Skip to main content

Imaging the Cardiovascular System in the Cancer Patient

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

The average age of a cancer patient at diagnosis is 66 years. At the time of diagnosis patients with cancer are likely to have multiple comorbidities. Patients >55 years old have an average of ∼2.9 comorbidities, while cancer patients older than 75 have an average of 4.2 comorbidities. The likelihood of coronary artery disease as a comorbidity increases with patient age. An additional risk factor is limited work capacity; patients who cannot perform at least four metabolic equivalents of work (METS) have an increase in all-cause mortality. Patients with cancer and comorbidities or risk factors such as diabetes, hypertension, smoking history, or limited work capacity should have medical clearance prior to invasive diagnostic procedures, major surgery, mediastinal radiation, and/or administration of potentially cardiotoxic chemotherapy.

Information from medical records will permit calculation of a clinical score to define the risk of adverse events as a result of a major diagnostic or surgical procedure. Stress testing with cardiac imaging should be done in patients with an intermediate risk of coronary heart disease, and should be considered in patients with limited work capacity or advanced age. In selected patients, coronary CT angiography or coronary calcium score may be a suitable evaluation. In patients with cancer of the esophagus, breast, lung, melanoma, or lymphoma, chest-CT and 18F-FDG PET/CT studies should be carefully evaluated to detect pericardial or myocardial involvement.

Chemotherapy may cause myocardial ischemia due to coronary spasm and/or decreased ventricular function due to irreversible or reversible myocardial damage, as well as repolarization abnormalities, which may result in fatal arrhythmia. Radiotherapy may accelerate the development of atherosclerosis of vessels in the radiation field and cause irreversible damage to myocardium in the radiation field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

American College of Cardiology

ACE:

Angiotensin-converting enzyme

AHA:

American Heart Association

AL:

Light chain amyloid

AMI:

Acute myocardial infarction

ASCO:

American Society of Clinical Oncology

ATP:

Adenosine triphosphate

ATTR:

Transthyretin amyloid

BNP:

B-type natriuretic peptide

CAD:

Coronary artery disease

CHF:

Congestive heart failure

CI:

Confidence interval

C-MRI:

Cardiac magnetic resonance imaging

COPD:

Chronic obstructive pulmonary disease

CRCD:

Chemotherapy-related cardiac dysfunction

CRP:

C-reactive protein

CT:

X-ray computed tomography

CTCAE:

Common terminology criteria for adverse events

DTPA:

Diethylenetriaminepentaacetic acid

DVT/PE:

Deep venous thrombosis/pulmonary embolism

EDTA:

Ethylenediaminetetraacetic acid

ErbB2:

A member of the tyrosine-protein kinase family (also known as CD340)

[18F]FDG:

2-deoxy-2-[18F]fluoro-d-glucose

HER2:

Human epidermal growth factor receptor 2

HR:

Hazard ratio

HRP:

High-risk plaque

HTN:

Hypertension

LEVF:

Left ventricular ejection fraction

LGE:

Late gadolinium enhancement

LHIS:

Lipomatous hypertrophy of the interatrial septum

LV:

Left ventricle

METS:

Metabolic equivalents

MI:

Myocardial infarction

MIP:

Maximum intensity projection

MPI:

Myocardial perfusion imaging

MRI:

Magnetic resonance imaging

MSKCC:

Memorial Sloan-Kettering Cancer Center

MUGA:

Multigated acquisition

NCI:

National Cancer Institute, National Institutes of Health of the United States

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

P-POSSUM:

Predicted mortality-physiologic and operative severity score

RCRI:

Revised cardiovascular risk index

RCRS:

Revised cardiac risk score

RVG:

Radionuclide ventriculography

SEER:

Surveillance, Epidemiology, and End Results

SPECT:

Single-photon emission computed tomography

SUV:

Standardized uptake value

TEE:

Transesophageal echocardiography

VEGF:

Vascular endothelial growth factor

References

  1. Sulpher J, Mathur S, Graham N, Crawley F, Turek M, Johnson C, et al. Clinical experience of patients referred to a multidisciplinary cardiac oncology clinic: an observational study. J Oncol. 2015;2015:671232.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Biersmith MA, Tong MS, Guha A, Simonetti OP, Addison D. Multimodality cardiac imaging in the era of emerging cancer therapies. J Am Heart Assoc. 2020;9(2):e013755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhatti S, Watts E, Syed F, Vallurupalli S, Pandey T, Jambekar K, et al. Clinical and prognostic utility of cardiovascular magnetic resonance imaging in myeloma patients with suspected cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2016;17:970–7.

    Article  PubMed  Google Scholar 

  4. Renzi C, Kaushal A, Emery J, Hamilton W, Neal RD, Rachet B, et al. Comorbid chronic diseases and cancer diagnosis: disease-specific effects and underlying mechanisms. Nat Rev Clin Oncol. 2019;16:746–61.

    Article  CAS  PubMed  Google Scholar 

  5. Kone AP, Scharf D. Prevalence of multimorbidity in adults with cancer, and associated health service in Ontario, Canada: a population-based retrospective cohort study. BMC Cancer. 2021;21:406–19.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sarafti D, Koczwara B, Jackson C. The impact of comorbidity on cancer and its treatment. CA Cancer J Clin. 2016;66:337–50.

    Article  Google Scholar 

  7. Janssen-Heijnen MLK, Houterman S, Lemmens VEPP, Louwman MWJ, Maas HAAM, Coebergh JWW. Prognostic impact of increasing age and co-morbidity in cancer patients: a population-based approach. Crit Rev Oncol Hematol. 2005;55:231–40.

    Article  PubMed  Google Scholar 

  8. Janssen-Heijnen ML, Maas HA, Houterman S, Lemmens VE, Rutten HJ, Coebergh JW. Comorbidity in older surgical cancer patients: influence on patient care and outcome. Eur J Cancer. 2007;43:2179–93.

    Article  PubMed  Google Scholar 

  9. Ogle KS, Swanson GM, Woods N, Azzouz F. Cancer and comorbidity: redefining chronic diseases. Cancer. 2000;88:653–63.

    Article  CAS  PubMed  Google Scholar 

  10. Hall WH, Ramachandran R, Narayan S, Jani AB, Vijayakumar S. An electronic application for rapidly calculating Charlson comorbidity score. BMC Cancer. 2004;4:94–102.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Herrmann J, Yang EH, Illiescu CA, Cilingiroglu M, Charitakis K, Hakeem A, et al. Vascular toxicities of cancer therapies. The old and the new – an evolving avenue. Circulation. 2016;133:1272–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management-Part 1. J Am Coll Cardiol. 2017;70:2536–51.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management Part 2. J Am Coll Cardiol. 2017;70:2552–65.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sellers D, Srinivas C, Djaiani G. Cardiovascular complications after non-cardiac surgery. Anesthesia. 2018;73(Suppl 1):34–42.

    Article  Google Scholar 

  15. Virani SS, Ma J, Alonso AA, Mackey J, Aparicio HJ, Martin SS, et al. Heart disease and stroke statistics – 2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–473.

    Article  PubMed  Google Scholar 

  16. https://seer.cancer.gov/statfacts/html/all.html#content. Accessed 28 June 2021.

  17. Mangano DT, Hollenberg M, Fegert G, Meyer ML, London MJ, Tubau JF, Krupski WC. Perioperative myocardial ischemia in patients undergoing noncardiac surgery-I: incidence and severity during the 4 day perioperative period. The Study of Perioperative Ischemia (SPI) Research Group. J Am Coll Cardiol. 1991;17:843–50.

    Article  CAS  PubMed  Google Scholar 

  18. London MJ. Cardiovascular problems in noncardiac surgery. Curr Opin Crit Care. 2009;15:333–41.

    Article  PubMed  Google Scholar 

  19. Fisher MB, Svatek RS, Hegarty PK, McGinniss JE, Hightower C, Grossman HB, et al. Cardiac history and risk of post cystectomy cardiac complications. Urology. 2009;74:1085–9.

    Article  PubMed  Google Scholar 

  20. Blessberger H, Kammler J, Domanovits H, Schlager O, Wildner B, Azar D, Schillinger M, Weisbauer F, Steinwender C. Perioperative beta-blockers for preventing surgery related mortality and morbidity. Cochrane Database Syst Rev. 2018;3. https://doi.org/10.1002/14651858.CD004476.pub3.

  21. Cruden NLM, Harding SZ, Flapan AD, Graham C, Wild SH, Slack R, Newby DE. Previous coronary stent implantation and cardiac events in patients undergoing noncardiac surgery. Circ Cardiovasc Interv. 2010;3:236–42.

    Article  PubMed  Google Scholar 

  22. Dawood MM, Gutpa DK, Southern J, Walia A, Atkinson JB, Eagle KA. Pathology of fatal perioperative myocardial infarction: implications regarding pathophysiology and prevention. Int J Cardiol. 1996;57:37–44.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen MC, Artez TH. Histological analysis of coronary artery lesions in fatal postoperative myocardial infarction. Cardiovasc Pathol. 1999;8:133–9.

    Article  CAS  PubMed  Google Scholar 

  24. Duvall WL, Sealove B, Pungoti C, Katz D, Moreno P, Kim M. Angiographic investigation of the pathophysiology of perioperative myocardial infarction. Catheter Cardiovasc Interv. 2012;80:768–76.

    Article  PubMed  Google Scholar 

  25. Landesberg G, Mosseri M, Zahger D, Wolf Y, Perouansky M, Anner H, et al. Myocardial infarction after vascular surgery: the role of prolonged stress-induced, ST depression-type ischemia. J Am Coll Cardiol. 2001;37:1839–45.

    Article  CAS  PubMed  Google Scholar 

  26. Landesberg G. The pathophysiology of perioperative myocardial infarction: facts and perspectives. J Cardiothorac Vasc Anesth. 2003;17:90–100.

    Article  PubMed  Google Scholar 

  27. Kokkinos P, Faselis C, Myers J, Sui X, Zhang J, Blair SN. Age-specific exercise capacity threshold for mortality risk assessment in male veterans. Circulation. 2014;130:653–8.

    Article  PubMed  Google Scholar 

  28. Weinstein H, Bates AT, Spaltro BE, Thaler HT, Steingart RM. Influence of preoperative exercise capacity on length of stay after thoracic cancer surgery. Ann Thorac Surg. 2007;84:197–202.

    Article  PubMed  Google Scholar 

  29. Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100:1043–9.

    Article  CAS  PubMed  Google Scholar 

  30. Online calculator. https://reference.medscape.com/calculator/37/acc-aha-cv-risk-calculator-2013?src=ppc_google_rlsa-traf_mscp_ref-mid-cohort-hdhm-cohort_us

  31. Devereaux PJ, Goldman L, Cook DJ, Gilbert K, Leslie K, Guyatt GH. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. Can Med Assoc J. 2005;173:627–34.

    Article  CAS  Google Scholar 

  32. Wijeysundera DN, Beattie WS, Austin PC, Hux JE, Laupacis A. Non-invasive cardiac stress testing before elective major non-cardiac surgery: population based cohort study. Br Med J. 2010;340:252.

    Article  Google Scholar 

  33. https://www.mdcalc.com/possum-operative-morbidity-mortality-risk#pearls-pitfalls. Accessed 23 June 2021.

  34. Puelacher C, Lurati Buse G, Seeberger D, Sazgary L, Marbot S, Lampart A, et al. Perioperative myocardial injury after noncardiac surgery: incidence, mortality, and characterization. Circulation. 2018;137:1221–32.

    Article  PubMed  Google Scholar 

  35. Kertai MD, Boersma E, Bax JJ, Heijenbrok-Kal MH, Hunink MG, L’talien GJ, et al. A meta analysis comparing prognostic accuracy of six diagnostic tests for predicting perioperative risk. Heart. 2003;89:1327–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguadé-Bruix S, et al. EVINCI Study Investigators. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015 Mar;8(3):e002179. https://doi.org/10.1161/CIRCIMAGING.114.002179.

  37. Mangano DT. Perioperative cardiac mortality. Anesthesiology. 1990;72:153–84.

    Article  CAS  PubMed  Google Scholar 

  38. Driessen RS, Bom MJ, van Diemen PA, Schumacher SP, Leonora RM, Everaars H, et al. Incremental prognostic value of hybrid [15O]H2O positron emission tomography-computed tomography: combining myocardial blood flow, coronary stenosis severity, and high-risk plaque morphology. Eur Heart J Cardiovasc Imaging. 2020;21:1105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wijeysundera DN, Beattie WS, Austin PC, Hux JE, Laupacis A. Non-invasive cardiac stress testing before elective major non-cardiac surgery: population based cohort study. BMJ. 2010;340:b5526.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Galal W, Hoeks SE, Flu WJ, van Kuijk GD, Galema T, den Uil C, et al. Relation between preoperative and intraoperative new wall motion abnormalities in vascular surgery patients: a transesophageal echocardiographic study. Anesthesiology. 2010;112:557–66.

    Article  PubMed  Google Scholar 

  41. Chang K, Sarkiss M, Won KS, Swafford J, Broemeling L, Gayed I. Preoperative risk stratification using gated myocardial perfusion studies in patients with cancer. J Nucl Med. 2007;48:344–8.

    PubMed  Google Scholar 

  42. Chandra S, Lenihan DJ, Wei W, Yusuf SW, Tong AT. Myocardial perfusion imaging and cardiovascular outcomes in a cancer population. Tex Heart Inst J. 2009;36:205–13.

    PubMed  PubMed Central  Google Scholar 

  43. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol. 2004;11:551–61.

    Article  PubMed  Google Scholar 

  44. Puelacher C, Buse GL, Seeberger D, Sazgary L, Marbot S, Lampart A, et al. Perioperative myocardial injury after noncardiac surgery. Circulation. 2018;137:1221–32.

    Article  PubMed  Google Scholar 

  45. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  Google Scholar 

  46. Vander Salm TJ. Unusual primary tumors of the heart. Semin Thorac Cardiovasc Surg. 2000;12:89–100.

    Article  CAS  PubMed  Google Scholar 

  47. Silverman NA. Primary cardiac tumors. Ann Surg. 1980;191:127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reardon MJ, Walkes JC, Benjamin R. Therapy insight: malignant primary cardiac tumors. Nature Clin Pract Cardiovasc Med. 2006;3:548–53.

    Article  Google Scholar 

  49. Lee RW, Woo KS, Chow LTC, Ng HK, Chan WWM, Yu CM, Lo AWI. Diffuse infiltration of lymphoma of the myocardium mimicking clinical hypertrophic cardiomyopathy. Circulation. 2006;113:e662–4.

    Article  CAS  PubMed  Google Scholar 

  50. Ekmetzoglou KA, Samelis GF, Xanthos. Heart and tumors: location, metastasis, clinical manifestations, diagnostic approaches and therapeutic considerations. J Cardiovasc Med. 2008;9:769–77.

    Article  Google Scholar 

  51. Chiles C, WoodardPK GFR, Link KM. Metastatic involvement of the heart and pericardium: CT and MR imaging. Radiographics. 2001;21:439–49.

    Article  CAS  PubMed  Google Scholar 

  52. Chahine J, Shekhar S, Mahalwar G, Imazio M, Collier P, Klein A. Pericardial involvement in cancer. Am J Cardiol. 2021;145:151–9.

    Article  PubMed  Google Scholar 

  53. An KR, Butany J, Cusimano RJ. Lipomatous hypertrophy of the interatrial septum is a pathologic, not an anatomic diagnosis. J Card Surg. 2020;35:1132–4.

    Article  PubMed  Google Scholar 

  54. Gerard PS, Finestone H, Lazarro R, Geller MD. Intermittent FDG uptake in lipomatous hypertrophy of the interatrial septum on serial PET/CT scans. Clin Nucl Med. 2008;33:602–5.

    Article  PubMed  Google Scholar 

  55. Rao PM, Woodard PK, Patterson GA, Peterson LR. Myocardial metastasis or benign brown fat? Circ Cardiovasc Imag. 2009;2:e25–7.

    Article  Google Scholar 

  56. Xie B, Chen BX, Wu JY, Liu X, Yang MF. Factors relevant to atrial 18F-fluorodeoxyglucose uptake in atrial fibrillation. J Nucl Cardiol. 2020;27:1501–12.

    Article  PubMed  Google Scholar 

  57. Maurer AH, Burshteyn M, Adler LP, Steiner RM. How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics. 2011;31:1287–305.

    Article  PubMed  Google Scholar 

  58. Sperry BW, Vranian MN, Hachamovitch R, Joshi H, Ikram A, Phelan D, Hanna M. Subtype-specific interactions and prognosis in cardiac amyloidosis. J Am Heart Assoc. 2016;5(3):e002877.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schaadt BK, Hendel HW, Gimsing P, Jønsson V, Pedersen H, Hesse B. 99mTc-aprotinin scintigraphy in amyloidosis. J Nucl Med. 2003;44:177–83.

    Google Scholar 

  60. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6:195–201.

    Google Scholar 

  61. Lee SP, Lee ES, Choi H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50–9.

    Google Scholar 

  62. Dorbala S, Vangala D, Semer J, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41:1652–62.

    Article  CAS  PubMed  Google Scholar 

  63. Osborne DR, Acuff SN, Stuckey A, Wall JS. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using 18F-florbetapir. Front Cardiovasc Med. 2015;2:23.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, et al. 18F-florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: autoradiography study. Circ Cardiovasc Imaging. 2015;8(8):e002954.

    Google Scholar 

  65. Law WP, Wang WY, Moore PT, Mollee PN, Ng ACT. Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study. J Nucl Med. 2016;57:1733–9.

    Article  CAS  PubMed  Google Scholar 

  66. Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis: a practical approach. JACC Cardiovasc Imaging. 2020;13:1368–83.

    Article  PubMed  Google Scholar 

  67. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B. A scintiphotographic method for measuring LVEF in man without cardiac catheterization. Am J Cardiol. 1971;28:275.

    Article  Google Scholar 

  68. Burow RD, Strauss HW, Singleton R, Pond M, Rehn T, Bailey IK, et al. Analysis of LV function from multiple gated acquisition cardiac blood pool imaging. Comparison to contrast angiography. Circulation. 1977;56:1024.

    Article  CAS  PubMed  Google Scholar 

  69. Folland ED, Hamilton GW, Larson SM, Kennedy JW, Williams DL, Ritchie JL. The radionuclide ejection fraction: a comparison of three radionuclide techniques with contrast angiography. J Nucl Med. 1977;18:1159.

    CAS  PubMed  Google Scholar 

  70. Wackers FJ, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol. 1979;43:1159–66.

    Article  CAS  PubMed  Google Scholar 

  71. Alexander J, Dainiak N, Berger HJ, Goldman L, Johnstone D, Reduto L, et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med. 1979;300:278–83.

    Article  CAS  PubMed  Google Scholar 

  72. Stortesky S, Suter TM. Insights into cardiovascular side-effects of modern anticancer therapeutics. Curr Opin Oncol. 2010;22:312–7.

    Article  Google Scholar 

  73. Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.

    Article  CAS  PubMed  Google Scholar 

  74. Arcamone F, Franceschi G, Penco S, Selva A. Adriamycin (14-hydroxydaunomycin), a novel antitumor antibiotic. Tetrahedron Lett. 1969;13:1007–10.

    Article  Google Scholar 

  75. Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20:333–53.

    Article  CAS  PubMed  Google Scholar 

  76. Bonadonna G, Monfardini S. Cardiac toxicity of daunorubicin. Lancet. 1969;1(7599):837.

    Article  CAS  PubMed  Google Scholar 

  77. Marmont AM, Damasio E, Rossi F. Cardiac toxicity of daunorubicin. Lancet. 1969;1(7599):837–8.

    CAS  PubMed  Google Scholar 

  78. Lynce F, Swain SM. First, do no harm. Onkologie. 2008;31:511–2.

    Article  PubMed  Google Scholar 

  79. Singal PK, Deally CMR, Weinberg LE. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol. 1987;19:817–28.

    Article  CAS  PubMed  Google Scholar 

  80. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226:466–8.

    Article  CAS  PubMed  Google Scholar 

  81. Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res. 1998;40:426–32.

    Article  CAS  PubMed  Google Scholar 

  82. Mason JW, Bristow MR, Billingham ME, Daniels JR. Invasive and noninvasive methods of assessing adriamycin cardiotoxic effects in man: superiority of histopathologic assessment using endomyocardial biopsy. Cancer Treat Rep. 1978;62:857–64.

    CAS  PubMed  Google Scholar 

  83. Bristow MR, Mason JW, Billingham ME, Daniels JR. Dose-effect and structure-function relationships in doxorubicin cardiomyopathy. Am Heart J. 1981;102:709–18.

    Article  CAS  PubMed  Google Scholar 

  84. Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving adriamycin. J Clin Oncol. 1984;2:112–7.

    Article  CAS  PubMed  Google Scholar 

  85. Isner JM, Ferrans VJ, Cohen SR, Witkind BG, Virmani R, Gottdiener JS, et al. Clinical and morphologic cardiac findings after anthracycline chemotherapy. Analysis of 64 patients studied at necropsy. Am J Cardiol. 1983;51:1167–74.

    Article  CAS  PubMed  Google Scholar 

  86. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. American Heart Association; American College of Cardiology; European Society of Cardiology. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216–33.

    Article  PubMed  Google Scholar 

  87. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.

    Article  CAS  PubMed  Google Scholar 

  88. Von Hoff DD, Layard MW, Basa P, Davis Jr HL, Von Hoff AL, Rozencweig M, Muggia FM. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    Article  Google Scholar 

  89. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  CAS  PubMed  Google Scholar 

  90. Ewer MS, Ewer SM. Long-term cardiac safety of dose-dense anthracycline therapy cannot be predicted from early ejection fraction data. J Clin Oncol. 2009;27:6073–5.

    Article  PubMed  Google Scholar 

  91. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, et al. Congestive heart failure and LV dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82:1109–18.

    Article  CAS  PubMed  Google Scholar 

  92. Russell RR, Alexander J, Jain D, Poornima IG, Srivastava AV, Storozynsky E, Schwartz RG. The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy. J Nucl Cardiol. 2016;23:856–84.

    Article  PubMed  Google Scholar 

  93. Agarwala S, Kumar R, Bhatnagar V, Bajpai M, Gupta DK, Mitra DK. High incidence of adriamycin cardiotoxicity in children even at low cumulative doses: role of radionuclide cardiac angiography. J Pediatr Surg. 2000;35:1786–9.

    Article  CAS  PubMed  Google Scholar 

  94. Harris EE, Correa C, Hwang WT, Liao J, Litt HI, Ferrari VA, Solin LJ. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol. 2006;24:4100–6.

    Article  PubMed  Google Scholar 

  95. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol. 2007;25:3808–15.

    Article  CAS  PubMed  Google Scholar 

  96. Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  CAS  PubMed  Google Scholar 

  97. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991;266:1672–7.

    Article  CAS  PubMed  Google Scholar 

  98. Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28:1308–15.

    Article  PubMed  Google Scholar 

  99. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. https://doi.org/10.1136/bmj.b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Akam-Venkata J, Galas J, Aggarwal S. Cardiovascular evaluation of children with malignancies. Curr Treat Options Cardiovasc Med. 2019;21:14.

    Article  PubMed  Google Scholar 

  101. Hudis CA. Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.

    Article  CAS  PubMed  Google Scholar 

  102. Chien KR. Herceptin and the heart – a molecular modifier of cardiac failure. N Engl J Med. 2006;354:789–90.

    Article  CAS  PubMed  Google Scholar 

  103. de Korte MA, de Vries EG, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WTA, et al. 111Indium-trastuzumab visualizes myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43:2046–51.

    Google Scholar 

  104. Perik PJ, de Vries EG, Gietema JA, van der Graaf WT, Smilde TD, Sleijfer DT, van Veldhuisen DJ. Serum HER2 levels are increased in patients with chronic heart failure. Eur J Heart Fail. 2007;9:173–7.

    Article  CAS  PubMed  Google Scholar 

  105. Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol. 2009;27:5529–37.

    Article  CAS  PubMed  Google Scholar 

  106. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.

    Article  CAS  PubMed  Google Scholar 

  107. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  PubMed  Google Scholar 

  108. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, Lenihan DJ. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.

    Article  CAS  PubMed  Google Scholar 

  109. Guarneri V, Lenihan DJ, Valero V, Durand JB, Broglio K, Hess KR, et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J Clin Oncol. 2006;24:4107–15.

    Article  CAS  PubMed  Google Scholar 

  110. Procter M, Suter TM, de Azambuja E, Dafni U, van Dooren V, Muehlbauer S, et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin Adjuvant (HERA) trial. J Clin Oncol. 2010;28:3422–8.

    Article  PubMed  Google Scholar 

  111. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95:1592.

    Article  CAS  PubMed  Google Scholar 

  112. Suter TM, Procter M, van Veldhuisen DJ, Muscholl M, Bergh J, Carlomagno C, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol. 2007;25:3859–65.

    Article  CAS  PubMed  Google Scholar 

  113. Henry ML, Niu J, Zhang N, Giordano SH, Chavez-MacGregor M. Cardiotoxicity and cardiac monitoring among chemotherapy-treated breast cancer patients. JACC Cardiovasc Imaging. 2018;11:1084–93.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mavrogeni SI, Sfendouraki E, Markousis-Mavrogenis G, Rigopoulos A, Noutsias M, Kolovou G, et al. Cardio-oncology, the myth of Sisyphus, and cardiovascular disease in breast cancer survivors. Heart Fail Rev. 2019;24:977–87.

    Article  PubMed  Google Scholar 

  115. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  CAS  PubMed  Google Scholar 

  116. Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83:679–86.

    Article  PubMed  Google Scholar 

  117. Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28:3429–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fox, J.J., Strauss, H.W. (2022). Imaging the Cardiovascular System in the Cancer Patient. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics