Skip to main content

Probing Vasculature by In Vivo Phage Display for Target Organ-Specific Delivery in Regenerative Medicine

  • Reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 799 Accesses

Abstract

Different mammalian tissues in their normal and pathological state have distinct molecular features in the luminal side of the vessels. These features can be targeted with peptides that concentrate, i.e., home to their target tissue. The homing peptides can be used to deliver cargo, such as therapeutic molecules, to the target tissue, or they can help in detecting pathological changes in the tissue. Some of the homing peptides are capable of penetrating to the target tissue and bringing their cargo with them. One of the most studied homing peptides, iRGD, penetrates to its target tissue with the help of the CendR sequence. The homing and penetrating peptides are discovered by screening a peptide library encoded on the surface of bacteriophages. In in vivo biopanning, the library is injected to the circulation of a living animal, and later, unbound phages are washed off during circulation and bound phages are eluted from the target tissue. The eluted phages are amplified and form the library for the second biopanning round. After a few rounds, the phages containing sequences that home to the target tissue are concentrated in the library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 439.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agemy L, Sugahara KN, Kotamraju VR, Gujraty K, Girard OM, Kono Y, Mattrey RF, Park JH, Sailor MJ, Jimenez AI, Cativiela C, Zanuy D, Sayago FJ, Aleman C, Nussinov R, Ruoslahti E (2010) Nanoparticle-induced vascular blockade in human prostate cancer. Blood 116(15): 2847–2856

    Article  Google Scholar 

  • Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99(20):12617–12621

    Article  Google Scholar 

  • Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, Bordignon C, Traversari C, Rizzardi GP, Ruoslahti E (2013) De novo design of a tumor-penetrating peptide. Cancer Res 73(2):804–812

    Article  Google Scholar 

  • AlDeghaither D, Smaglo BG, Weiner LM (2015) Beyond peptides and mAbs – current status and future perspectives for biotherapeutics with novel constructs. J Clin Pharmacol 55(S3):S4–S20

    Article  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  Google Scholar 

  • Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardó-Vila M, Giordano RJ, Minitz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana DC, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8(2):121–127

    Article  Google Scholar 

  • Barry MA, Dower WJ, Johnston SA (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 2(3):299–305

    Article  Google Scholar 

  • Brewis ND, Phelan A, Normand N, Choolun E, O’Hare P (2003) Particle assembly incorporating a VP22-BH3 fusion protein, facilitating intracellular delivery, regulated release, and apoptosis. Mol Ther 7(2):262–270

    Article  Google Scholar 

  • Brown KC (2010) Peptidic tumor targeting agents: the road from phage display peptide selection to clinical applications. Curr Pharm Des 16(9):1040–1054

    Article  Google Scholar 

  • Chaurasia CS, Müller M, Dashaw ED, Denfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange ECM, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL, Lunte CE, Nordström CH, Rollema H, Sawchuk RJ, Cheung BWY, Phah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 24(5):1014–1025

    Article  Google Scholar 

  • Costantini TW, Eliceiri BP, Putnam JG, Bansal V, Baird A, Coimbra R (2012) Intravenous phage display identified peptide sequences that target the burn-injured intestine. Peptides 38(1):94–99

    Article  Google Scholar 

  • Derfus AM, Chen AA, Min D, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396

    Article  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88(2):223–233

    Article  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):254–256

    Article  Google Scholar 

  • Fogal V, Zhang L, Krajewski S, Ruoslahti E (2008) Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68(17):7210–7218

    Article  Google Scholar 

  • Fogal V, Sugahara KN, Ruoslahti E, Christian S (2009) Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature. Angiogenesis 12(1):91–100

    Article  Google Scholar 

  • Glasgow HL, Whitney MA, Gross LA, Friedman B, Adams SR, Crisp JL, Hussain T, Frei AP, Novy K, Wollscheid B, Nguyen QT, Tsien RY (2016) Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization. Proc Natl Acad Sci 113(45):12774–12779

    Article  Google Scholar 

  • Gotthardt M, van Eerd-Vismale J, Oyen WJ, de Jong M, Zhang H, Rolleman E, Maecke HR, Béhé M, Boerman O (2007) Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 48(4):596–601

    Article  Google Scholar 

  • Gupta N, Ibrahim HM, Ahsan F (2014) Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension. J Pharm Sci 103(11):3743–3753

    Article  Google Scholar 

  • Hajdin K, D’Alessandro V, Niggli FK, Schäfer BW, Bernasconi M (2010) Furin targeted drug delivery for treatment of rhabdomyosarcoma in a mouse model. PLoS One 5(5):e10445

    Article  Google Scholar 

  • Hoffman JA, Giraudo E, Singh M, Zhang L, Inoue M, Porkka K, Hanahan D, Ruoslahti E (2003) Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 4(5):383–391

    Article  Google Scholar 

  • Hoffman JA, Laakkonen P, Porkka K, Bernasconi M, Ruoslahti E (2004) In vivo and ex vivo selections using phage-displayed libraries. In: Clackson T, Lowman HB (eds) Phage display: a practical approach, 1st edn. Oxford University Press, Oxford, pp 171–192

    Google Scholar 

  • Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115

    Article  Google Scholar 

  • Hsiung P, Hardy J, Friedland S, Soetikno R, Du CB, Wu APW, Sahbaie P, Crawhord JM, Lowe AW, Contag CH, Wang TD (2008) Detection of colonic dysplasia in vivo using a targeted fluorescent septapeptide and confocal microendoscopy. Nat Med 14(4):454–458

    Article  Google Scholar 

  • Hu S, Guo X, Xie H, Du Y, Pan Y, Shi Y, Wang J, Hong L, Han S, Zhang D, Huang D, Zhang K, Bai F, Jiang H, Zhai H, Nie Y, Wu K, Fan D (2006) Phage display selection of peptides that inhibit metastasis ability of gastric cancer cells with high liver-metastatic potential. Biochem Biophys Res Commun 341(4):964–972

    Article  Google Scholar 

  • Hussain S, Joo J, Kang J, Kim B, Braun GB, She ZG, Kim D, Mann AP, Mölder T, Teesalu T, Carnazza S, Guglielmino S, Sailor MJ, Ruoslahti E (2018) Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng 2(2):95–103

    Article  Google Scholar 

  • Hyvönen M, Laakkonen P (2015) Identification and characterization of homing peptides using in vivo peptide phage display. Methods Mol Biol 1324:205–222

    Article  Google Scholar 

  • Hyvönen M, Enbäck J, Huhtala T, Lammi J, Sihto H, Weisell J, Joensuu H, Rosenthal-Aizman K, El-Andaloussi S, Langel U, Närvänen A, Bergers G, Laakkonen P (2014) Novel target for peptide-based imaging and treatment of brain tumors. Mol Cancer Ther 13(4):996–1007

    Article  Google Scholar 

  • Ikemoto H, Lingasamy P, Willmore AA, Hunt H, Kurm K, Tammik O, Scodeller P, Simón-Gracia L, Kotamraju VR, Lowy AM, Sugahara KN, Teesalu T (2017) Hyaluronan-binding peptide for targeting peritoneal carcinomatosis. Tumor Biol 39(5):1–9

    Article  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146(1):1–21

    Article  Google Scholar 

  • Jain RK (1999) Transport of molecules, particle, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  Google Scholar 

  • Järvinen TA (2012) Design of target-seeking antifibrotic compounds. Methods Enzymol 509: 243–261

    Article  Google Scholar 

  • Järvinen TAH, Pemmari T (2020) Systemically administered, target-specific, multi-functional therapeutic recombinant proteins in regenerative medicine. Nanomaterials 10:226

    Article  Google Scholar 

  • Järvinen TAH, Ruoslahti E (2007) Molecular changes in the vasculature of injured tissues. Am J Pathol 171(2):702–711

    Article  Google Scholar 

  • Järvinen TAH, Ruoslahti E (2010) Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proc Natl Acad Sci 107(50):21671–21676

    Article  Google Scholar 

  • Järvinen TAH, Ruoslahti E (2019) Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. Br J Pharmacol 176:16–25

    Article  Google Scholar 

  • Järvinen TAH, May U, Prince S (2015) Systemically administered, target organ-specific therapies for regenerative medicine. Int J Mol Sci 16:23556–23571

    Article  Google Scholar 

  • Järvinen TAH, Rashid J, Valmari T, May U, Ahsan F (2017) Systemically administered, target-specific therapeutic recombinant proteins and nanoparticles for regenerative medicine. ACS Biomater Sci Eng 3(7):1273–1282

    Article  Google Scholar 

  • Joyce JA, Laakkonen P, Bernasconi M, Bergers G, Ruoslahti E, Hanahan D (2003) Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 4(5):393–403

    Article  Google Scholar 

  • Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by micropinocytosis. J Control Release 102(1):247–253

    Article  Google Scholar 

  • Kayushin AL, Korosteleva MD, Miroshnikov AI, Kosch W, Zubov D, Piel N (1996) A convenient approach to the synthesis of trinucleotide phosphoramidites – synthons for the generation of oligonucleotide/peptide libraries. Nucleic Acids Res 24(19):3748–3755

    Article  Google Scholar 

  • Kean TJ, Duesler L, Young RG, Dadabayev A, Olenyik A, Penn M, wagner J, Fink DJ, Caplan AI, Dennis JE (2012) Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. J Drug Target 20(1):23–32

    Article  Google Scholar 

  • Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, Depinho RA, Mahmood U, Weissleder R (2008) Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med 5(4):e85

    Article  Google Scholar 

  • Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, McParland B, Cohen PS, Hui AM, Palmieri C, Osman S, Glaser M, Turton D, Al-Nahhas A, Aboagye EO (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49(6):879–886

    Article  Google Scholar 

  • Klein AF, Varela MA, Arandel L, Holland A, Naouar N, Arzumanov A, Seoane D, Revillod L, Bassez G, Ferry A, Jauvin D, Gourdon G, Puymirat J, Gait MJ, Furling D, Wood MJA (2019) Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Invest 129(11):4739–4744

    Article  Google Scholar 

  • Krag DN, Shukla GS, Shen GP, Pero S, Ashikaga T, Fuller S, Weaver DL, Durdette-Radoux S, Thomas C (2006) Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res 66(15):7724–7733

    Article  Google Scholar 

  • Krumpe L, Mori T (2006) The use of phage-displayed peptide libraries to develop tumor-targeting drugs. Int J Pept Res Ther 12(1):79–91

    Google Scholar 

  • Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8(7):751–755

    Article  Google Scholar 

  • Laakkonen P, Åkerman ME, Biliran H, Yang M, Ferrer F, Kapanen T, Hoffman RM, Ruoslahti E (2004) Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci 101(25):9381–9386

    Article  Google Scholar 

  • Le Joncour V, Laakkonen P (2018) Seek & destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 26(10):2797–2806

    Article  Google Scholar 

  • Lu Y, Yang J, Sega E (2006) Issues related to targeted delivery of proteins and peptides. AAPS J 8(3):E446–E478

    Article  Google Scholar 

  • Mäkelä AR, Matilainen H, White DJ, Ruoslahti E, Oker-Blom C (2006) Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. J Virol 80(13): 6603–6611

    Article  Google Scholar 

  • Mäkelä AR, Enbäck J, Laakkonen JP, Vihinen-Ranta M, Laakkonen P, Oker-Blom C (2008) Tumor targeting of baculovirus displaying a lymphatic homing peptide. J Gene Med 10:1019–1031

    Article  Google Scholar 

  • Mann AP, Scodeller P, Hussain S, Joo J, Kwon E, Braun GB, Mölder T, She ZG, Kotamraju VR, Ranscht B, Krajewski S, Teesalu T, Bhatia S, Sailor MJ, Ruoslahti E (2016) A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun 7

    Google Scholar 

  • Mann AP, Scodeller P, Hussain S, Braun GB, Mölder T, Toome K, Ambasudhan R, Teesalu T, Lipton SA, Ruoslahti E (2017) Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nat Commun 8(1):1403

    Article  Google Scholar 

  • McGregor DP (2008) Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol 8:616–619

    Article  Google Scholar 

  • Meyer-Losic F, Quinonero J, Dubois V, Alluis B, Dechambre M, Michel M, Cailler F, Fernandez AM, Trouet A, Kearsey J (2006) Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (Vectocell). J Med Chem 49(23):6908–6916

    Article  Google Scholar 

  • Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49(20):6087–6093

    Article  Google Scholar 

  • Na DH, Lee KC, DeLuca PP (2005) PEGylation of octreotide: II. Effect of N-terminal mono PEGylation on biological activity and pharmacokinetics. Pharm Res 22(5):743–749

    Article  Google Scholar 

  • Nahar K, Absar S, Patel B, Ahsan F (2014) Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm 464(1–2):185–195

    Article  Google Scholar 

  • Nestor J (2007) Peptide and protein drugs: issues and solutions. In: Taylor J, Triggle D (eds) Comprehensive medicinal chemistry II, 1st edn. Elsevier, Oxford, pp 573–601

    Chapter  Google Scholar 

  • Neumeister P, Eibl M, Zinke-Cerwenka W, Scarpatetti M, Sill H, Linkesch W (2001) Hepatic veno-occlusive disease in two patients with relapsed acute myeloid leukemia treated with anti-CD33 calicheamicin (CMA-676) immunoconjugate. Ann Hematol 80(2):119–120

    Article  Google Scholar 

  • Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schintzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429(6992):629–635

    Article  Google Scholar 

  • Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 34:13–26

    Article  Google Scholar 

  • Paasonen L, Sharm S, Braun GB, Kotamraju VR, Chung TDY, Zhi-Gang S, Sugahara KN, Yliperttula M, Wu B, Pellecchia M, Ruoslahti E, Teesalu T (2016) New p32/gC1qR ligands for targeted tumor drug delivery. Chembiochem 17(7):570–575

    Article  Google Scholar 

  • Pang HB, Braun GB, Friman T, Aza-Blanc Ruidiaz ME, Sugahara KN, Teesalu T, Ruoslahti E (2014) An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat Commun 5:4904

    Article  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380(6572):364–366

    Article  Google Scholar 

  • Peng X, Leal J, Mohanty R, Soto M, Ghosh D (2018) Quantitative PCR of T7 bacteriophage from biopanning. J Vis Exp (139):58165

    Google Scholar 

  • Pierce MC, Javier DJ, Richards-Kortum R (2008) Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 123(9):1979–1990

    Article  Google Scholar 

  • Pilch J, Brown DM, Komatsu M, Järvinen TA, Yang M, Peters D, Hoffman RM, Ruoslahti E (2006) Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci 103(8):2800–2804

    Article  Google Scholar 

  • Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci 99(11):7444–7449

    Article  Google Scholar 

  • Rajotte D, Ruoslahti E (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem 274(17):11593–11598

    Article  Google Scholar 

  • Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49(11): 1735–1738

    Article  Google Scholar 

  • Reulen SW, Dankers PY, Bomans PH, Meijer EW, Merkx M (2009) Collagen targeting using protein-functionalized micelles: the strength of multiple weak interactions. J Am Chem Soc 131(21):7304–7312

    Article  Google Scholar 

  • Roth L, Agemy L, Kotamraju VR, Braun G, Teesalu T, Sugahara KN, Hamzah J, Ruoslahti E (2012) Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31:3754–3763

    Article  Google Scholar 

  • Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110–111:3–12

    Article  Google Scholar 

  • Ruoslahti E, Rajotte D (2000) An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 18:813–827

    Article  Google Scholar 

  • Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188(6):759–768

    Article  Google Scholar 

  • Samoylova T, Smith BF (1999) Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve 22:460–466

    Article  Google Scholar 

  • Sellers DL, Bergen JM, Johnson RN, Back H, Ravits JM, Horner PJ, Pun SH (2016) Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration. Proc Natl Acad Sci 112(9):2514–2519

    Article  Google Scholar 

  • Sheu TJ, Schwarz EM, O’Keefe RJ, Rosier RN, Puzas JE (2002) Use of a phage display technique to identify potential osteoblast binding sites within osteoclast lacunae. J Bone Miner Res 17(5):915–922

    Article  Google Scholar 

  • Shi Q, Zhang Y, Liu S, Liu G, Xu J, Zhao X, Anderson GJ, Nie G, Li S (2018) Specific tissue factor delivery using a tumor-homing peptide for inducing tumor infarction. Biochem Pharmacol 156:501–510

    Article  Google Scholar 

  • Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E (2007) Biomimetic amplification of nanoparticle foming to tumors. Proc Natl Acad Sci 104(3):932–936

    Article  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(2705):1315–1317

    Article  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16(6):510–520

    Article  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035

    Article  Google Scholar 

  • Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci 106(38): 16157–16162

    Article  Google Scholar 

  • Teesalu T, Sugahara KN, Ruoslahti E (2012) Mapping of vascular ZIP codes by phage display. Methods Enzymol 503:35–56

    Article  Google Scholar 

  • Toba M, Alzoubi A, O’Neill K, Abe K, Urakami T, Komatsu M, Alvarez D, Järvinen TA, Mann D, Ruoslahti E, McMurtry IF, Oka M (2014) A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. Am J Pathol 184(2):369–375

    Article  Google Scholar 

  • Tonnesen MG, Feng X, Clark RAF (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    Article  Google Scholar 

  • Urakami T, Järvinen TA, Toba M, Sawada J, Ambalavanan N, Mann D, McMurtry I, Oka M, Ruoslahti E, Komatsu M (2011) Peptide-directed highly selective targeting of pulmonary arterial hypertension. Am J Pathol 178(6):2489–2495

    Article  Google Scholar 

  • Vanharanta S, Massagué J (2013) Origins of metastatic traits. Cancer Cell 24(4):410–421

    Article  Google Scholar 

  • Wang Y, Newman M, Ackun-Farmmer M, Baranello MP, Scheu TJ, Puzas JE, Benoit DSW (2017) Fracture-targeted delivery of β-catenin agonists via peptide-functionalized nanoparticles augments fracture healing. ACS Nano 11(9):9445–9458

    Article  Google Scholar 

  • Whitney MA, Crisp JL, Nguyen LT, Friedman B, Gross LA, Steinbach P, Tsien RY, Nguyen QT (2011) Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol 29(4):352–356

    Article  Google Scholar 

  • Ye F, Jeong EK, Zhanjun J, Yang T, Parker D, Lu ZR (2008) A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem 19(12):2300–2303

    Article  Google Scholar 

  • Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iverson PL, Wood MJA (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 18(22):4405–4414

    Article  Google Scholar 

  • Zhang L, Hoffman JA, Ruoslahti E (2005) Molecular profiling of heart endothelial cells. Circulation 112:1601–1611

    Article  Google Scholar 

Download references

Acknowledgments

TP wants to thank MD Antti Pemmari for his insightful comments. This work was supported by the Academy of Finland and Emil Aaltonen foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero A. H. Järvinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pemmari, T., Koho, T., Järvinen, T.A.H. (2021). Probing Vasculature by In Vivo Phage Display for Target Organ-Specific Delivery in Regenerative Medicine. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-54586-8_21

Download citation

Publish with us

Policies and ethics