Skip to main content

Diagnostic Applications of Nuclear Medicine: Colorectal Cancer

Nuclear Oncology

Abstract

Colorectal cancer is the fourth most common neoplastic disease (50–60% overall survival at 5 years); 90–95% of colorectal cancers are adenocarcinoma. Important prognostic factors include: whether the tumor is well differentiated, the extent of the primary tumor, and the presence of local and/or lymph node invasion. Two staging classifications for colorectal cancer are available: Dukes’ classification and the TNM stage system by the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC).

Contrast-enhanced computed tomography (CECT) of the chest, abdomen, and pelvis is used in pretreatment staging. Because of the high incidence of disease recurrence (30–40%), morphological imaging (CT, abdominal ultrasound) and serial measurements of serum markers (carcinoembryonic antigen, or CEA) are used in the follow-up. The use of [18F]FDG-PET for early detection of primary colorectal cancer is limited due to the low sensitivity for small tumors as well as for mucinous lesions. False-positive PET findings are also reported in patients with inflammatory bowel disease (IBD) or previous diagnostic polipectomy. Although [18F]FDG PET is more sensitive than CT in detecting regional lymph node involvement, CT is better at detecting liver metastases. As a result, the role of [18F]FDG PET-CT for presurgical staging is unclear. [18F]FDG-PET is useful as a complementary exam in selected patients with a high metastatic potential.

During restaging and follow-up, whole-body [18F]FDG-PET/CT is recommended to localize recurrent disease in cases of elevated serum CEA and negative morphological imaging findings or indeterminate lesions. Combined PET/CT tomography improves the accuracy of the evaluation of colorectal cancer, especially in the visualization of abdomino-pelvic extrahepatic disease.

[18F]FDG-PET may be useful to evaluate response to chemotherapy, although the optimum timing of the assessment of metabolic response remains unsettled. Moreover, new drugs targeted to angiogenesis or tyrosine kinase have opened new frontiers to the use of [18F]FDG-PET in evaluating response because of their cytostatic rather than cytoreductive effect. In rectal cancer it is often difficult to evaluate response to radiotherapy by anatomic imaging due to residual tissue mass, but [18F]FDG-PET/CT can detect residual tumor by the metabolic activity. Finally, [18F]FDG-PET has been proposed in the evaluation of response to local treatment of liver and lung metastases by radiofrequency ablation (RFA). In patients with unresectable liver metastases and/or advanced burden of liver disease, transarterial radioembolization with microspheres labeled with 90Y is becoming a valid therapeutic alternative to chemoembolization and RFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[18F]FDG:

2-deoxy-2-[18F]fluoro-d-glucose

99mTc-HDP:

99mTc-hydroxyethylenediphosphonate

AJCC:

American Joint Committee on Cancer

BOmR:

Best overall metabolic response

CEA:

Carcinoembryonic antigen

CECT:

Contrast-enhanced computed tomography

CI:

Confidence interval

CMR:

Complete metabolic response

CRC:

Colorectal cancer

CRT:

Chemoradiotherapy

CT:

X-ray computed tomography

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

EORTC:

European Organization for Research and Treatment of Cancer

GI:

Gastrointestinal

IBD:

Inflammatory bowel disease

M:

Metastasis status according to the AJCC/UICC TNM staging system

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

NOC:

1-Nal3-octreotide

NPV:

Negative predictive value

PERCIST:

Positron emission tomography response criteria in solid tumors

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PET/MRI:

Positron emission tomography/magnetic resonance imaging

PMD:

Progressive metabolic disease

PMR:

Partial metabolic response

PPV:

Positive predictive value

PREDIST:

PET residual disease in solid tumor

PTV:

Radiotherapy planning target volume

RECIST:

Response evaluation criteria in solid tumors

RFA:

Radiofrequency ablation

ROI:

Region of interest

SMD:

Stable metabolic disease

SN:

Sensitivity

SP:

Specificity

SUV:

Standardized uptake value

T:

Tumor status according to the AJCC/UICC TNM staging system

TLG:

Total lesion glycolysis

TOC:

Octreotide

TREUS:

Transrectal ultrasound

TRG:

Tumor regression grade

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

References

  1. Shike M, Winawer SJ, Greenwald PH, et al. Primary prevention of colorectal cancer. The WHO Collaborating Centre for the Prevention of Colorectal Cancer. Bull World Health Organ. 1990;68(3):377–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.

    Article  PubMed  Google Scholar 

  3. American Cancer Society. Cancer facts and figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  4. Phillips RKS, Hittinger R, Blesovsky L, et al. Large bowel cancer: surgical pathology and its relationship to survival. Br J Surg. 1984;71:604.

    Article  CAS  PubMed  Google Scholar 

  5. Fretwell V, Ang C, Tweedle E, et al. The impact of lymph node yield on Duke’s B and C colorectal cancer survival. Colorectal Dis. 2010;12(10):995–1000.

    Google Scholar 

  6. International Union against Cancer. TNM classification of malignant tumors. 4th ed. Berlin: Springer; 1987.

    Google Scholar 

  7. American Joint Committee on Cancer. Manual for staging cancer. 3rd ed. Philadelphia: JB Lippincott; 1988. p. 75.

    Google Scholar 

  8. Compton C, Fenoglio-Preiser CM, Pettigrew N, et al. American joint committee on cancer prognostic factors consensus conference: colorectal working group. Cancer. 2000;88(7):1739–57.

    Article  CAS  PubMed  Google Scholar 

  9. Le Voyer TE, Sigurdson ER, Hanlon AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol. 2003;21(15):2912–9.

    Article  PubMed  Google Scholar 

  10. Chang GJ, Rodriguez-Bigas MA, Skibber JM, et al. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 2007;99(6):433–41.

    Article  PubMed  Google Scholar 

  11. Coverlizza S, Risio M, Ferrari A, et al. Colorectal adenomas containing invasive carcinoma. Pathologic assessment of lymph node metastatic potential. Cancer. 1989;64(9):1937–47.

    Article  CAS  PubMed  Google Scholar 

  12. Shepherd NA, Baxter KJ, Love SB. The prognostic importance of peritoneal involvement in colonic cancer: a prospective evaluation. Gastroenterology. 1997;112(4):1096–102.

    Article  CAS  PubMed  Google Scholar 

  13. Moerkerk P, Arends JW, van Driel M, et al. Type and number of Ki-ras point mutations relate to stage of human colorectal cancer. Cancer Res. 1994;54(13):3376–8.

    CAS  PubMed  Google Scholar 

  14. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. 1995;55(7):1407–12.

    CAS  PubMed  Google Scholar 

  15. Nemunaitis J, Cox J, Meyer W, et al. Irinotecan hydrochloride (CPT-11) resistance identified by K-ras mutation in patients with progressive colon cancer after treatment with 5-fluorouracil (5-FU). Am J Clin Oncol. 1997;20(5):527–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yamachika T, Nakanishi H, Inada K, et al. A new prognostic factor for colorectal carcinoma, thymidylate synthase, and its therapeutic significance. Cancer. 1998;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ahnen DJ, Feigl P, Quan G, et al. Ki-ras mutation and p53 over expression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study. Cancer Res. 1998;58(6):1149–58.

    CAS  PubMed  Google Scholar 

  18. Chau I, Cunningham D. Treatment in advanced colorectal cancer: what, when and how? Br J Cancer. 2009;100(11):1704–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arnoletti JP, Bland KI. Neoadjuvant and adjuvant therapy for rectal cancer. Surg Oncol Clin N Am. 2006;15:147–57.

    Article  PubMed  Google Scholar 

  20. Glynne-Jones R, Grainger J, Harrison M, Ostler P, Makris A. Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: should we be more cautious? Br J Cancer. 2006;94:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huguier M, Houry S, Barrier A. Local recurrence of cancer of the rectum. Am J Surg. 2001;182:437–9.

    Article  CAS  PubMed  Google Scholar 

  22. Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000. Eur J Nucl Med. 2001;28:1707–23.

    Article  CAS  PubMed  Google Scholar 

  23. Jerusalem G, Hustinx R, Beguin Y, et al. PET scan imaging in oncology. Eur J Cancer. 2003;39:1525–34.

    Article  CAS  PubMed  Google Scholar 

  24. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.

    Article  PubMed  Google Scholar 

  25. ASR Regione Emilia Romagna. Indicazioni all’utilizzo della FDG-PET in oncologia. Analisi critica della letteratura scientifica. Dossier N. 124/2006. 5 Giugno 2007.

    Google Scholar 

  26. International Atomic Energy Agency. Appropriate use of FDG-PET for the management of cancer patients. Vienna: International Atomic Energy Agency; 2010. p. 75 (IAEA Human Health Series, ISSN 2075–3772; no. 9).

    Google Scholar 

  27. Pickhardt PJ. Recent developments in colorectal imaging. Curr Opin Gastroenterol. 2015;31(1):76–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kekelidze M, D’Errico L, Pansini M, Tyndall A, Hohmann J. Colorectal cancer: current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J Gastroenterol. 2013;19(46):8502–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.

    Article  CAS  PubMed  Google Scholar 

  30. Kantorova I, Lipska L, Belohlavek O, et al. Routine 18F-FDG PET in preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med. 2003;44:1784–8.

    PubMed  Google Scholar 

  31. Furukawa H, Ikuma H, Seki A, et al. Positron emission tomography scanning is not superior to whole body multidetector helical computed tomography in the preoperative staging of colorectal cancer. Gut. 2006;55:1007–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Whiteford MH, Whiteford HM, Yee LF, et al. Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis Colon Rectum. 2000;43:759–67.

    Article  CAS  PubMed  Google Scholar 

  33. Patel S, McCall M, Ohinmaa A, Bigam D, Dryden DM. Positron emission tomography/computed tomographic scans compared to computed tomographic scans for detecting colorectal liver metastases: a systematic review. Ann Surg. 2011;253(4):666–71.

    Article  PubMed  Google Scholar 

  34. Mukai M, Sadahiro S, Yasuda S, et al. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep. 2000;7:86–7.

    Google Scholar 

  35. Heriot AG, Hicks RJ, Drummond EG, et al. Does positron emission tomography change management in primary rectal cancer? A prospective assessment. Dis Colon Rectum. 2004;47(4):451–8.

    Article  PubMed  Google Scholar 

  36. Gearhart SL, Frassica D, Rosen R, et al. Improved staging with pretreatment positron emission tomography/computed tomography in low rectal cancer. Ann Surg Oncol. 2006;13(3):397–404.

    Article  PubMed  Google Scholar 

  37. Bassi MC, Turri L, Sacchetti G, et al. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70(5):1423–6.

    Article  PubMed  Google Scholar 

  38. Davey K, Heriot AG, Mackay J, et al. The impact of 18-fluorodeoxyglucose positron emission tomography-computed tomography on the staging and management of primary rectal cancer. Dis Colon Rectum. 2008;51(7):997–1003. Epub 7 May 2008.

    Article  CAS  PubMed  Google Scholar 

  39. Brush J, Boyd K, Chappell F, et al. The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation. Health Technol Assess. 2011;15(35):1–192.

    Google Scholar 

  40. De Vos N, Goethals I, Ceelen W. Clinical value of 18F-FDG- PET-CT in the preoperative staging of peritoneal carcinomatosis from colorectal origin. Acta Chir Belg. 2014;114(6):370–5.

    Google Scholar 

  41. Vriens D, de Geus-Oei LF, van der Graaf WT, et al. Tailoring therapy in colorectal cancer by PET-CT. Q J Nucl Med Mol Imaging. 2009;53(2):224–44.

    CAS  PubMed  Google Scholar 

  42. Penna D, Garcia JR, Arace P, Llinares E, Arena V, Riera E, Pelosi E. Could CE. CT/PET with 18F-FDG represent the only examination in rectum adenocarcinoma staging? Clin Transl Imaging. 2015;3 Suppl 1:S70.

    Google Scholar 

  43. Riera E, Penna D, Llinares E, Arace P, Soler M, Arena V, Moragas M, Pelosi E, García JR. Rev Esp Med Nucl Imagen Mol. 2015;34 Suppl 1:78.

    Google Scholar 

  44. Flanagan FL, Dehdashti F, Ogunbiyi OA, et al. Utility of FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. Ann Surg. 1998;227:319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flamen P, Hoekstra OS, Homans F, et al. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer. 2001;37(7):862–9.

    Article  CAS  PubMed  Google Scholar 

  46. Valk PE, Abella-Columna E, Haseman MK, et al. Whole-body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg. 1999;134(5):503–11.

    Article  CAS  PubMed  Google Scholar 

  47. Simó M, Lomeña F, Setoain J, et al. FDG-PET improves the management of patients with suspected recurrence of colorectal cancer. Nucl Med Commun. 2002;23(10):975–82.

    Article  PubMed  Google Scholar 

  48. Shen YY, Liang JA, Chen YK, et al. Clinical impact of 18F-FDG-PET in the suspicion of recurrent colorectal cancer based on asymptomatically elevated serum level of carcinoembryonic antigen (CEA) in Taiwan. Hepatogastroenterology. 2006;53(69):348–50.

    PubMed  Google Scholar 

  49. Lu YY, Chen JH, Chien CR, Chen WT, Tsai SC, Lin WY, Kao CH. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis. 2013;28(8):1039–47.

    Article  PubMed  Google Scholar 

  50. Bu W, Wei R, Li J, Wang L, Shi C, Song J, Ma S, Chen H, Cong N. Association between carcinoembryonic antigen levels and the applied value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in post-operative recurrent and metastatic colorectal cancer. Oncol Lett. 2014;8(6):2649–53.

    PubMed  PubMed Central  Google Scholar 

  51. Gade M, Kubik M, Fisker RV, Thorlacius-Ussing O, Petersen LJ. Diagnostic value of 18F-FDG PET/CT as first choice in the detection of recurrent colorectal cancer due to rising CEA. Cancer Imaging. 2015;15(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Beets G, Penninckx F, Schiepers C, et al. Clinical value of whole-body positron emission tomography with [18F]fluorodeoxyglucose in recurrent colorectal cancer. Br J Surg. 1994;81:1666–70.

    Article  CAS  PubMed  Google Scholar 

  53. Schiepers C, Penninckx F, De Vadder N, et al. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol. 1995;21:517–22.

    Article  CAS  PubMed  Google Scholar 

  54. Ogunbiyi OA, Flanagan FL, Dehdashti F, et al. Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol. 1997;4:613–20.

    Article  CAS  PubMed  Google Scholar 

  55. Kalff, Hicks RJ, Ware RE, et al. The clinical impact of 18F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: a prospective study. J Nucl Med. 2002;43:492–9.

    PubMed  Google Scholar 

  56. Flamen P, Stroobants S, Van Cutsem E, et al. Additional value of whole-body positron emission tomography with fluorine-18-2-fluoro-2-deoxy-D-glucose in recurrent colorectal cancer. J Clin Oncol. 1999;17:894–901.

    Article  CAS  PubMed  Google Scholar 

  57. Even-Sapir E, Parag Y, Lerman H, et al. Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology. 2004;232:815–22.

    Article  PubMed  Google Scholar 

  58. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000;41:1177–89.

    CAS  PubMed  Google Scholar 

  59. Deleau C, Buecher B, Rousseau C, Kraeber-Bodéré F, Flamant M, des Varannes SB, Frampas E, Galmiche JP, Matysiak-Budnik T. Clinical impact of fluorodeoxyglucose-positron emission tomography scan/computed tomography in comparison with computed tomography on the detection of colorectal cancer recurrence. Eur J Gastroenterol Hepatol. 2011;23(3):275–81.

    Article  PubMed  Google Scholar 

  60. Truant S, Huglo D, Hebbar M, et al. Prospective evaluation of the impact of [18F]fluoro-2-deoxy-D-glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg. 2005;92:362–9.

    Article  CAS  PubMed  Google Scholar 

  61. Kinkel K, Lu Y, Both M, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR Imaging, PET): a meta-analysis. Radiology. 2002;224:748–56.

    Article  PubMed  Google Scholar 

  62. Sobhani I, Tiret E, Lebtahi R, et al. Early detection of recurrence by 18FDG-PET in the follow-up of patients with colorectal cancer. Br J Cancer. 2008;98(5):875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lai DT, Fulham M, Stephen MS, et al. The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg. 1996;131:703–7.

    Article  CAS  PubMed  Google Scholar 

  64. Topal B, Flamen P, Aerts R, et al. Clinical value of whole-body emission tomography in potentially curable colorectal liver metastases. Eur J Surg Oncol. 2001;27:175–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ruers TJ, Langenhoff BS, Neeleman N, et al. Value of positron emission tomography with [F-18]fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol. 2002;20:388–95.

    Article  CAS  PubMed  Google Scholar 

  66. Selzner M, Hany TF, Wildbrett P, et al. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004;240:1027–34.

    Article  PubMed  PubMed Central  Google Scholar 

  67. McLeish AR, Lee ST, Byrne AJ, Scott AM. Impact of 18F-FDG-PET in decision making for liver metastectomy of colorectal cancer. ANZ J Surg. 2012;82(1–2):30–5.

    Article  PubMed  Google Scholar 

  68. Wiering B, Krabbe PF, Jager GJ, et al. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer. 2005;104(12):2658–70.

    Article  PubMed  Google Scholar 

  69. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.

    Article  Google Scholar 

  70. Kim JH, Czernin J, Allen-Auerbach MS, et al. Comparison between 18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med. 2005;46:587–95.

    PubMed  Google Scholar 

  71. Pelosi E, Messa C, Sironi S, et al. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging. 2004;31:932–9.

    Article  PubMed  Google Scholar 

  72. Vogel WV, Wiering B, Corstens FH, et al. Colorectal cancer: the role of PET/CT in recurrence. Cancer Imag. 2005;23(5 Suppl):S143–9.

    Article  Google Scholar 

  73. Messa C, Bettinardi V, Picchio M, et al. PET/CT in diagnostic oncology. Q J Nucl Med Mol Imaging. 2004;48:66–75.

    CAS  PubMed  Google Scholar 

  74. Ogawa S, Itabashi M, Kondo C, Momose M, Sakai S, Kameoka S. Prognostic value of total lesion glycolysis measured by 18F-FDG-PET/CT in patients with colorectal cancer. Anticancer Res. 2015;35(6):3495–500.

    CAS  PubMed  Google Scholar 

  75. Crippa F, Gavazzi C, Bozzetti F, et al. The influence of blood glucose levels on [18F]fluorodeoxyglucose (FDG) uptake in cancer: a PET study in liver metastases from colorectal carcinomas. Tumori. 1997;83:748–52.

    CAS  PubMed  Google Scholar 

  76. Akhurst T, Kates TJ, Mazumdar M, et al. Recent chemotherapy reduces the sensitivity of [18F]fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J Clin Oncol. 2005;23(34):8713–6.

    Article  PubMed  Google Scholar 

  77. Wahl R, Jacene H, Kasamon Y et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–150S.

    Google Scholar 

  78. Kostakoglu L, Coleman M, Leonard JP, et al. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43(8):1018–27.

    PubMed  Google Scholar 

  79. Gallamini A, Rigacci L, Merli F, et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica. 2006;91(4):475–81.

    PubMed  Google Scholar 

  80. Jerusalem G, Hustinx R, Beguin Y, et al. Evaluation of therapy for lymphoma. Semin Nucl Med. 2005;35(3):186–96.

    Article  PubMed  Google Scholar 

  81. Mac Manus MP, Hicks RJ, Matthews JP, et al. Positron emission tomography is superior to computed tomography scanning for response assessment after radical radiotherapy or chemoradiotherapy in patients with non small cell lung cancer. J Clin Oncol. 2003;21:1285–92.

    Article  PubMed  Google Scholar 

  82. Hicks RJ. The role of PET monitoring therapy. Cancer Imaging. 2005;5:51–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Duong CP, Hicks RJ, Wheil, et al. FDG PET status following chemo-radiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2006;33:770–8.

    Article  PubMed  Google Scholar 

  84. Kalff V, Duong C, Drummond EG, et al. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med. 2006;47:14–22.

    PubMed  Google Scholar 

  85. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47:1059–66.

    CAS  PubMed  Google Scholar 

  86. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol. 2001;19:3058–65.

    Article  CAS  PubMed  Google Scholar 

  87. Prior JO, Montemurro M, Orcurto MV, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009;27(3):439–45.

    Article  CAS  PubMed  Google Scholar 

  88. Avril N, Sassen S, Schmalfeldt B, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol. 2005;23:7445–53.

    Article  PubMed  Google Scholar 

  89. Juweid ME, Stroobants S, Hoekstra OS, et al. Imaging Subcommittee of International Harmonization Project in Lymphoma. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8.

    Article  PubMed  Google Scholar 

  90. Stokkel MP, Draisma A, Pauwels EK. Positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose in oncology. Part IIIb: therapy response monitoring in colorectal and lung tumours, head and neck cancer, hepatocellular carcinoma and sarcoma. J Cancer Res Clin Oncol. 2001;127:278–85.

    Article  CAS  PubMed  Google Scholar 

  91. Zaniboni A, Savelli G, Pizzocaro C, Basile P, Massetti V. Positron emission tomography for the response evaluation following treatment with chemotherapy in patients affected by colorectal liver metastases: a selected review. Gastroenterol Res Pract. 2015;2015:706808.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Altini C, Niccoli Asabella A, De Luca R, Fanelli M, Caliandro C, Quartuccio N, Rubini D, Cistaro A, Montemurro S, Rubini G. Comparison of 18F-FDG PET/CT methods of analysis for predicting response to neoadjuvant chemoradiation therapy in patients with locally advanced low rectal cancer. Abdom Imaging. 2015;40(5):1190–202. doi:10.1007/s00261-014-0277-8.

    Article  PubMed  Google Scholar 

  93. Maffione AM, Ferretti A, Chondrogiannis S, Rampin L, Marzola MC, Grassetto G, Capirci C, Colletti PM, Rubello D. Proposal of a new 18F-FDG PET/CT predictor of response in rectal cancer treated by neoadjuvant chemoradiation therapy and comparison with PERCIST criteria. Clin Nucl Med. 2013;38(10):795–7.

    Article  PubMed  Google Scholar 

  94. Maffione AM, Chondrogiannis S, Capirci C, Galeotti F, Fornasiero A, Crepaldi G, Grassetto G, Rampin L, Marzola MC, Rubello D. Early prediction of response by 18F-FDG PET/CT during preoperative therapy in locally advanced rectal cancer: a systematic review. Eur J Surg Oncol. 2014;40(10):1186–94.

    Article  CAS  PubMed  Google Scholar 

  95. Rau B, Hunerbein M, Barth C, et al. Accuracy of endorectal ultrasound after pre operative radiochemotherapy in locally advanced rectal cancer. Surg Endosc. 1999;13:980–4.

    Article  CAS  PubMed  Google Scholar 

  96. Kwok H, Bisset IP, Hill GL. Preoperative staging of rectal cancer. Int J Colorectal Dis. 2000;15:9–20.

    Article  CAS  PubMed  Google Scholar 

  97. Bipat S, Glas AS, Slors FJ, et al. Rectal cancer: local staging and assessment of lymph nodes involvement with endoluminal US, CT and MR imaging-a meta-analysis. Radiology. 2004;232:773–83.

    Article  PubMed  Google Scholar 

  98. Melton GB, Lavely WC, Jacene HA, et al. Efficacy of preoperative combined 18-fluorodeoxyglucose positron emission tomography and computed tomography for assessing primary rectal cancer response to neoadjuvant therapy. J Gastrointest Surg. 2007;11:961–9.

    Article  PubMed  Google Scholar 

  99. Amthauer H, Denecke T, Rau B, et al. Response prediction by FDG-PET after neoadjuvant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur J Nucl Med Mol Imaging. 2004;31:811–9.

    Article  PubMed  Google Scholar 

  100. Guillem JG, Moore HG, Akhurst T, et al. Sequential preoperative fluorodeoxyglucose-positron emission tomography assessment of response to preoperative chemoradiation: a means for determining long-term outcome of rectal cancer. J Am Coll Surg. 2004;199:1–7.

    Article  PubMed  Google Scholar 

  101. Kristiansen C, Loft A, Berthelsen AK, et al. PET/CT and histopathologic response to preoperative chemoradiation therapy in locally advanced rectal cancer. Dis Colon Rectum. 2008;51:21–5.

    Article  PubMed  Google Scholar 

  102. Konski A, Li T, Sigurdson E, et al. Use of molecular imaging to predict clinical outcome in patients with rectal cancer after preoperative chemotherapy and radiation. Int J Radiat Oncol Biol Phys. 2009;74(1):55–9.

    Google Scholar 

  103. Calvo FA, Domper M, Matute R, et al. 18F-FDG positron emission tomography staging and restaging in rectal cancer treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys. 2004;58:528–35.

    Article  PubMed  Google Scholar 

  104. Riedl CC, Akhurst T, Larson S, et al. 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predict mortality for patients after liver resection for colorectal metastases. J Nucl Med. 2007;48:771–5.

    Article  PubMed  Google Scholar 

  105. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumour response to fluorouracil. J Clin Oncol. 1996;14:700–8.

    Article  CAS  PubMed  Google Scholar 

  106. Bender H, Bangard N, Metten N, et al. Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer hybridoma. Hybridoma. 1999;18:87–91.

    Google Scholar 

  107. Dimitrakopoulou-Strauss A, Strauss LG, Rudi J. PET-FDG as a predictor of therapy response in patients with colorectal carcinoma. Q J Nucl Med. 2003;47:8–13.

    CAS  PubMed  Google Scholar 

  108. Dimitrakopoulou-Strauss A, Strauss LG, Burger C, et al. Prognostic aspect of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med. 2004;45:1480–7.

    CAS  PubMed  Google Scholar 

  109. De Gesus Oei LF, van Laarhoven HW, Visser EP, et al. Chemotherapy response evaluation with FDG PET in patients with colorectal cancer. Ann Oncol. 2007;19:348–52.

    Article  Google Scholar 

  110. De Gesus Oei LF, Vriens D, van Laarhoven WM, van der Graaf WTA, Oyen W. Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med. 2009;50:43S–52.

    Article  CAS  Google Scholar 

  111. Maffione AM, Marzola MC, Grassetto G, Chondrogiannis S, Giammarile F, Rubello D. Are PREDIST criteria better than PERCIST criteria as a PET predictor of preoperative treatment response in rectal cancer? Nucl Med Commun. 2014;35(8):890–2.

    CAS  PubMed  Google Scholar 

  112. Funaioli C, Pinto C, Di Fabio F, et al. 18FDG-PET evaluation correlates better than CT with pathological response in a metastatic colon cancer patient treated with bevacizumab-based therapy. Tumori. 2007;93(6):611–5.

    PubMed  Google Scholar 

  113. Brandi G, Nannini M, Pantaleo MA, et al. Molecular imaging suggests efficacy of bevacizumab beyond the second line in advanced colorectal cancer patients. Chemotherapy. 2008;54(6):421–4.

    Article  CAS  PubMed  Google Scholar 

  114. Skougaard K, Nielsen D, Jensen BV, Hendel HW. Comparison of EORTC criteria and PERCIST for PET/CT response evaluation of patients with metastatic colorectal cancer treated with irinotecan and cetuximab. J Nucl Med. 2013;54(7):1026–31.

    Article  CAS  PubMed  Google Scholar 

  115. Langenhoff BS, Oyen WJ, Jager GJ, et al. Efficacy of fluorine-18-deoxuglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol. 2002;20:4453–8.

    Article  CAS  PubMed  Google Scholar 

  116. Donckier V, Van Laethem J, Goldman S, et al. F-18 fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation of liver metastases. J Surg Oncol. 2003;84:215–23.

    Article  PubMed  Google Scholar 

  117. Joosten J, Jager G, Oyen W, et al. Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol. 2005;31:1152–9.

    Article  CAS  PubMed  Google Scholar 

  118. Veit P, Antoch G, Stergar H, et al. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual modality PET/CT: initial results. Eur Radiol. 2006;16:80–7.

    Article  PubMed  Google Scholar 

  119. Denecke T, Steffen I, Hildebrandt B, et al. Assessment of local control after laser-induced thermotherapy of liver metastases from colorectal cancer: contribution of FDG PET in patients with clinical suspicion of progressive disease. Acta Radiol. 2007;48:821–30.

    Article  CAS  PubMed  Google Scholar 

  120. Von Schulthess GK, Kuhn FP, Kaufmann P, Veit-Haibach P. Clinical positron emission tomography/magnetic resonance imaging applications. Semin Nucl Med. 2013;43:3–10. pmid:23178084.

    Article  Google Scholar 

  121. Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med. 2010;16:508–15.

    Article  PubMed  Google Scholar 

  122. Gawlitza M, Purz S, Kubiessa K, Boehm A, Barthel H, Kluge R, Kahn T, Sabri O, Stumpp P. In vivo correlation of glucose metabolism, cell density and microcirculatory parameters in patients with head and neck cancer: initial results using simultaneous PET/MRI. PLoS ONE. 2015;10(8), e0134749. eCollection 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Paspulati RM, Partovi S, Herrmann KA, Krishnamurthi S, Delaney CP, Nguyen NC. Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. Abdom Imaging. 2015;40(6):1415–25.

    Article  PubMed  Google Scholar 

  124. Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol. 2006;81(2):209–25.

    Article  CAS  PubMed  Google Scholar 

  125. Grégoire V, Haustermans K, Geets X, et al. PET-based treatment planning in radiotherapy: a new standard? PET-based treatment planning in radiotherapy: a new standard? J Nucl Med. 2007;48 Suppl 1:68S–77.

    PubMed  Google Scholar 

  126. MacManus M, Nestle U, Rosenzweig KE, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol. 2009;91(1):85–94.

    Article  PubMed  Google Scholar 

  127. Niyazi M, Landrock S, Elsner A, Manapov F, Hacker M, Belka C, Ganswindt U. Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat Oncol. 2013;12(8):180.

    Article  Google Scholar 

  128. Lambrecht M, Haustermans K. Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother Oncol. 2010;96(3):339–46.

    Article  PubMed  Google Scholar 

  129. Ciernik IF, Huser M, Burger C, et al. Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys. 2005;62:893–900.

    Article  PubMed  Google Scholar 

  130. Whitney R, Tatum C, Hahl M, et al. Safety of hepatic resection in metastatic disease to the liver after yttrium-90 therapy. J Surg Res. 2011;166(2):236–40.

    Article  PubMed  Google Scholar 

  131. Bienert M, McCook B, Carr BI, et al. 90Y microsphere treatment of unresectable liver metastases: changes in 18F-FDG uptake and tumour size on PET/CT. Eur J Nucl Med Mol Imaging. 2005;32(7):778–87.

    Article  CAS  PubMed  Google Scholar 

  132. Annunziata S, Treglia G, Caldarella C, Galiandro F. The role of 18F-FDG-PET and PET/CT in patients with colorectal liver metastases undergoing selective internal radiation therapy with yttrium-90: a first evidence-based review. Sci World J. 2014;2014:879469.

    Article  CAS  Google Scholar 

  133. Soydal C, Kucuk ON, Gecim EI, Bilgic S, Elhan AH. The prognostic value of quantitative parameters of 18F-FDG PET/CT in the evaluation of response to internal radiation therapy with yttrium-90 in patients with liver metastases of colorectal cancer. Nucl Med Commun. 2013;34(5):501–6.

    Article  CAS  PubMed  Google Scholar 

  134. Gulec SA, Suthar RR, Barot TC, Pennington K. The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging. 2011;38(7):1289–95.

    Article  CAS  PubMed  Google Scholar 

  135. Wong CY, Salem R, Raman S, et al. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002;29(6):815–20.

    Article  CAS  PubMed  Google Scholar 

  136. Murthy R, Xiong H, Nunez R, et al. Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results. J Vasc Interv Radiol. 2005;16(7):937–45.

    Article  PubMed  Google Scholar 

  137. Sharma RA, Van Hazel GA, Morgan B, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25(9):1099–106.

    Article  CAS  PubMed  Google Scholar 

  138. Dutton SJ, Kenealy N, Love SB, Wasan HS, Sharma RA, FOXFIRE Protocol Development Group and the NCRI Colorectal Clinical Study Group. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional Selective Internal Radiation Therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer. BMC Cancer. 2014;14:497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gibbs P, Gebski V, Van Buskirk M, Thurston K, Cade DN, Van Hazel GA, SIRFLOX Study Group. Selective Internal Radiation Therapy (SIRT) with yttrium-90 resin microspheres plus standard systemic chemotherapy regimen of FOLFOX versus FOLFOX alone as first-line treatment of non-resectable liver metastases from colorectal cancer: the SIRFLOX study. BMC Cancer. 2014;14:897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Van Hazel G, Blackwell A, Anderson J, et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/ leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88(2):78–85.

    Article  PubMed  CAS  Google Scholar 

  141. Maxwell JE, Howe JR. Imaging. Int J Endocrinol Oncol. 2015;2(2):159–68.

    Article  CAS  Google Scholar 

  142. Van Binnebeek S, Karges W, Mottaghy FM. Functional imaging of neuroendocrine tumors. Methods Mol Biol. 2011;727:105–22.

    Article  PubMed  Google Scholar 

  143. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.

    Article  CAS  PubMed  Google Scholar 

  144. Chiti A, Fanti S, Savelli G, Romeo A, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med. 1998;25(10):1396–403.

    Article  CAS  PubMed  Google Scholar 

  145. Ambrosini V, Campana D, Tomassetti P, Fanti S. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging. 2012;39:s52–60.

    Article  PubMed  CAS  Google Scholar 

  146. Krausz Y, Freedman N, Rubinstein R, et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (OctreoScan). Mol Imaging Biol. 2011;13:583–93.

    Article  PubMed  Google Scholar 

  147. Santhanam P, Chandramahanti S, Kroiss A, Yu R, Ruszniewski P, Kumar R, Taïeb D. Nuclear imaging of neuroendocrine tumors with unknown primary: why, when and how? Eur J Nucl Med Mol Imaging. 2015;42(7):1144–55.

    Article  CAS  PubMed  Google Scholar 

  148. Lebtahi R, Cadiot G, Sarda L, et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. J Nucl Med. 1997;38(6):853–8.

    CAS  PubMed  Google Scholar 

  149. Hoegerle S, Altehoefer C, Ghanem N, et al. Whole-body 18F DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220(2):373–80.

    Article  CAS  PubMed  Google Scholar 

  150. Orlefors H, Sundin A, Garske U, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90(6):3392–400.

    Article  CAS  PubMed  Google Scholar 

  151. Montravers F, Grahek D, Kerrou K, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med. 2006;47(9):1455–62.

    CAS  PubMed  Google Scholar 

  152. Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1431–8.

    Article  CAS  PubMed  Google Scholar 

  153. Ambrosini V, Campana D, Nanni C, et al. Is 68Ga-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging. 2012;39(8):1278–83.

    Article  CAS  PubMed  Google Scholar 

  154. Kroiss A, Putzer D, Decristoforo C, et al. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging. 2013;40(4):514–23.

    Article  CAS  PubMed  Google Scholar 

  155. Chiotellis A, Muller A, Mu L, Keller C, Schibli R, Krämer SD, Ametamey SM. Synthesis and biological evaluation of 18F-labeled Fluoroethoxy tryptophan analogues as potential PET tumor imaging agents. Mol Pharm. 2014;11(11):3839–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Pelosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pelosi, E., Deandreis, D., Cassalia, L., Penna, D. (2016). Diagnostic Applications of Nuclear Medicine: Colorectal Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Colorectal Cancer
    Published:
    20 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_19-3

  2. Diagnostic Applications of Nuclear Medicine: Colorectal Cancer
    Published:
    09 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_19-2

  3. Original

    Diagnostic Applications of Nuclear Medicine: Colorectal Cancer
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_19-1