Skip to main content

Porous Silicon for Microdevices and Microsystems

Handbook of Porous Silicon
  • 213 Accesses

Abstract

A literature survey is made of the various uses of both macroporous and mesoporous silicon in individual microdevices and complex microsystems. The material has been used as a silicon wafer processing tool where it is sacrificial: in a passive role where it provides, for example, thermal or electrical isolation and in an active role where it performs a range of functions. Examples include delivering drugs, sensing, emitting light, storing hydrogen, providing filtration, or having a catalytic role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • (2009) Micro fuel cell applications. J New Mater Electrochem Syst 12(2–3): 93–96

    Google Scholar 

  • Barillaro G, Strambini LM (2008) An integrated CMOS sensing chip for NO2 detection. Sens Actuators B 134:585–590

    Article  Google Scholar 

  • Barillaro G, Bruschi P, Pieri F, Strambini LM (2007) CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys Stat Sol (a) 204(5):1423–1428

    Article  Google Scholar 

  • Barillaro G, Bruschi P, Lazzerini GM, Strambini LM (2010) Validation of the compatibility between a porous silicon-based gas sensor technology and standard microelectronic process. IEEE Sens J 10(4):893–899

    Article  Google Scholar 

  • Barillaro G, Merlo S, Surdo S, Strambini LM, Carpignano F (2012) Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals. Microfluid Nanofluid 12:545–552

    Article  Google Scholar 

  • Benecke W, Splinter A (2001) MEMS applications of porous silicon. In: Chiao JC (ed) Device and process technologies for MEMS and microelectronics II. Proc SPIE 4592: 76–87

    Google Scholar 

  • Bischoff T, Miller G, Welser W, Koch F (1997) Frontside micromachining using porous-silicon sacrificial-layer technologies. Sens Actuators A 60:228–234

    Article  Google Scholar 

  • Bomchil G, Halimaoui A, Herino R (1988) Porous silicon: the material and its applications to SO1 technologies. Microelectron Eng 8:293–310

    Article  Google Scholar 

  • Camara EHM, Pijolat C, Courbat J et al (2007) Microfluidic channels in porous silicon filled with a carbon absorbent for gas pre-concentration, IEEE Transducers ‘07 & Eurosensors Xxi. Digest Tech Pap, vols 1 and 2: U128–U129

    Google Scholar 

  • Dantas MOS, Galeazzo E, Peres HEM et al (2008) Silicon field-emission devices fabricated using the hydrogen implantation-porous silicon (HI-PS) micromachining technique. J Microelectromech Syst 17(5):1263–1269

    Article  Google Scholar 

  • D’arrigo G, Spinella C, Arena G, Lorenti S (2003) Fabrication of miniaturized Si-based electrocatalytic membrane. Mater Eng C 25(1–2):13–18

    Article  Google Scholar 

  • De Stefano L, Rendina I, Moretti L, Rossi AM (2004) Time-resolved sensing of chemical species in porous silicon optical microcavity. Sens Actuators B 100:168–172

    Article  Google Scholar 

  • De Stefano L, Malecki K, Della Corte FG, Moretti L, Rotiroti L, Rendina I (2006a) Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sens Actuators B 114:625–630

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, Rea I, Rendina I, Moretti L, Di Francia G, Massera E, Arcari P, Lamberti A, Sangez C (2006b) Porous silicon optical biochip. J Opt A Pure Appl Opt 8:S540–S544

    Article  Google Scholar 

  • De Stefano L, Malecki K, Della Corte FG, Moretti L, Rea I, Rotiroti L, Rendina I (2006c) A microsystem based on porous silicon-glass anodic bonding for gas and liquid optical sensing. Sensors 6:680–687

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, Rea I, Rendina I, Arcari P, Lamberti A, Sanges C (2007a) DNA optical detection based on porous silicon technology: from biosensors to biochips. Sensors 7:214–221

    Article  Google Scholar 

  • De Stefano L, Rea I, Rotiroti L, Rendina I, Fragomeni L, Della Corte FG (2007b) An integrated hybrid optical device for sensing applications. Phys Stat Sol (c) 4(6):1946–1950

    Article  Google Scholar 

  • De Stefano L, Rea I, Moretti L, Della Corte FG, Rotiroti L, Alfieri D, Rendina I (2007c) An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances. Phys Stat Sol (a) 204(5):1459–1463

    Article  Google Scholar 

  • De Stefano L, Rea I, Rotiroti L, Iodice M, Rendina I (2007d) Optical microsystems based on a nanomaterial technology. J Phys Condens Matter 19:395008

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, Rendina I, Rossi AM, Rossi M, D’Auria S (2007e) Biochips at work: porous silicon microbiosensor for proteomic diagnostic. J Phys Condens Matter 19:395007

    Article  Google Scholar 

  • Ekstrom S, Onnerfjord P, Bengtsson M et al (2000) A microsystem platform interfacing MALDI-TOF MS for high speed automated protein identification. In: Vanden Berg A, Bergveld P, Olthuis W (eds) Micro total analysis systems 2000, proceedings. Kluwer, Dordrecht, pp 455–458

    Chapter  Google Scholar 

  • Friedberger A, Kreisl P, Muller G et al (2001) A versatile and modularizable micromachining process for the fabrication of thermal microsensors and microactuators. J Micromech Microeng 11(6):623–629

    Article  Google Scholar 

  • Gad-el-Hak M (2010) MEMS: design and fabrication. CRC Press, Boca Raton

    Google Scholar 

  • Hirota J, Kiuchi A, Koshida N (2005) Phase array operation of nanocrystalline porous silicon ultrasonic emitters. Phys Stat Sol (c) 2(9):3298–3302

    Article  Google Scholar 

  • Hirschman KD, Tsybeskov L, Duttagupta SP, Fauchet PM (1996) Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384:338–341

    Article  Google Scholar 

  • Holke AD, Pilchowski J, Henderson HT et al (1998) Coherent macro porous silicon as a wick structure in an integrated microfluidic two-phase cooling system. In: Frazier AB, Ahn CH (eds) Proc SPIE 3515: 154–162

    Google Scholar 

  • Kalinowski T, Rittersma ZM, Benecke W, Binder J (2000) An advanced micromachined fermentation monitoring device. Sens Actuators B 68:281–285

    Article  Google Scholar 

  • Kronast W, Muller B, Siedel W et al (2001) Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap. Sens Actuators A 87(3):188–193

    Article  Google Scholar 

  • Lammel G, Renaud P (2000) Free-standing, mobile 3D porous silicon microstructures. Sens Actuators A 85(1–3):356–360

    Article  Google Scholar 

  • Lammel G, Schweizer S, Schiesser S et al (2002) Tunable optical filter of porous silicon as key component for a MEMS spectrometer. J Microelectromech Syst 11(6):815–828

    Article  Google Scholar 

  • Lang W, Steinera P, Richter A, Marusczyk K, Weimannb G, Sandmaier H (1994) Application of porous silicon as a sacrificial layer. Sens Actuators A 43:239–242

    Article  Google Scholar 

  • Lang W, Steiner P, Sandmaier H (1995) Porous silicon: a novel material for microsystems. Sens Actuators A 51(1):31–36

    Article  Google Scholar 

  • Lazaruk SK, Dolbik AV, Labunov VA et al (2007) Combustion and explosion of nanostructured silicon in microsystem devices. Semiconductors 41(9):1113–1116

    Article  Google Scholar 

  • Lee CS, Lee JD, Han CH (2000) A new wide-dimensional freestanding microstructure fabrication technology using laterally formed porous silicon as a sacrificial layer. Sens Actuators A 84(1–2):181–185

    Article  Google Scholar 

  • Liu Z, Ding Y, Liu L, Li Z (2003) Fabrication planar coil on oxide membrane hollowed with porous silicon as sacrificial layer. Sens Actuators A 108:112–116

    Article  Google Scholar 

  • Lysenko V, Perichon S, Remaki B, Barbier D (2002) Thermal isolation in microsystems with porous silicon. Sens Actuators A 99:13–24

    Article  Google Scholar 

  • Mery E, Alekseev S, Portet-Koltalo F, Morin C, Barbier D, Zaitesev V, Desbene L (2009) Porous silicon based microdevice or reversed phase liquid chromatography. Phys Stat Sol C 6(7):1777–1781

    Article  Google Scholar 

  • Mescheder U (2004) Porous silicon: technology and applications for micromachining and MEMS. In: Yurish SY, Gomes MTS (eds) Smart sensors and MEMS, vol 181, Nato science series, series II: mathematics, physics and chemistry. Kluwer, Dordrecht, pp 273–288

    Chapter  Google Scholar 

  • Misra SCK, Bhattacharya R, Angelucci R (2001) Integrated polymer thin film macroporous silicon microsystems. J Ind Inst ScTi 81:563–567

    Google Scholar 

  • Mondal B, Basu PK, Reddy BT et al (2009) Oxidized macro porous silicon layer as an effective material for thermal insulation in thermal effect microsystems. In: Chakrabarti P, Jit S, Pandey A (eds) International conference on emerging trends in electronic and photonic devices and systems, Lyon, France, pp 202–206

    Google Scholar 

  • Nagayama G, Ando R, Muramatsu K et al (2008) Fabrication of macroporous on no-mask silicon substrate for application to microsystems. In: Proceedings of MicroNano 2008-2nd international conference on integration and commercialization of micro and nanosystems, Tarragona, Catalunya, Spain, pp 707–708

    Google Scholar 

  • Ning J, Liu ZL, Liu HZ et al (2004) A silicon capacitive microphone based on oxidized porous silicon sacrificial technology. In: Huang R, Yu M, Liou JJ et al (eds) 7th international conference on solid-state and integrated circuits technology, Beijing, China, vols 1–3, pp 1872–1875

    Google Scholar 

  • Olivares J, Clement M, Gonzalez-Castilla S et al (2010) Porous silicon oxide sacrificial layers deposited by pulsed-direct current magnetron sputtering for microelectromechanical systems. Thin Solid Films 518(18):5128–5133

    Article  Google Scholar 

  • Perichon S, Lysenko V, Remaki B et al (2001) Porous silicon in microsystems: thermal isolation applications. In: Bonnaud O, Mohammed Brahim T, Strunk HP et al (eds) Polycrystalline semiconductors IV materials, technologies and large area electronics. Sol Stat Phenom 80–81:417–427

    Google Scholar 

  • Rajaraman S, Henderson HT (2005) A unique fabrication approach for microneedles using coherent porous silicon technology. Sens Actuators B 105(2):443–448

    Article  Google Scholar 

  • Rajta I, Szilasi SZ, Fuerjes P et al (2009) Si micro-turbine by proton beam writing and porous silicon micromachining, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 267(12–13):2292–2295

    Article  Google Scholar 

  • Rea I, Lamberti A, Rendina I, Coppola G, Gioffrè M, Iodice M, Casalino M, De Tommasi E, De Stefano L (2010) Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 107:014513

    Article  Google Scholar 

  • Rea I, Orabona E, Lamberti A, Rendina I, De Stefano L (2011) A microfluidics assisted porous silicon array for optical label-free biochemical sensing. Biomicrofluidics 5:034120

    Article  Google Scholar 

  • Rendina I, Rea I, Rotiroti L, De Stefano L (2007) Porous silicon based optical biosensors and biochips. Physica E 38(1–2):188–192

    Article  Google Scholar 

  • Rittersma ZM, Splinter A, Bodecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuators B 68:210–217

    Article  Google Scholar 

  • Sim J-H, Cho C-S, Kim J-S, Lee J-H, Lee J-H (1998) Eight beam piezoresistive accelerometer fabricated by using a selective porous silicon etching method. Sens Actuators A 66:273–278

    Article  Google Scholar 

  • Steiner P, Lang W (1995) Micromachining applications of porous silicon. Thin Solid Films 255:52–58

    Article  Google Scholar 

  • Stolyarova S, Cherian S, Raiteri R, Zeravik J, Skladal P, Nemirovsky Y (2008) Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing. Sens Actuators B 131:509–515

    Article  Google Scholar 

  • Strambini LM, Longo A, Diligenti A, Barillaro G (2012) A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip 12:3370–3379

    Article  Google Scholar 

  • Surdo S, Merlo S, Carpignano F, Strambini LM, Trono C, Giannetti A, Baldini F, Barillaro G (2012) Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip 12:4403–4415

    Article  Google Scholar 

  • Torres N, Duch M, Santander J et al (2009) Porous Silicon Membrane for Micro Fuel Cell Application J. New Mater electrochem Syst 12(2–3):93–96

    Google Scholar 

  • Torres N, Duch M, Santander J et al (2009) Si micro-turbine by proton beam writing and porous silicon micromachining. Nucl Instr Meth Phys Res Sect B-Beam Interact Mater Atoms 267(12–13):2292–2295

    Google Scholar 

  • Valera E, Duch M, Rodriguez A et al (2005) Microporous silicon for CMOS compatible MST. In: Proceedings of 2005 Spanish conference on electron devices, Clear Water Bay, Kowloon, Hong Kong, pp 481–483

    Google Scholar 

  • Vitanov R, Goranova E, Stavrov V et al (2009) Fabrication of buried contact silicon solar cells using porous silicon. Sol Energy Mater Sol Cells 93(3):297–300

    Article  Google Scholar 

  • Wallner JZ, Bergstrom PL (2007) A porous silicon based particle filter for microsystem. Phys Stat Sol (a) 5:1469–1473

    Article  Google Scholar 

  • Xing Chen, Da-Fu Cui, Chang-Chun Liu, Hui Li (2007) Fabrication of DNA purification microchip integrated with mesoporous matrix based on MEMS technology. Microsyst Technol 14:51–57

    Article  Google Scholar 

  • Zellers ET et al (2007) An integrated micro-analytical system for complex vapor mixtures. In: IEEE proceedings of TRANSDUCERS & EUROSENSORS’07, Varanasi, India, pp 1491–1496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca De Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

De Stefano, L., Rea, I. (2014). Porous Silicon for Microdevices and Microsystems. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Porous Silicon for Microdevices and Microsystems
    Published:
    26 December 2016

    DOI: https://doi.org/10.1007/978-3-319-04508-5_81-2

  2. Original

    Porous Silicon for Microdevices and Microsystems
    Published:
    07 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_81-1