Skip to main content

Nephronophthisis and Medullary Cystic Kidney Disease in Children

Pediatric Nephrology
  • 286 Accesses

Abstract

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes one of the most frequent genetic causes for end-stage kidney disease (ESKD) in the first three decades of life (Hildebrandt and Otto, Nat Rev Genet, 2005; Smith and Graham, Am J Dis Child 69:369–377, 1945; Fanconi et al., Helv Pediatr Acta 6:1–49, 1951; Hildebrandt and Zhou, J Am Soc Nephrol 18(6):1855–1871, 2007). Three clinical forms of NPHP have been distinguished by age of onset of ESKD: infantile (Gagnadoux et al., Pediatr Nephrol 3(1):50–55, 1989; Otto et al., Nat Genet 34(4):413–420, 2003), juvenile (Hildebrandt et al., Clin Investig 70(9):802–808, 1992), and adolescent NPHP (Omran et al., Am J Hum Genet 66(1):118–127, 2000), which manifest with ESKD at median ages of 1 year, 13 years, and 15 years, respectively. Initial symptoms are relatively mild with the exception of infantile NPHP type 2. They consist of polyuria, polydipsia with regular fluid intake at nighttime, secondary enuresis, and anemia (Omran et al., Am J Hum Genet 66(1):118–127, 2000). A slightly raised serum creatinine is noted at an average age of 9 years, before ESKD invariably develops within a few years (Fig. 1). Renal ultrasound reveals increased echogenicity (Fig. 2). Beyond the age of 9 years, cysts appear at the corticomedullary junction within the kidneys of normal or slightly reduced size (Fig. 2) (Blowey et al., Pediatr Nephrol 10(1):22–24, 1996). Renal histology reveals a characteristic triad of tubular basement membrane disruption, tubulointerstitial nephropathy, and cysts (Fig. 3) (Waldherr et al., Virchows Arch A Pathol Anat Histol 394(3):235–254, 1982; Zollinger et al., Helv Paediatr Acta 35(6):509–530, 1980). In nephronophthisis cysts arise from the corticomedullary junction of the kidneys (Fig. 2). Because kidney size is normal or slightly reduced, cysts seem to develop e vacuo through loss of normal tissue. This is in contrast to polycystic kidney disease, where cysts are distributed evenly and lead to gross enlargement of the kidneys (Hildebrandt F (1999) Juvenile nephronophthisis. In: Harmon WE (ed) Pediatric nephrology. Williams & Wilkins, Baltimore). NPHP is part of a broad spectrum of renal cystic/degenerative diseases that often include extrarenal manifestations. Over 80 recessive single-gene causes have been identified. Because the related gene products localize to primary cilia and centrosomes, the term “NPHP-related ciliopathies (NPHP-RC)” is now used for these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Hildebrandt F, Otto EA. Primary cilia: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet. 2005;6:928–940.

    Google Scholar 

  2. Smith C, Graham J. Congenital medullary cysts of the kidneys with severe refractory anemia. Am J Dis Child. 1945;69:369–77.

    Google Scholar 

  3. Fanconi G, Hanhart E, Albertini A. Die familiäre juvenile Nephronophthise. Helv Pediatr Acta. 1951;6:1–49.

    CAS  Google Scholar 

  4. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol. 2007;18(6):1855–71.

    CAS  PubMed  Google Scholar 

  5. Gagnadoux M, Bacri J, Broyer M, Habib R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol. 1989;3(1):50–5.

    CAS  PubMed  Google Scholar 

  6. Otto EA, Schermer B, Obara T, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34(4):413–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Hildebrandt F, Waldherr R, Kutt R, Brandis M. The nephronophthisis complex: clinical and genetic aspects. Clin Investig. 1992;70(9):802–8.

    CAS  PubMed  Google Scholar 

  8. Omran H, Fernandez C, Jung M, et al. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet. 2000;66(1):118–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Blowey DL, Querfeld U, Geary D, et al. Ultrasound findings in juvenile nephronophthisis. Pediatr Nephrol. 1996;10(1):22–4.

    CAS  PubMed  Google Scholar 

  10. Waldherr R, Lennert T, Weber HP, et al. The nephronophthisis complex. A clinicopathologic study in children. Virchows Arch A Pathol Anat Histol. 1982;394(3):235–54.

    CAS  PubMed  Google Scholar 

  11. Zollinger HU, Mihatsch MJ, Edefonti A, et al. Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta. 1980;35(6):509–30.

    CAS  PubMed  Google Scholar 

  12. Hildebrandt F. Juvenile nephronophthisis. In: Harmon WE, editor. Pediatric nephrology. Baltimore: Williams & Wilkins; 1999.

    Google Scholar 

  13. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Senior B, Friedmann AI, Braudo JL. Juvenile familial nephropathy with tapetoretinal degeneration: a new oculorenal dystrophy. Am J Ophthalmol. 1961;52:625–33.

    CAS  PubMed  Google Scholar 

  15. Loken AC, Hanssen O, Halvorsen S, Jolster NJ. Hereditary renal dysplasia and blindness. Acta Paediatr. 1961;50:177–84.

    CAS  PubMed  Google Scholar 

  16. Saraiva JM, Baraitser M. Joubert syndrome: a review. Am J Med Genet. 1992;43(4):726–31.

    CAS  PubMed  Google Scholar 

  17. Valente EM, Marsh SE, Castori M, et al. Distinguishing the four genetic causes of jouberts syndrome-related disorders. Ann Neurol. 2005;57(4):513–9.

    PubMed  Google Scholar 

  18. Boichis H, Passwell J, David R, Miller H. Congenital hepatic fibrosis and nephronophthisis. A family study. Q J Med. 1973;42(165):221–33.

    CAS  PubMed  Google Scholar 

  19. Mainzer F, Saldino RM, Ozonoff MB, Minagi H. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 1970;49(4):556–62.

    CAS  PubMed  Google Scholar 

  20. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE, Airik R, Czarnecki PG, Lehman AM, Trnka P, Nitschké P, Bole-Feysot C, Schueler M, Knebelmann B, Burtey S, Szabó AJ, Tory K, Leo PJ, Gardiner B, McKenzie FA, Zankl A, Brown MA, Hartley JL, Maher ER, Li C, Leroux MR, Scambler PJ, Zhan SH, Jones SJ, Kayserili H, Tuysuz B, Moorani KN, Constantinescu A, Krantz ID, Kaplan BS, Shah JV, UK10K Consortium, Hurd TW, Doherty D, Katsanis N, Duncan EL, Otto EA, Beales PL, Mitchison HM, Saunier S, Hildebrandt F. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet. 2013;93(5):915–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Gardner Jr KD. Juvenile nephronophthisis and renal medullary cystic disease. Perspect Nephrol Hypertens. 1976;4:173–85.

    PubMed  Google Scholar 

  22. Kleinknecht C. The inheritance of nephronophthisis. Inheritance of Kidney and Urinary Tract Diseases. vol. 9. Boston: Kluwer; 1989, pp. 464.

    Google Scholar 

  23. Potter DE, Holliday MA, Piel CF, et al. Treatment of end-stage renal disease in children: a 15-year experience. Kidney Int. 1980;18(1):103–9.

    CAS  PubMed  Google Scholar 

  24. Waldherr R. Der nephronophthise-komplex. Nieren Hochdruck. 1983;12:397–406.

    Google Scholar 

  25. Cantani A, Bamonte G, Ceccoli D. Familial juvenile nephronophthisis. Clinical Pediatr. 1986;25:90–5.

    CAS  Google Scholar 

  26. Betts PR, Forest-Hay I. Juvenile nephronophthisis. Lancet. 1973;2:475–8.

    CAS  PubMed  Google Scholar 

  27. Ala-Mello S, Kivivuori SM, Ronnholm KA, et al. Mechanism underlying early anaemia in children with familial juvenile nephronophthisis. Pediatr Nephrol. 1996;10(5):578–81.

    CAS  PubMed  Google Scholar 

  28. Steel BT, Lirenman DS, Battie CW. Nephronophthisis. Am J Med. 1980;68:531–8.

    Google Scholar 

  29. Haider NB, Carmi R, Shalev H, et al. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am J Hum Genet. 1998;63(5):1404–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Gretz N. Rate of deterioration of renal function in juvenile nephronophthisis. Pediatr Nephrol. 1989;3:56–60.

    CAS  PubMed  Google Scholar 

  31. Otto EA, Loeys B, Khanna H, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005;37(3):282–8.

    CAS  PubMed  Google Scholar 

  32. Christodoulou K, Tsingis M, Stavrou C, et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet. 1998;7(5):905–11.

    CAS  PubMed  Google Scholar 

  33. Scolari F, Ghiggeri GM, Amoroso A, et al. Genetic heterogeneity for autosomal dominant medullary cystic kidney disease (ADMCKD). J Am Soc Nephrol. 1998;9:393A.

    Google Scholar 

  34. Bleyer AJ, Hart TC. Medullary cystic kidney disease type 2. Am J Kidney Dis. 2004;43(6):1142. author reply 1142–3.

    PubMed  Google Scholar 

  35. Kirby A, Gnirke A, Jaffe DB, Barešová V, Pochet N, Blumenstiel B, Ye C, Aird D, Stevens C, Robinson JT, Cabili MN, Gat-Viks I, Kelliher E, Daza R, DeFelice M, Hůlková H, Sovová J, Vylet’al P, Antignac C, Guttman M, Handsaker RE, Perrin D, Steelman S, Sigurdsson S, Scheinman SJ, Sougnez C, Cibulskis K, Parkin M, Green T, Rossin E, Zody MC, Xavier RJ, Pollak MR, Alper SL, Lindblad-Toh K, Gabriel S, Hart PS, Regev A, Nusbaum C, Kmoch S, Bleyer AJ, Lander ES, Daly MJ. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013;45(3):299–303.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Sherman FE, Studnicki FM, Fetterman GH. Renal lesions of familial juvenile nephronophthisis examined by microdissection. Am J Clin Path. 1971;55:391.

    CAS  PubMed  Google Scholar 

  37. Sworn MJ, Eisinger AJ. Medullary cystic disease and juvenile nephronophthisis in separate members of the same family. Arch Dis Child. 1972;47:278.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Giselson N, Heinegard D, Holmberg CG, et al. Renal medullary cystic disease or familial juvenile nephronophthisis: a renal tubular disease. Biochemical findings in two siblings. Am J Med. 1970;48(2):174–84.

    CAS  PubMed  Google Scholar 

  39. Chamberlin BC, Hagge WW, Stickler GB. Juvenile nephronophthisis and medullary cystic disease. Mayo Clin Proc. 1977;52(8):485–91.

    CAS  PubMed  Google Scholar 

  40. van Collenburg JJ, Thompson MW, Huber J. Clinical, pathological and genetic aspects of a form of cystic disease of the renal medulla: familial juvenile nephronophthisis (FJN). Clin Nephrol. 1978;9(2):55–62.

    PubMed  Google Scholar 

  41. Ivemark BI, Ljungqvist A, Barry A. Juvenile nephronophthisis. Part 2. A histologic and microangiographic study. Acta Paediatr. 1960;49:480–7.

    CAS  PubMed  Google Scholar 

  42. Resnick J, Sisson S, Vernier RL. Tamm-Horsfall protein. Abnormal localization in renal disease. Lab Invest. 1978;38:550.

    CAS  PubMed  Google Scholar 

  43. Olbrich H, Fliegauf M, Hoefele J, et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet. 2003;34(4):455–9.

    CAS  PubMed  Google Scholar 

  44. Otto E, Hoefele J, Ruf R, et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet. 2002;71(5):1167–71.

    Google Scholar 

  45. Mollet G, Salomon R, Gribouval O, et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet. 2002;32(2):300–5.

    CAS  PubMed  Google Scholar 

  46. Sayer JA, Otto EA, O’Toole JF, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38(6):674–81.

    CAS  PubMed  Google Scholar 

  47. Valente EM, Silhavy JL, Brancati F, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38(6):623–5.

    CAS  PubMed  Google Scholar 

  48. Attanasio M, Uhlenhaut NH, Sousa VH, et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat Genet. 2007;39(8):1018–24.

    CAS  PubMed  Google Scholar 

  49. Wolf MT, Saunier S, O’Toole JF, et al. Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis. Kidney Int. 2007;72(12):1520–6.

    CAS  PubMed  Google Scholar 

  50. Delous M, Baala L, Salomon R, et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet. 2007;39(7):875–81.

    CAS  PubMed  Google Scholar 

  51. Roepman R, Bernoud-Hubac N, Schick DE, et al. The retinitis pigmentosa gtpase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet. 2000;9(14):2095–105.

    CAS  PubMed  Google Scholar 

  52. Otto EA, Trapp ML, Schultheiss UT, et al. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J Am Soc Nephrol. 2008;19(3):587–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Watnick T, Germino G. From cilia to cyst. Nat Genet. 2003;34(4):355–6.

    CAS  PubMed  Google Scholar 

  54. Germino GG. Linking cilia to Wnts. Nat Genet. 2005;37(5):455–7.

    CAS  PubMed  Google Scholar 

  55. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145(4):513–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Antignac C, Arduy CH, Beckmann JS, et al. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nat Genet. 1993;3(4):342–5.

    CAS  PubMed  Google Scholar 

  57. Hildebrandt F, Singh-Sawhney I, Schnieders B, et al. Mapping of a gene for familial juvenile nephronophthisis: refining the map and defining flanking markers on chromosome 2. APN Study Group. Am J Hum Genet. 1993;53(6):1256–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Spurr NK, Barton H, Bashir R, et al. Report and abstracts of the Third International Workshop on Human Chromosome 2 Mapping 1994. Aarhus, Denmark, June 24–26, 1994. Cytogenet Cell Genet. 1994;67(4):215–44.

    CAS  PubMed  Google Scholar 

  59. Hildebrandt F, Cybulla M, Strahm B, et al. Physical mapping of the gene for juvenile nephronophthisis (NPH1) by construction of a complete YAC contig of 7 Mb on chromosome 2q13. Cytogenet Cell Genet. 1996;73(3):235–9.

    CAS  PubMed  Google Scholar 

  60. Spurr NK, Bashir R, Bushby K, et al. Report and abstracts of the Fourth International Workshop on Human Chromosome 2 Mapping 1996. Cytogenet Cell Genet. 1996;73(4):255–73.

    Google Scholar 

  61. Nothwang HG, Strahm B, Denich D, et al. Molecular cloning of the interleukin-1 gene cluster: construction of an integrated YAC/PAC contig and a partial transcriptional map in the region of chromosome 2q13. Genomics. 1997;41(3):370–8.

    CAS  PubMed  Google Scholar 

  62. Saunier S, Calado J, Benessy F, et al. Characterization of the NPHP1 locus: mutational mechanism involved in deletions in familial juvenile nephronophthisis. Am J Hum Genet. 2000;66(3):778–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Betz R, Rensing C, Otto E, et al. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J Pediatr. 2000;136(6):828–31.

    CAS  PubMed  Google Scholar 

  64. Caridi G, Murer L, Bellantuono R, et al. Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis. 1998;32(6):1059–62.

    CAS  PubMed  Google Scholar 

  65. Benzing T, Gerke P, Hopker K, et al. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc Natl Acad Sci U S A. 2001;98(17):9784–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Donaldson JC, Dempsey PJ, Reddy S, et al. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp Cell Res. 2000;256(1):168–78.

    CAS  PubMed  Google Scholar 

  67. Donaldson JC, Dise RS, Ritchie MD, Hanks SK. Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J Biol Chem. 2002;277(32):29028–35.

    CAS  PubMed  Google Scholar 

  68. Fliegauf M, Horvath J, von Schnakenburg C, et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006;17(9):2424–33.

    CAS  PubMed  Google Scholar 

  69. Schermer B, Hopker K, Omran H, et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. Embo J. 2005;24(24):4415–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Bodaghi E, Honarmand MT, Ahmadi M. Infantile nephronophthisis. Int J Pediatr Nephrol. 1987;8(4):207–10.

    CAS  PubMed  Google Scholar 

  71. Mochizuki T, Saijoh Y, Tsuchiya K, et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature. 1998;395(6698):177–81.

    CAS  PubMed  Google Scholar 

  72. Morgan D, Turnpenny L, Goodship J, et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet. 1998;20(2):149–56.

    CAS  PubMed  Google Scholar 

  73. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2002;13(9):2384–98.

    CAS  PubMed  Google Scholar 

  74. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    CAS  PubMed  Google Scholar 

  75. Benzing T, Walz G. Cilium-generated signaling: a cellular GPS? Curr Opin Nephrol Hypertens. 2006;15(3):245–9.

    CAS  PubMed  Google Scholar 

  76. Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37(5):537–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Gattone 2nd VH, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.

    CAS  PubMed  Google Scholar 

  78. Bergmann C, Fliegauf M, Bruchle NO, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Schuermann MJ, Otto E, Becker A, et al. Mapping of gene loci for nephronophthisis type 4 and Senior-Løken Syndrome, to chromosome 1p36. Am J Hum Genet. 2002;70(5):1240–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Mollet G, Silbermann F, Delous M, et al. Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet. 2005;14(5):645–56.

    CAS  PubMed  Google Scholar 

  81. Andersen JS, Wilkinson CJ, Mayor T, et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003;426(6966):570–4.

    CAS  PubMed  Google Scholar 

  82. Chang B, Khanna H, Hawes N, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006;15(11):1847–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet. 2006;79(3):556–61.

    Google Scholar 

  84. Baala L, Audollent S, Martinovic J, et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet. 2007;81(1):170–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Fischer E, Legue E, Doyen A, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet. 2006;38(1):21–3.

    CAS  PubMed  Google Scholar 

  86. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–7.

    CAS  PubMed  Google Scholar 

  87. Sohara E, Luo Y, Zhang J, et al. Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol. 2008;19(3):469–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Liu S, Lu W, Obara T, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129(24):5839–46.

    CAS  PubMed  Google Scholar 

  89. Bukanov NO, Smith LA, Klinger KW, et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 2006;444(7121):949–52.

    CAS  PubMed  Google Scholar 

  90. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, Gee HY, Ramaswami G, Hong CJ, Hamilton BA, Cervenka I, Ganji RS, Bryja V, Arts HH, van Reeuwijk J, Oud MM, Letteboer SJ, Roepman R, Husson H, Ibraghimov-Beskrovnaya O, Yasunaga T, Walz G, Eley L, Sayer JA, Schermer B, Liebau MC, Benzing T, Le Corre S, Drummond I, Janssen S, Allen SJ, Natarajan S, O’Toole JF, Attanasio M, Saunier S, Antignac C, Koenekoop RK, Ren H, Lopez I, Nayir A, Stoetzel C, Dollfus H, Massoudi R, Gleeson JG, Andreoli SP, Doherty DG, Lindstrad A, Golzio C, Katsanis N, Pape L, Abboud EB, Al-Rajhi AA, Lewis RA, Omran H, Lee EY, Wang S, Sekiguchi JM, Saunders R, Johnson CA, Garner E, Vanselow K, Andersen JS, Shlomai J, Nurnberg G, Nurnberg P, Levy S, Smogorzewska A, Otto EA, Hildebrandt F. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Wolf MT, Lee J, Panther F, et al. Expression and phenotype analysis of the nephrocystin-1 and nephrocystin-4 homologs in Caenorhabditis elegans. J Am Soc Nephrol. 2005;16(3):676–87.

    CAS  PubMed  Google Scholar 

  92. Barr MM, DeModena J, Braun D, et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol. 2001;11(17):1341–6.

    CAS  PubMed  Google Scholar 

  93. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet. 2005;6(3):194–205.

    CAS  PubMed  Google Scholar 

  94. Bae YK, Lyman-Gingerich J, Barr MM, Knobel KM. Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev Dyn. 2008;273(8):2021–9.

    Google Scholar 

  95. Jauregui AR, Nguyen KC, Hall DH, Barr MM. The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol. 2008;180(5):973–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Winkelbauer ME, Schafer JC, Haycraft CJ, et al. The C. elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. J Cell Sci. 2005;118(Pt 23):5575–87.

    CAS  PubMed  Google Scholar 

  97. Mykytyn K, Sheffield VC. Establishing a connection between cilia and Bardet-Biedl Syndrome. Trends Mol Med. 2004;10(3):106–9.

    CAS  PubMed  Google Scholar 

  98. Efimenko E, Bubb K, Mak HY, et al. Analysis of xbx genes in C. elegans. Development. 2005;132(8):1923–34.

    CAS  PubMed  Google Scholar 

  99. O’Toole JF, Otto E, Frishberg Y, Hildebrandt F. Retinitis pigmentosa and renal failure in a patient with mutations in inversin. J Am Soc Nephrol. 2004;15:215A.

    Google Scholar 

  100. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151(3):709–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Joubert M, Eisenring JJ, Robb JP, Andermann F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology. 1969;19(9):813–25.

    CAS  PubMed  Google Scholar 

  102. Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.

    CAS  PubMed  Google Scholar 

  103. Gleeson JG, Keeler LC, Parisi MA, et al. Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet. 2004;125A(2):125–34. discussion 117.

    PubMed  Google Scholar 

  104. Castori M, Valente EM, Donati MA, et al. NPHP1 gene deletion is a rare cause of Joubert syndrome related disorders. J Med Genet. 2005;42(2):e9.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Utsch B, Sayer JA, Attanasio M, et al. Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr Nephrol. 2006;21(1):32–5.

    PubMed  Google Scholar 

  106. Parisi MA, Doherty D, Eckert ML, et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet. 2006;43(4):334–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Saar K, Al-Gazali L, Sztriha L, et al. Homozygosity mapping in families with Joubert syndrome identifies a locus on chromosome 9q34.3 and evidence for genetic heterogeneity. Am J Hum Genet. 1999;65(6):1666–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Keeler LC, Marsh SE, Leeflang EP, et al. Linkage analysis in families with Joubert syndrome plus oculo-renal involvement identifies the CORS2 locus on chromosome 11p12-q13.3. Am J Hum Genet. 2003;73(3):656–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Delaney V, Mullaney J, Bourke E. Juvenile nephronophthisis, congenital hepatic fibrosis and retinal hypoplasia in twins. Q J Med. 1978;47(187):281–90.

    CAS  PubMed  Google Scholar 

  110. Proesmans W, Van Damme B, Macken J. Nephronophthisis and tapetoretinal degeneration associated with liver fibrosis. Clin Nephrol. 1975;3(4):160–4.

    CAS  PubMed  Google Scholar 

  111. Rayfield EJ, McDonald FD. Red and blonde hair in renal medullary cystic disease. Arch Intern Med. 1972;130(1):72–5.

    CAS  PubMed  Google Scholar 

  112. Kumada S, Hayashi M, Arima K, et al. Renal disease in Arima syndrome is nephronophthisis as in other Joubert-related Cerebello-oculo-renal syndromes. Am J Med Genet A. 2004;131(1):71–6.

    PubMed  Google Scholar 

  113. Satran D, Pierpont ME, Dobyns WB. Cerebello-oculo-renal syndromes including Arima, Senior-Loken and COACH syndromes: more than just variants of Joubert syndrome. Am J Med Genet. 1999;86(5):459–69.

    CAS  PubMed  Google Scholar 

  114. Chance PF, Cavalier L, Satran D, et al. Clinical nosologic and genetic aspects of Joubert and related syndromes. J Child Neurol. 1999;14(10):660–6. discussion 669–72.

    CAS  PubMed  Google Scholar 

  115. Kyttala M, Tallila J, Salonen R, et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet. 2006;38(2):155–7.

    PubMed  Google Scholar 

  116. Smith UM, Consugar M, Tee LJ, et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet. 2006;38(2):191–6.

    CAS  PubMed  Google Scholar 

  117. Khaddour R, Smith U, Baala L, et al. Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype-phenotype correlation. Mutation in brief #960. Online. Hum Mutat. 2007;28(5):523–4.

    PubMed  Google Scholar 

  118. McGrath J, Somlo S, Makova S, et al. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114(1):61–73.

    CAS  PubMed  Google Scholar 

  119. Donaldson MD, Warner AA, Trompeter RS, et al. Familial juvenile nephronophthisis, Jeune’s syndrome, and associated disorders. Arch Dis Child. 1985;60(5):426–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractere familial [Asphyxiating thoracic dystrophy with familial characteristics]. Arch Fr Pediatr. 1955;12(8):886–91.

    CAS  PubMed  Google Scholar 

  121. Amirou M, Bourdat-Michel G, Pinel N, et al. Successful renal transplantation in Jeune syndrome type 2. Pediatr Nephrol. 1998;12(4):293–4.

    CAS  PubMed  Google Scholar 

  122. Sarimurat N, Elcioglu N, Tekant GT, et al. Jeune’s asphyxiating thoracic dystrophy of the newborn. Eur J Pediatr Surg. 1998;8(2):100–1.

    CAS  PubMed  Google Scholar 

  123. Moudgil A, Bagga A, Kamil ES, et al. Nephronophthisis associated with Ellis-van Creveld syndrome. Pediatr Nephrol. 1998;12(1):20–2.

    CAS  PubMed  Google Scholar 

  124. Di Rocco M, Picco P, Arslanian A, et al. Retinitis pigmentosa, hypopituitarism, nephronophthisis, and mild skeletal dysplasia (RHYNS): a new syndrome? Am J Med Genet. 1997;73(1):1–4.

    PubMed  Google Scholar 

  125. Tsimaratos M, Sarles J, Sigaudy S, Philip N. Renal and retinal involvement in the Sensenbrenner syndrome. Am J Med Genet. 1998;77(4):337.

    CAS  PubMed  Google Scholar 

  126. Costet C, Betis F, Berard E, et al. Pigmentosum retinis and tubulo-interstitial nephronophtisis in Sensenbrenner syndrome: a case report. J Fr Ophtalmol. 2000;23(2):158–60.

    CAS  PubMed  Google Scholar 

  127. Beales PL, Bland E, Tobin JL, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9.

    CAS  PubMed  Google Scholar 

  128. Goldman SH, Walker SR, Merigan Jr TC, et al. Hereditary occurrence of cystic disease of the renal medulla. N Engl J Med. 1966;274(18):984–92.

    CAS  PubMed  Google Scholar 

  129. Gardner KD. Evolution of clinical signs in adult-onset cystic disease of the renal medulla. Ann Intern Med. 1971;74:47–54.

    PubMed  Google Scholar 

  130. Burke JR, Inglis JA, Craswell PW, et al. Juvenile nephronophthisis and medullary cystic disease – the same disease (report of a large family with medullary cystic disease associated with gout and epilepsy). Clin Nephrol. 1982;18(1):1–8.

    CAS  PubMed  Google Scholar 

  131. Wolf MT, Mucha BE, Hennies HC, et al. Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Hum Genet. 2006;119(6):649–58.

    CAS  PubMed  Google Scholar 

  132. Kiser RL, Wolf MT, Martin JL, et al. Medullary cystic kidney disease type 1 in a large Native-American kindred. Am J Kidney Dis. 2004;44(4):611–7.

    CAS  PubMed  Google Scholar 

  133. Stavrou C, Koptides M, Tombazos C, et al. Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int. 2002;62(4):1385–94.

    PubMed  Google Scholar 

  134. Fuchshuber A, Kroiss S, Karle S, et al. Refinement of the gene locus for autosomal dominant medullary cystic kidney disease type 1 (MCKD1) and construction of a physical and partial transcriptional map of the region. Genomics. 2001;72(3):278–84.

    CAS  PubMed  Google Scholar 

  135. Fuchshuber A, Deltas CC, Berthold S, et al. Autosomal dominant medullary cystic kidney disease: evidence of gene locus heterogeneity. Nephrol Dial Transplant. 1998;13(8):1955–7.

    CAS  PubMed  Google Scholar 

  136. Scolari F, Puzzer D, Amoroso A, et al. Identification of a new locus for medullary cystic disease, on chromosome 16p12. Am J Hum Genet. 1999;64(6):1655–560.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Hateboer N, Gumbs C, Teare MD, et al. Confirmation of a gene locus for medullary cystic kidney disease (MCKD2) on chromosome 16p12. Kidney Int. 2001;60(4):1233–9.

    CAS  PubMed  Google Scholar 

  138. Hart TC, Gorry MC, Hart PS, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002;39(12):882–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Rezende-Lima W, Parreira KS, Garcia-Gonzalez M, et al. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int. 2004;66(2):558–63.

    CAS  PubMed  Google Scholar 

  140. Dahan K, Devuyst O, Smaers M, et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol. 2003;14(11):2883–93.

    CAS  PubMed  Google Scholar 

  141. Dahan K, Fuchshuber A, Adamis S, et al. Familial juvenile hyperuricemic nephropathy and autosomal dominant medullary cystic kidney disease type 2: two facets of the same disease? J Am Soc Nephrol. 2001;12(11):2348–57.

    CAS  PubMed  Google Scholar 

  142. Hildebrandt F, Rensing C, Betz R, et al. Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis. Kidney Int. 2001;59(2):434–45.

    CAS  PubMed  Google Scholar 

  143. Garel LA, Habib R, Pariente D, et al. Juvenile nephronophthisis: sonographic appearance in children with severe uremia. Radiology. 1984;151(1):93–5.

    CAS  PubMed  Google Scholar 

  144. McGregor AR, Bailey RR. Nephronophthisis-cystic renal medulla complex: diagnosis by computerized tomography. Nephron. 1989;53(1):70–2.

    CAS  PubMed  Google Scholar 

  145. Fyhrquist FY, Klockars M, Gordin A, et al. Hyperreninemia, lysozymuria, and erythrocytosis in Fanconi syndrome with medullary cystic kidney. Acta Med Scand. 1980;207(5):359–65.

    CAS  PubMed  Google Scholar 

  146. Cacchi R, Ricci V. Sopra una rara e forse ancora non descritta effezione cistica della piramidi renali (“rene a spugna”). Atti Soc Ital Urol. 1948;5:59.

    Google Scholar 

  147. Torres VE, Wang X, Qian Q, et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363–4.

    CAS  PubMed  Google Scholar 

  148. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A. 1993;90(12):5519–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin 2 inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100(9):5286–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Pazour GJ, Dickert BL, Witman GB. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol. 1999;144(3):473–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Bisgrove BW, Yost HJ. The roles of cilia in developmental disorders and disease. Development. 2006;133(21):4131–43.

    CAS  PubMed  Google Scholar 

  152. Nurnberger J, Bacallao RL, Phillips CL. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol Biol Cell. 2002;13(9):3096–106.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Saadi-Kheddouci S, Berrebi D, Romagnolo B, et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene. 2001;20(42):5972–81.

    CAS  PubMed  Google Scholar 

  154. Pazour GJ, Rosenbaum JL. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 2002;12(12):551–5.

    CAS  PubMed  Google Scholar 

  155. Badano JL, Kim JC, Hoskins BE, et al. Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet. 2003;12(14):1651–9.

    CAS  PubMed  Google Scholar 

  156. Bae YK, Qin H, Knobel KM, et al. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development. 2006;133(19):3859–70.

    CAS  PubMed  Google Scholar 

  157. Beales PL, Badano JL, Ross AJ, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet. 2003;72(5):1187–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Hildebrandt F, Otto E, Rensing C, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17(2):149–53.

    CAS  PubMed  Google Scholar 

  159. Hildebrandt F, Strahm B, Nothwang HG, et al. Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Kidney Int. 1997;51(1):261–9.

    CAS  PubMed  Google Scholar 

  160. Hoefele J, Wolf MT, O’Toole JF, et al. Evidence of oligogenic inheritance in nephronophthisis. J Am Soc Nephrol. 2007;18(10):2789–95.

    CAS  PubMed  Google Scholar 

  161. Jauregui AR, Barr MM. Functional characterization of the C. elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors. Exp Cell Res. 2005;305(2):333–42.

    CAS  PubMed  Google Scholar 

  162. Otto E, Betz R, Rensing C, et al. A deletion distinct from the classical homologous recombination of juvenile nephronophthisis type 1 (NPH1) allows exact molecular definition of deletion breakpoints. Hum Mutat. 2000;16(3):211–23.

    CAS  PubMed  Google Scholar 

  163. Otto E, Kispert A, Schatzle S, et al. Nephrocystin: gene expression and sequence conservation between human, mouse, and Caenorhabditis elegans. J Am Soc Nephrol. 2000;11(2):270–82.

    CAS  PubMed  Google Scholar 

  164. Roume J, Genin E, Cormier-Daire V, et al. A gene for Meckel syndrome maps to chromosome 11q13. Am J Hum Genet. 1998;63(4):1095–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Saunier S, Calado J, Heilig R, et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum Mol Genet. 1997;6(13):2317–23.

    CAS  PubMed  Google Scholar 

  166. Saunier S, Morin G, Calado J, et al. Large deletions of the NPH1 region in Cogan syndrome (CS) associated with familial juvenile nephronophthisis (NPH). Am J Hum Genet. 1997;61:A346.

    Google Scholar 

  167. Wolf MT, Karle SM, Schwarz S, et al. Refinement of the critical region for MCKD1 by detection of transcontinental haplotype sharing. Kidney Int. 2003;64(3):788–92.

    CAS  PubMed  Google Scholar 

  168. Wolf MT, Mucha BE, Attanasio M, et al. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int. 2003;64(5):1580–7.

    CAS  PubMed  Google Scholar 

  169. Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, Diaz K, Lach FP, Bennett GR, Gee HY, Ghosh AK, Natarajan S, Thongthip S, Veturi U, Allen SJ, Janssen S, Ramaswami G, Dixon J, Burkhalter F, Spoendlin M, Moch H, Mihatsch MJ, Verine J, Reade R, Soliman H, Godin M, Kiss D, Monga G, Mazzucco G, Amann K, Artunc F, Newland RC, Wiech T, Zschiedrich S, Huber TB, Friedl A, Slaats GG, Joles JA, Goldschmeding R, Washburn J, Giles RH, Levy S, Smogorzewska A, Hildebrandt F. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet. 2012;44(8):910–5. doi:10.1038/ng.2347. PubMed PMID: 22772369; PubMed Central PMCID:PMC3412140.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Choi HJ, Lin JR, Vannier JB, Slaats GG, Kile AC, Paulsen RD, Manning DK, Beier DR, Giles RH, Boulton SJ, Cimprich KA. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol Cell. 2013;51(4):423–39. doi:10.1016/j.molcel.2013.08.006. PubMed PMID: 23973373; PubMed Central PMCID: PMC3790667.

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Lans H, Hoeijmakers JH. Genome stability, progressive kidney failure and aging. Nat Genet. 2012;44(8):836–8. doi:10.1038/ng.2363. PubMed PMID:22836089.

    CAS  PubMed  Google Scholar 

  172. Gee HY, Otto EA, Hurd TW, Ashraf S, Chaki M, Cluckey A, Vega-Warner V, Saisawat P, Diaz KA, Fang H, Kohl S, Allen SJ, Airik R, Zhou W, Ramaswami G, Janssen S, Fu C, Innis JL, Weber S, Vester U, Davis EE, Katsanis N, Fathy HM, Jeck N, Klaus G, Nayir A, Rahim KA, Al Attrach I, Al Hassoun I, Ozturk S, Drozdz D, Helmchen U, O'Toole JF, Attanasio M, Lewis RA, Nürnberg G, Nürnberg P, Washburn J, MacDonald J, Innis JW, Levy S, Hildebrandt F. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014;85(4):880–7. doi:10.1038/ki.2013.450. Epub 2013 Nov 20. PubMed PMID: 24257694; PubMed Central PMCID: PMC3972265.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hildebrandt, F. (2014). Nephronophthisis and Medullary Cystic Kidney Disease in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nephronophthisis–Medullary Cystic Kidney Disease in Children
    Published:
    13 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27843-3_31-2

  2. Original

    Nephronophthisis and Medullary Cystic Kidney Disease in Children
    Published:
    21 November 2014

    DOI: https://doi.org/10.1007/978-3-642-27843-3_31-1