Skip to main content

Nephronophthisis and Related Ciliopathies

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes one of the most frequent genetic causes for end-stage kidney disease (ESKD) in the first three decades of life [1,2,3,4]. Three clinical forms of NPHP have been distinguished by age of onset of ESKD: infantile [5, 6], juvenile [7], and adolescent NPHP [8], which manifest with ESKD at median ages of 1 year, 13 years, and 19 years, respectively. Initial symptoms are relatively mild with the exception of infantile NPHP type 2. They consist of polyuria, polydipsia with regular fluid intake at nighttime, secondary enuresis, anemia, and growth retardation [8]. A slightly raised serum creatinine is noted at an average age of 9 years, before ESKD invariably develops within a few years (Fig. 1a). Renal ultrasound reveals increased echogenicity (Fig. 1b). Beyond the age of 9 years, cysts appear at the corticomedullary junction within the kidneys of normal or slightly reduced size (Fig. 1b) [9]. Renal histology reveals a characteristic triad of tubular basement membrane disruption, tubulointerstitial nephropathy, and cysts (Fig. 1c) [10, 11]. In nephronophthisis, cysts arise from the corticomedullary junction of the kidneys (Fig. 1b). Because kidney size is normal or slightly reduced, cysts seem to develop ex vacuo through loss of normal tissue. This is in contrast to polycystic kidney disease, where cysts are distributed evenly and lead to gross enlargement of the kidneys [12]. NPHP is part of a broad spectrum of renal cystic/degenerative diseases that often include extrarenal manifestations. Over 90 recessive single-gene causes have been identified. Because the related gene products localize to primary cilia and centrosomes, the term “NPHP-related ciliopathies (NPHP-RC)” is now used for these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet. 2005;6(12):928–40.

    Article  CAS  PubMed  Google Scholar 

  2. Smith CH, Graham JB. Congenital medullary cysts of the kidneys with severe refractory anemia. Am J Dis Child. 1945;69:369–77.

    Google Scholar 

  3. Fanconi G, Hanhart E, Albertini A, Uhlinger E, Dolivo G, Prader A. Die familiäre juvenile Nephronophthise. Helv Paediatr Acta. 1951;6:1–49.

    CAS  PubMed  Google Scholar 

  4. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol. 2007;18(6):1855–71.

    Article  CAS  PubMed  Google Scholar 

  5. Gagnadoux MF, Bacri JL, Broyer M, Habib R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol. 1989;3(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  6. Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34(4):413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hildebrandt F. The nephronophthisis complex: clinical and genetic aspects. Clin Investig. 1992;70:802–8.

    Article  CAS  PubMed  Google Scholar 

  8. Omran H, Fernandez C, Jung M, Haffner K, Fargier B, Villaquiran A, et al. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet. 2000;66(1):118–27.

    Article  CAS  PubMed  Google Scholar 

  9. Blowey DL, Querfeld U, Geary D, Warady BA, Alon U. Ultrasound findings in juvenile nephronophthisis. Pediatr Nephrol. 1996;10(1):22–4.

    Article  CAS  PubMed  Google Scholar 

  10. Waldherr R, Lennert T, Weber HP, Fodisch HJ, Scharer K. The nephronophthisis complex. A clinicopathologic study in children. Virchows Arch A Pathol Anat Histol. 1982;394(3):235–54.

    Article  CAS  PubMed  Google Scholar 

  11. Zollinger HU, Mihatsch MJ, Edefonti A, Gaboardi F, Imbasciati E, Lennert T. Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta. 1980;35(6):509–30.

    CAS  PubMed  Google Scholar 

  12. Hildebrandt F. Juvenile nephronophthisis. In: Barratt TM, Avner ED, Harmon WE, editors. Pediatric nephrology. Baltimore: Williams & Wilkins; 1999.

    Google Scholar 

  13. Hildebrandt F, Strahm B, Nothwang HG, Gretz N, Schnieders B, Singh-Sawhney I, et al. Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Kidney Int. 1997;51(1):261–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Senior B, Friedmann AI, Braudo JL. Juvenile familial nephropathy with tapetoretinal degeneration: a new oculorenal dystrophy. Am J Ophthalmol. 1961;52:625–33.

    Article  CAS  PubMed  Google Scholar 

  16. Loken AC, Hanssen O, Halvorsen S, Jolster NJ. Hereditary renal dysplasia and blindness. Acta Paediatr. 1961;50:177–84.

    Article  CAS  Google Scholar 

  17. Saraiva JM, Baraitser M. Joubert syndrome: a review. Am J Med Genet. 1992;43(4):726–31.

    Article  CAS  PubMed  Google Scholar 

  18. Valente EM, Marsh SE, Castori M, Dixon-Salazar T, Bertini E, Al-Gazali L, et al. Distinguishing the four genetic causes of Joubert syndrome-related disorders. Ann Neurol. 2005;57(4):513–9.

    Article  PubMed  Google Scholar 

  19. Boichis H, Passwell J, David R, Miller H. Congenital hepatic fibrosis and nephronophthisis. A family study. Q J Med. 1973;42(165):221–33.

    CAS  PubMed  Google Scholar 

  20. Schueler M, Braun DA, Chandrasekar G, Gee HY, Klasson TD, Halbritter J, et al. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am J Hum Genet. 2015;96(1):81–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mainzer F, Saldino RM, Ozonoff MB, Minagi H. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 1970;49(4):556–62.

    Article  CAS  PubMed  Google Scholar 

  22. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet. 2013;93(5):915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, et al. The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet. 2007;16(2):173–86.

    Article  CAS  PubMed  Google Scholar 

  24. Gardner KD. Juvenile nephronophthisis and renal medullary cystic disease. In: Gardner KD, editor. Cystic diseases of the kidney. New York: Wiley; 1976.

    Google Scholar 

  25. Kleinknecht C. The inheritance of nephronophthisis. In: Spitzer A, Avner ED, editors. Inheritance of kidney and urinary tract diseases. Topics in Renal Medicine. 9. Boston: Kluwer Academic Publishers; 1989. 464 pp.

    Google Scholar 

  26. Potter DE, Holliday MA, Piel CF, Feduska NJ, Belzer FO, Salvatierra O Jr. Treatment of end-stage renal disease in children: a 15-year experience. Kidney Int. 1980;18(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  27. Der WR. Nephronophthise-Komplex. Nieren- und Hochdruckkh. 1983;12:397–406.

    Google Scholar 

  28. Ala-Mello S, Koskimies O, Rapola J, Kaariainen H. Nephronophthisis in Finland: epidemiology and comparison of genetically classified subgroups. Eur J Hum Genet. 1999;7(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  29. Loirat C, Ehrich JH, Geerlings W, Jones EH, Landais P, Mallick NP, et al. Report on management of renal failure in children in Europe, XXIII, 1992. Nephrol Dial Transplant. 1994;9(Suppl 1):26–40.

    PubMed  Google Scholar 

  30. Alexander SR, Sullivan EK, Harmon WE, Stablein DM, Tejani A. Maintenance dialysis in North American children and adolescents: a preliminary report. North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Kidney Int Suppl. 1993;43:S104–9.

    CAS  PubMed  Google Scholar 

  31. Ala-Mello S, Kivivuori SM, Ronnholm KA, Koskimies O, Siimes MA. Mechanism underlying early anaemia in children with familial juvenile nephronophthisis. Pediatr Nephrol. 1996;10(5):578–81.

    Article  CAS  PubMed  Google Scholar 

  32. Steel BT, Lirenman DS, Battie CW. Nephronophthisis. Am J Med. 1980;68:531–8.

    Article  Google Scholar 

  33. Konrad M, Saunier S, Heidet L, Silbermann F, Benessy F, Calado J, et al. Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis. Hum Mol Genet. 1996;5(3):367–71.

    Article  CAS  PubMed  Google Scholar 

  34. Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M, Adolphs J, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  35. Haider NB, Carmi R, Shalev H, Sheffield VC, Landau D. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am J Hum Genet. 1998;63(5):1404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gretz N. Rate of deterioration of renal function in juvenile nephronophthisis. Pediatr Nephrol. 1989;3:56–60.

    Article  CAS  PubMed  Google Scholar 

  37. Otto E, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O’Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F. A novel ciliary IQ domain protein, NPHP5, is mutated in Senior-Loken syndrome (nephronophthisis with retinitis pigmentosa), and interacts with RPGR and calmodulin. Nat Genet. 2005;

    Google Scholar 

  38. Christodoulou K, Tsingis M, Stavrou C, Eleftheriou A, Papapavlou P, Patsalis PC, et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet. 1998;7(5):905–11.

    Article  CAS  PubMed  Google Scholar 

  39. Scolari F, Ghiggeri GM, Amoroso A, Caridi GL, Aridon P. Genetic heterogeneity for autosomal dominant medullary cystic kidney disease (ADMCKD). J Am Soc Nephrol. 1998;9:393A.

    Google Scholar 

  40. Sherman FE, Studnicki FM, Fetterman G. Renal lesions of familial juvenile nephronophthisis examined by microdissection. Am J Clin Pathol. 1971;55(4):391–400.

    Article  CAS  PubMed  Google Scholar 

  41. Sworn MJ, Eisinger AJ. Medullary cystic disease and juvenile nephronophthisis in separate members of the same family. Arch Dis Child. 1972;47:278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giselson N, Heinegard D, Holmberg CG, Lindberg LG, Lindstedt E, Lindstedt G, et al. Renal medullary cystic disease or familial juvenile nephronophthisis: a renal tubular disease. Biochemical findings in two siblings. Am J Med. 1970;48(2):174–84.

    Article  CAS  PubMed  Google Scholar 

  43. Chamberlin BC, Hagge WW, Stickler GB. Juvenile nephronophthisis and medullary cystic disease. Mayo Clin Proc. 1977;52(8):485–91.

    CAS  PubMed  Google Scholar 

  44. van Collenburg JJ, Thompson MW, Huber J. Clinical, pathological and genetic aspects of a form of cystic disease of the renal medulla: familial juvenile nephronophthisis (FJN). Clin Nephrol. 1978;9(2):55–62.

    PubMed  Google Scholar 

  45. Ivemark BI, Ljungqvist A, Barry A. Juvenile nephronophthisis. Part 2. A histologic and microangiographic study. Acta Paediatr. 1960;49:480–7.

    Article  CAS  Google Scholar 

  46. Saunier S, Calado J, Heilig R, Silbermann F, Benessy F, Morin G, et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum Mol Genet. 1997;6(13):2317–23.

    Article  CAS  PubMed  Google Scholar 

  47. Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet. 2003;34(4):455–9.

    Article  CAS  PubMed  Google Scholar 

  48. Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, Wolf MT, et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet. 2002;71(5):1167–71.

    Article  Google Scholar 

  49. Mollet G, Salomon R, Gribouval O, Silbermann F, Bacq D, Landthaler G, et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet. 2002;32(2):300–5.

    Article  CAS  PubMed  Google Scholar 

  50. Sayer JA, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38(6):674–81.

    Article  CAS  PubMed  Google Scholar 

  51. Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38(6):623–5.

    Article  CAS  PubMed  Google Scholar 

  52. Attanasio M, Uhlenhaut NH, Sousa VH, O’Toole JF, Otto E, Anlag K, et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat Genet. 2007;39(8):1018–24.

    Article  CAS  PubMed  Google Scholar 

  53. Roepman R, Bernoud-Hubac N, Schick DE, Maugeri A, Berger W, Ropers HH, et al. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet. 2000;9(14):2095–105.

    Article  CAS  PubMed  Google Scholar 

  54. Delous M, Baala L, Salomon R, Laclef C, Vierkotten J, Tory K, et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet. 2007;39(7):875–81.

    Article  CAS  PubMed  Google Scholar 

  55. Wolf MT, Saunier S, O’Toole JF, Wanner N, Groshong T, Attanasio M, et al. Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis. Kidney Int. 2007;72(12):1520–6.

    Article  CAS  PubMed  Google Scholar 

  56. Otto EA, Trapp ML, Schultheiss UT, Helou J, Quarmby LM, Hildebrandt F. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J Am Soc Nephrol. 2008;19(3):587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Watnick T, Germino G. From cilia to cyst. Nat Genet. 2003;34(4):355–6.

    Article  CAS  PubMed  Google Scholar 

  58. Germino GG. Linking cilia to Wnts. Nat Genet. 2005;37(5):455–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145(4):513–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Connaughton DM, Kennedy C, Shril S, Mann N, Murray SL, Williams PA, et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019;95(4):914–28.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mann N, Braun DA, Amann K, Tan W, Shril S, Connaughton DM, et al. Whole-Exome sequencing enables a precision medicine approach for kidney transplant recipients. J Am Soc Nephrol. 2019;30(2):201–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Braun DA, Schueler M, Halbritter J, Gee HY, Porath JD, Lawson JA, et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 2016;89(2):468–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gee HY, Otto EA, Hurd TW, Ashraf S, Chaki M, Cluckey A, et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014;85(4):880–7.

    Article  CAS  PubMed  Google Scholar 

  64. Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S, Chaki M, et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet. 2013;132(8):865–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoefele J, Wolf MT, O’Toole JF, Otto EA, Schultheiss U, Deschenes G, et al. Evidence of oligogenic inheritance in nephronophthisis. J Am Soc Nephrol. 2007;18(10):2789–95.

    Article  CAS  PubMed  Google Scholar 

  66. Badano JL, Kim JC, Hoskins BE, Lewis RA, Ansley SJ, Cutler DJ, et al. Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet. 2003;12(14):1651–9.

    Article  CAS  PubMed  Google Scholar 

  67. Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet. 2003;72(5):1187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tory K, Lacoste T, Burglen L, Moriniere V, Boddaert N, Macher MA, et al. High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol. 2007;18(5):1566–75.

    Article  CAS  PubMed  Google Scholar 

  69. Antignac C, Arduy CH, Beckmann JS, Benessy F, Gros F, Medhioub M, et al. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nat Genet. 1993;3(4):342–5.

    Article  CAS  PubMed  Google Scholar 

  70. Hildebrandt F, Singh-Sawhney I, Schnieders B, Centofante L, Omran H, Pohlmann A, et al. Mapping of a gene for familial juvenile nephronophthisis: refining the map and defining flanking markers on chromosome 2. APN Study Group. Am J Hum Genet. 1993;53(6):1256–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Spurr NK, Barton H, Bashir R, Bryson GM, Bushby K, Cox S, et al. Report and abstracts of the third international workshop on human chromosome 2 mapping 1994. Aarhus, Denmark, June 24–26, 1994. Cytogenet Cell Genet. 1994;67(4):215–44.

    Article  CAS  PubMed  Google Scholar 

  72. Spurr NK, Bashir R, Bushby K, Cox A, Cox S, Hildebrandt F, et al. Report and abstracts of the fourth international workshop on human chromosome 2 mapping 1996. Cytogenet Cell Genet. 1996;73(4):255–73.

    Article  Google Scholar 

  73. Hildebrandt F, Cybulla M, Strahm B, Nothwang HG, Singh-Sawhney I, Berz K, et al. Physical mapping of the gene for juvenile nephronophthisis (NPH1) by construction of a complete YAC contig of 7 Mb on chromosome 2q13. Cytogenet Cell Genet. 1996;73(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  74. Nothwang HG, Stubanus M, Adolphs J, Hanusch H, Vossmerbaumer U, Denich D, et al. Construction of a gene map of the nephronophthisis type 1 (NPHP1) region on human chromosome 2q12-q13. Genomics. 1998;47(2):276–85.

    Article  CAS  PubMed  Google Scholar 

  75. Saunier S, Calado J, Benessy F, Silbermann F, Heilig R, Weissenbach J, et al. Characterization of the NPHP1 locus: mutational mechanism involved in deletions in familial juvenile nephronophthisis. Am J Hum Genet. 2000;66(3):778–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Betz R, Rensing C, Otto E, Mincheva A, Zehnder D, Lichter P, et al. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J Pediatr. 2000;136(6):828–31.

    CAS  PubMed  Google Scholar 

  77. Otto E, Betz R, Rensing C, Schatzle S, Kuntzen T, Vetsi T, et al. A deletion distinct from the classical homologous recombination of juvenile nephronophthisis type 1 (NPH1) allows exact molecular definition of deletion breakpoints. Hum Mutat. 2000;16(3):211–23.

    Article  CAS  PubMed  Google Scholar 

  78. Caridi G, Murer L, Bellantuono R, Sorino P, Caringella DA, Gusmano R, et al. Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis. 1998;32(6):1059–62.

    Article  CAS  PubMed  Google Scholar 

  79. Benzing T, Gerke P, Hopker K, Hildebrandt F, Kim E, Walz G. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc Natl Acad Sci U S A. 2001;98(17):9784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Donaldson JC, Dise RS, Ritchie MD, Hanks SK. Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J Biol Chem. 2002;277(32):29028–35.

    Article  CAS  PubMed  Google Scholar 

  81. Donaldson JC, Dempsey PJ, Reddy S, Bouton AH, Coffey RJ, Hanks SK. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp Cell Res. 2000;256(1):168–78.

    Article  CAS  PubMed  Google Scholar 

  82. Mollet G, Silbermann F, Delous M, Salomon R, Antignac C, Saunier S. Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet. 2005;14(5):645–56.

    Article  CAS  PubMed  Google Scholar 

  83. Delous M, Hellman NE, Gaude HM, Silbermann F, Le Bivic A, Salomon R, et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet. 2009;18(24):4711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fliegauf M, Horvath J, von Schnakenburg C, Olbrich H, Muller D, Thumfart J, et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006;17(9):2424–33.

    Article  CAS  PubMed  Google Scholar 

  85. Kozminski KG, Diener DR, Rosenbaum JL. High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton. 1993;25(2):158–70.

    Article  CAS  PubMed  Google Scholar 

  86. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100(9):5286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pazour GJ, Dickert BL, Witman GB. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol. 1999;144(3):473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bisgrove BW, Yost HJ. The roles of cilia in developmental disorders and disease. Development. 2006;133(21):4131–43.

    Article  CAS  PubMed  Google Scholar 

  89. Bodaghi E, Honarmand MT, Ahmadi M. Infantile nephronophthisis. Int J Pediatr Nephrol. 1987;8(4):207–10.

    CAS  PubMed  Google Scholar 

  90. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.

    Article  CAS  PubMed  Google Scholar 

  91. Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet. 1998;20(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  92. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2002;13(9):2384–98.

    Article  CAS  PubMed  Google Scholar 

  93. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  94. Benzing T, Walz G. Cilium-generated signaling: a cellular GPS? Curr Opin Nephrol Hypertens. 2006;15(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  95. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37(5):537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nurnberger J, Bacallao RL, Phillips CL. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol Biol Cell. 2002;13(9):3096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gattone VH 2nd. Emerging therapies for polycystic kidney disease. Curr Opin Pharmacol. 2005;5(5):535–42.

    Article  CAS  PubMed  Google Scholar 

  98. Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schuermann MJ, Otto E, Becker A, Saar K, Ruschendorf F, Polak BC, et al. Mapping of gene loci for nephronophthisis type 4 and Senior-Løken syndrome, to chromosome 1p36. Am J Hum Genet. 2002;70(5):1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003;426(6966):570–4.

    Article  CAS  PubMed  Google Scholar 

  101. Gattone VH 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.

    Article  CAS  PubMed  Google Scholar 

  102. Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006;15(11):1847–57.

    Article  CAS  PubMed  Google Scholar 

  103. den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet. 2006;79(3):556–61.

    Article  Google Scholar 

  104. Baala L, Audollent S, Martinovic J, Ozilou C, Babron MC, Sivanandamoorthy S, et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet. 2007;81(1):170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet. 2006;38(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  106. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–7.

    Article  CAS  PubMed  Google Scholar 

  107. Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J. Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol. 2008;19(3):469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129(24):5839–46.

    Article  CAS  PubMed  Google Scholar 

  109. Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 2006;444:949.

    Article  CAS  PubMed  Google Scholar 

  110. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lans H, Hoeijmakers JH. Genome stability, progressive kidney failure and aging. Nat Genet. 2012;44(8):836–8.

    Article  CAS  PubMed  Google Scholar 

  112. Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet. 2012;44(8):910–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Choi HJ, Lin JR, Vannier JB, Slaats GG, Kile AC, Paulsen RD, et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol Cell. 2013;51(4):423–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Slaats GG, Ghosh AK, Falke LL, Le Corre S, Shaltiel IA, van de Hoek G, et al. Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition. PLoS Genet. 2014;10(10):e1004594.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Airik R, Schueler M, Airik M, Cho J, Porath JD, Mukherjee E, et al. A FANCD2/FANCI-associated nuclease 1-knockout model develops karyomegalic interstitial nephritis. J Am Soc Nephrol. 2016;27(12):3552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, et al. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet. 2011;89(5):634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Coussa RG, Otto EA, Gee HY, Arthurs P, Ren H, Lopez I, et al. WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clin Genet. 2013;84(2):150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eguether T, Cordelieres FP, Pazour GJ. Intraflagellar transport is deeply integrated in hedgehog signaling. Mol Biol Cell. 2018;29(10):1178–89.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hoff S, Halbritter J, Epting D, Frank V, Nguyen TM, van Reeuwijk J, et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet. 2013;45(8):951–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Airik M, Schuler M, McCourt B, Weiss AC, Herdman N, Ludtke TH, et al. Loss of Anks6 leads to YAP deficiency and liver abnormalities. Hum Mol Genet. 2020;

    Google Scholar 

  121. Estrada Mallarino L, Engel C, Ilik IA, Maticzka D, Heyl F, Muller B, et al. Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules. Sci Rep. 2020;10(1):15954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Failler M, Gee HY, Krug P, Joo K, Halbritter J, Belkacem L, et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet. 2014;94(6):905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, et al. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci U S A. 2013;110(15):5987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shao W, Yang J, He M, Yu XY, Lee CH, Yang Z, et al. Centrosome anchoring regulates progenitor properties and cortical formation. Nature. 2020;580(7801):106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Girard M, Bizet AA, Lachaux A, Gonzales E, Filhol E, Collardeau-Frachon S, et al. DCDC2 mutations cause neonatal sclerosing cholangitis. Hum Mutat. 2016;37(10):1025–9.

    Article  CAS  PubMed  Google Scholar 

  126. Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS, Wagner B, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol. 2016;65(6):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Macia MS, Halbritter J, Delous M, Bredrup C, Gutter A, Filhol E, et al. Mutations in MAPKBP1 cause juvenile or late-onset cilia-independent nephronophthisis. Am J Hum Genet. 2017;100(2):323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schonauer R, Jin W, Ertel A, Nemitz-Kliemchen M, Panitz N, Hantmann E, et al. Novel nephronophthisis-associated variants reveal functional importance of MAPKBP1 dimerization for centriolar recruitment. Kidney Int. 2020;98(4):958–69.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Schafer T, Putz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, et al. Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum Mol Genet. 2008;17(23):3655–62.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wolf MT, Lee J, Panther F, Otto EA, Guan KL, Hildebrandt F. Expression and phenotype analysis of the nephrocystin-1 and nephrocystin-4 homologs in caenorhabditis elegans. J Am Soc Nephrol. 2005;16(3):676–87.

    Article  CAS  PubMed  Google Scholar 

  131. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol. 2001;11(17):1341–6.

    Article  CAS  PubMed  Google Scholar 

  132. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet. 2005;6(3):194–205.

    Article  CAS  PubMed  Google Scholar 

  133. Bae YK, Lyman-Gingerich J, Barr MM, Knobel KM. Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev Dyn. 2008;8:2021.

    Article  Google Scholar 

  134. Jauregui AR, Nguyen KC, Hall DH, Barr MM. The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol. 2008;180(5):973–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Winkelbauer ME, Schafer JC, Haycraft CJ, Swoboda P, Yoder BK. The C. elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. J Cell Sci. 2005;118(Pt 23):5575–87.

    Article  CAS  PubMed  Google Scholar 

  136. Mykytyn K, Sheffield VC. Establishing a connection between cilia and Bardet-Biedl Syndrome. Trends Mol Med. 2004;10(3):106–9.

    Article  CAS  PubMed  Google Scholar 

  137. Efimenko E, Bubb K, Mak HY, Holzman T, Leroux MR, Ruvkun G, et al. Analysis of xbx genes in C. elegans. Development. 2005;132(8):1923–34.

    Article  CAS  PubMed  Google Scholar 

  138. Tory K, Rousset-Rouviere C, Gubler MC, Moriniere V, Pawtowski A, Becker C, et al. Mutations of NPHP2 and NPHP3 in infantile nephronophthisis. Kidney Int. 2009;75(8):839–47.

    Article  CAS  PubMed  Google Scholar 

  139. Saunier S, Morin G, Calado J, Bennessy F, Silbermann F, Antignac C. Large deletions of the NPH1 region in Cogan syndrome (CS) associated with familial juvenile nephronophthisis (NPH). Am J Hum Genet. 1997;61:A346.

    Google Scholar 

  140. Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractere familial [Asphyxiating thoracic dystrophy with familial characteristics]. Arch Fr Pediatr. 1955;12(8):886–91.

    CAS  PubMed  Google Scholar 

  141. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151(3):709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Joubert M, Eisenring JJ, Robb JP, Andermann F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology. 1969;19(9):813–25.

    Article  CAS  PubMed  Google Scholar 

  143. Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.

    Article  CAS  PubMed  Google Scholar 

  144. Gleeson JG, Keeler LC, Parisi MA, Marsh SE, Chance PF, Glass IA, et al. Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet. 2004;125A(2):125–34. discussion 17

    Article  PubMed  Google Scholar 

  145. Castori M, Valente EM, Donati MA, Salvi S, Fazzi E, Procopio E, et al. NPHP1 gene deletion is a rare cause of Joubert syndrome related disorders. J Med Genet. 2005;42(2):e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Delaney V, Mullaney J, Bourke E. Juvenile nephronophthisis, congenital hepatic fibrosis and retinal hypoplasia in twins. Q J Med. 1978;47(187):281–90.

    CAS  PubMed  Google Scholar 

  147. Proesmans W, Van Damme B, Macken J. Nephronophthisis and tapetoretinal degeneration associated with liver fibrosis. Clin Nephrol. 1975;3(4):160–4.

    CAS  PubMed  Google Scholar 

  148. Rayfield EJ, McDonald FD. Red and blonde hair in renal medullary cystic disease. Arch Intern Med. 1972;130(1):72–5.

    Article  CAS  PubMed  Google Scholar 

  149. Otto EA, Tory K, Attanasio M, Zhou W, Chaki M, Paruchuri Y, et al. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet. 2009;46(10):663–70.

    Article  CAS  PubMed  Google Scholar 

  150. Mansini AP, Peixoto E, Jin S, Richard S, Gradilone SA. The chemosensory function of primary cilia regulates cholangiocyte migration, invasion, and tumor growth. Hepatology. 2019;69(4):1582–98.

    Article  CAS  PubMed  Google Scholar 

  151. Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N, Paavola-Sakki P, et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet. 2006;38(2):155–7.

    Article  PubMed  Google Scholar 

  152. Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S, et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet. 2006;38(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  153. Khaddour R, Smith U, Baala L, Martinovic J, Clavering D, Shaffiq R, et al. Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype-phenotype correlation. Mutation in brief #960. Online. Hum Mutat. 2007;28(5):523–4.

    Article  PubMed  Google Scholar 

  154. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature. 1998;395(6698):177–81.

    Article  CAS  PubMed  Google Scholar 

  155. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  156. Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521(7553):520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Donaldson MD, Warner AA, Trompeter RS, Haycock GB, Chantler C. Familial juvenile nephronophthisis, Jeune’s syndrome, and associated disorders. Arch Dis Child. 1985;60(5):426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Amirou M, Bourdat-Michel G, Pinel N, Huet G, Gaultier J, Cochat P. Successful renal transplantation in Jeune syndrome type 2. Pediatr Nephrol. 1998;12(4):293–4.

    Article  CAS  PubMed  Google Scholar 

  159. Sarimurat N, Elcioglu N, Tekant GT, Elicevik M, Yeker D. Jeune’s asphyxiating thoracic dystrophy of the newborn. Eur J Pediatr Surg. 1998;8(2):100–1.

    Article  CAS  PubMed  Google Scholar 

  160. Moudgil A, Bagga A, Kamil ES, Rimoin DL, Lachman RS, Cohen AH, et al. Nephronophthisis associated with Ellis-van Creveld syndrome. Pediatr Nephrol. 1998;12(1):20–2.

    Article  CAS  PubMed  Google Scholar 

  161. Di Rocco M, Picco P, Arslanian A, Restagno G, Perfumo F, Buoncompagni A, et al. Retinitis pigmentosa, hypopituitarism, nephronophthisis, and mild skeletal dysplasia (RHYNS): a new syndrome? Am J Med Genet. 1997;73(1):1–4.

    Article  PubMed  Google Scholar 

  162. Costet C, Betis F, Berard E, Tsimaratos M, Sigaudy S, Antignac C, et al. Pigmentosum retinis and tubulo-interstitial nephronophtisis in Sensenbrenner syndrome: a case report. J Fr Ophtalmol. 2000;23(2):158–60.

    CAS  PubMed  Google Scholar 

  163. Tsimaratos M, Sarles J, Sigaudy S, Philip N. Renal and retinal involvement in the Sensenbrenner syndrome. Am J Med Genet. 1998;77(4):337.

    Article  CAS  PubMed  Google Scholar 

  164. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9.

    Article  CAS  PubMed  Google Scholar 

  165. Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 2012;90(5):864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Imhoff O, Marion V, Stoetzel C, Durand M, Holder M, Sigaudy S, et al. Bardet-Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort. Clin J Am Soc Nephrol. 2011;6(1):22–9.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Forsythe E, Sparks K, Best S, Borrows S, Hoskins B, Sabir A, et al. Risk factors for severe renal disease in Bardet-Biedl syndrome. J Am Soc Nephrol. 2017;28(3):963–70.

    Article  CAS  PubMed  Google Scholar 

  168. Forsythe E, Kenny J, Bacchelli C, Beales PL. Managing Bardet-Biedl syndrome-now and in the future. Front Pediatr. 2018;6:23.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129(6):1201–13.

    Article  CAS  PubMed  Google Scholar 

  170. Hildebrandt F, Rensing C, Betz R, Sommer U, Birnbaum S, Imm A, et al. Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis. Kidney Int. 2001;59(2):434–45.

    Article  CAS  PubMed  Google Scholar 

  171. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123(8):3243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun. 2016;7:10822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Garel LA, Habib R, Pariente D, Broyer M, Sauvegrain J. Juvenile nephronophthisis: sonographic appearance in children with severe uremia. Radiology. 1984;151(1):93–5.

    Article  CAS  PubMed  Google Scholar 

  174. McGregor AR, Bailey RR. Nephronophthisis-cystic renal medulla complex: diagnosis by computerized tomography. Nephron. 1989;53(1):70–2.

    Article  CAS  PubMed  Google Scholar 

  175. Fyhrquist FY, Klockars M, Gordin A, Tornroth T, Kock B. Hyperreninemia, lysozymuria, and erythrocytosis in Fanconi syndrome with medullary cystic kidney. Acta Med Scand. 1980;207(5):359–65.

    CAS  PubMed  Google Scholar 

  176. Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet. 2019;51(1):117–27.

    Article  CAS  PubMed  Google Scholar 

  177. Cacchi R, Ricci V. Sopra una rara e forse ancora non descritta effezione cistica della piramidi renali (“rene a spugna”). Atti Soc Ital Urol. 1948;5:59.

    Google Scholar 

  178. Hamiwka LA, Midgley JP, Wade AW, Martz KL, Grisaru S. Outcomes of kidney transplantation in children with nephronophthisis: an analysis of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) Registry. Pediatr Transplant. 2008;12(8):878–82.

    Article  PubMed  Google Scholar 

  179. Airik R, Airik M, Schueler M, Bates CM, Hildebrandt F. Roscovitine blocks collecting duct cyst growth in Cep164-deficient kidneys. Kidney Int. 2019;96(2):320–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363–4.

    Article  CAS  PubMed  Google Scholar 

  181. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med. 2017;377(20):1930–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Braun, D.A., Hildebrandt, F. (2022). Nephronophthisis and Related Ciliopathies. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_119

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_119

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics