RC et al (2016) Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation. Plant Cell Rep 35(1):129–141

    Article  CAS  PubMed  Google Scholar 

  212. Gautam M, Dang Y, Ge X et al (2016) Genetic and epigenetic changes in oilseed rape (Brassica napus L.) extracted from inter generic allopolyploid and additions with Orychophragmus. Front Plant Sci 7:–438

    Google Scholar 

  213. Wang B, Liu L, Zhang D et al (2016) Genetic map between Gossypium hirsutum and the Brazilian endemic G. mustelinum and its application to QTL mapping. G3 (Bethesda) 6(6):1673–1685

    Article  CAS  Google Scholar 

  214. Abid G, Kamel H, Marwa A et al (2017) Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor') genotypes to water deficit stress. Biotech Agron Soc Environ 21

    Google Scholar 

  215. Chwialkowska K, Nowakowska U, Mroziewicz A et al (2016) Water-deficiency conditions differently modulate the methylome of roots and leaves in barley (Hordeum vulgare L.). J Exp Bot 67:1109–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hayes A, Saghai MM (2000) Targeted resistance gene mapping in soybean using modified AFLPs. Theor Appl Genet 100:1279

    Article  CAS  Google Scholar 

  217. Sharma SS, Aadil K, Negi MS et al (2014) Efficacy of two dominant marker systems, ISSR and TE-AFLP for assessment of genetic diversity in biodiesel species Pongamia pinnata. Curr Sci 106:1576–1580

    CAS  Google Scholar 

  218. Knox MR, Ellis THN (2001) Stability and inheritance of methylation states at PstI sites in Pisum. Mol Gen Genet 265:497–507

    Article  CAS  Google Scholar 

  219. Wessler SR, Bureau TE, White SE et al (1995) LTR-retro transposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  CAS  PubMed  Google Scholar 

  220. Casa AM, Brouwer C, Nagel A et al (2000) The MITE family heartbreaker (Hbr) molecular markers in maize. PNAS 97:10083–10089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Bachem CW, Van Der Hoeven RS, De Bruijn SM et al (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  CAS  PubMed  Google Scholar 

  222. Money T, Reader S, Qu LJ et al (1996) AFLP based mRNA fingerprinting. Nucleic Acids Res 24:2616–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Razavi K, Mohsenzadeh S, Malboobi M et al (2014) The application of a non-radioactive DD-AFLP method for profiling of Aeluropus lagopoides differentially expressed transcripts under salinity or drought conditions. Iranian J Biotech 12(4):47–57

    Article  Google Scholar 

  224. Van Eijk MJT, Preben A, Marco S et al (2018) Method for high-throughput AFLP-based polymorphism detection. US patent 8.481.257 B2, 2018

    Google Scholar 

  225. Remington DL, Whetten RW, Liu BH et al (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    Article  CAS  PubMed  Google Scholar 

  226. Klein PE, Klein RR, Cartinhour SW et al (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ukrainetz NK, Ritland K, Mansfield SD et al (2008) An AFLP linkage map for Douglas fir based upon multiple full-sib families. Tree Genet Genom 2:181–191

    Article  Google Scholar 

  228. Blignaut M, Ellis AG, Le Roux JJ et al (2013) Towards a transferable and cost-effective plant AFLP protocol. PLoS One 8(4):61704

    Article  CAS  Google Scholar 

  229. Oduwaye O, Baránek M, Cechová J et al (2014) Reliability and comparison of the polymorphism revealed in amaranth by amplified fragment length polymorphism (AFLPs) and inters simple sequence repeats (ISSRs). J Plant Breed Crop Sci 6(4):48–56

    Article  CAS  Google Scholar 

  230. Jemelkov M, Kitnera M, Krístkov E et al (2015) Biodiversity of Lactuca aculeata germplasm assessed by SSR and AFLP markers, and resistance variation to Bremia lactucae. Biochem Syst Ecol 61:344–356

    Article  CAS  Google Scholar 

  231. Varma A, Shrivastava N (2018) Genetic structuring in wild populations of two important medicinal plant species as inferred from AFLP markers. Plant Biosyst 152(5):1088–1100

    Article  Google Scholar 

  232. Liersch A, Bocianowski J, Popławska W et al (2019) Creation of gene pools with amplified fragment length polymorphism markers for development of winter oilseed rape (Brassica napus L.) hybrid cultivars. Euphytica 215:22

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sheeja, T.E., Kumar, I.P.V., Giridhari, A., Minoo, D., Rajesh, M.K., Babu, K.N. (2021). Amplified Fragment Length Polymorphism: Applications and Recent Developments. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics