Skip to main content

Diagnostic Applications of Nuclear Medicine: Gastric Cancers

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

Gastric cancer is the fifth most common cancer worldwide. For the purpose of this chapter, gastric cancer will refer to gastric adenocarcinoma. The epidemiology, environmental factors, genetic predisposition, and underlying biomolecular changes of the disease will be reviewed. The staging of gastric cancer as well as the roles of conventional diagnostic imaging and nuclear imaging in this staging will be reviewed.

Finally, the efficacy of these modalities in assessing response to the various treatments described in the chapter and in the long-term surveillance for disease recurrence will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AJCC:

American Joint Committee on Cancer

APC:

Gene encoding for adenomatous polyposis coli

c-Met:

Gene encoding for tyrosine-protein kinase Met, also known as hepatocyte growth factor receptor (HGFR)

CA 19–9:

Carbohydrate antigen 19–9, a tumor-associated serum marker

CA 72–4:

Tumor-associated glycoprotein 72 (TAG-72), a tumor-associated marker

CDH1:

Gene encoding for cadherin, an adhesion molecule

CEA:

Carcinoembryonic antigen, a tumor-associated marker

CT:

X-ray computed tomography

EBV:

Epstein-Barr virus

EUS:

Endoscopic ultrasound

[18F]FDG:

2-deoxy-2-[18F]fluoro-D-glucose

[18F]FLT:

3′-deoxy-3′-[18F]fluorothymidine

FAPI:

Fibroblast-activation protein inhibitor

[68Ga]-FAPI:

Gallium-68-conjugated fibroblast-activation protein inhibitor

FDA:

United States Food and Drug Administration

FIGC:

Familial interstitial gastric cancer

GAPPS:

Gastric adenocarcinoma and proximal polyposis of the stomach

GLUT1:

Glucose transporter 1

HDGC:

Hereditary diffuse gastric cancer

HER2:

Human epidermal growth factor receptor 2

K-ras:

Oncogene regulating signaling intracellular cascades

M:

Metastasis status according to the AJCC/UICC TNM staging system

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

p73:

Tumor-suppressor oncogene belonging to the p53 family of transcription factors

PERCIST:

PET response criteria in solid tumors

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

RECIST:

Response evaluation criteria in solid tumors

T:

Tumor status according to the AJCC/UICC TNM staging system

TNM:

AJCC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

UICC:

International Union Against Cancer (Union Internationale Contre le Cancer)

References

  1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;40(4):313.

    Google Scholar 

  2. Siegel RL, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  3. Assumpcao PP, et al. The diffuse-type gastric cancer epidemiology enigma. BMC Gastroenterol. 2020; 20:223.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balakrishnan M, et al. Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep. 2017;19(8):36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carcas LP. Gastric cancer review. J Carcinog. 2014;13:14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ishaq S, Nunn L. Helicobacter pylori and gastric cancer: a state of the art review. Gastroenterol Hepatol Bed Bench. 2015;8(Suppl1):S6–S14.

    PubMed  PubMed Central  Google Scholar 

  7. Zhang XY, Zhang PY, Aboul-Soud MAM. From inflammation to gastric cancer: role of Helicobacter pylori. Oncol Lett. 2016;13(2):543–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hseih HL, Tsai MM. Tumor progression-dependent angiogenesis in gastric cancer and its potential application. World J Gastrointest Oncol. 2019;11(9):606–704.

    Google Scholar 

  9. Lieto E, et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15:69–79.

    Article  PubMed  Google Scholar 

  10. Tavakoli A, et al. Association between Epstein-Barr virus infection and gastric cancer: a systematic review and meta-analysis. BMC Cancer. 2020;20:493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun K, et al. EBV-positive gastric cancer: current knowledge and future perspectives. Front Oncol. 2020;10:583463.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oliveira C, et al. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16(2):e60–70.

    Article  PubMed  Google Scholar 

  13. van der Post R. Hereditary gastric cancer: what’s new? Update 2013–2018. Fam Cancer. 2019;18(3):363–7.

    Article  PubMed  Google Scholar 

  14. Gullo I, van der Post R, Carniero F. Recent advances in the pathology of heritable gastric cancer syndromes. Histopathology. 2021;78(1):125–47.

    Article  PubMed  Google Scholar 

  15. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  Google Scholar 

  16. Chia N-Y, Tan P. Molecular classification of gastric cancer. Ann Oncol. 2016;27(5):763–9.

    Article  PubMed  Google Scholar 

  17. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol. 2016;22(19):4619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amin MB, et al., editors. AJCC cancer staging manual. 8th ed. Springer; 2017.

    Google Scholar 

  19. Tabatabaie O, et al. Safety in numbers? Gastric cancer survival varies with total retrieved lymph nodes. J Clin Oncol. 2017;35(15_suppl):4058.

    Article  Google Scholar 

  20. Zulfigar M, et al. Krukenberg tumors: update on imaging and clinical features. AJR. 2020;215(4):1020–9.

    Article  Google Scholar 

  21. Yu X, et al. Clinicopathologic characteristics and prognosis of proximal and distal gastric cancer. Onco Targets Ther. 2018;11:1037–44.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Capelle LG, et al. Narrow band imaging for the detection of gastric intestinal metaplasia and dysplasia during surveillance endoscopy. Dig Dis Sci. 2010;55:3442–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. NCCN Clinical Practice Guidelines on Oncology: Gastric cancer. NCCN evidence BlocksTM. Version 1. February 9, 2021. NCCN.org. Available at https://www.nccn.org/professionals/physician_gls/pdf/gastric_blocks.pdf. Issued: February 9, 2021. Accessed 19 Mar 2021.

  24. NCCN Clinical Practice Guidelines on Oncology (NCCN Guidelines®): gastric cancer. Version 2. March 9, 2021. NCCN.org. Available at https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf. Issued: March 9, 2021. Accessed 19 Mar 2021.

  25. Dooley CP, et al. Double-contrast barium meal and upper gastrointestinal endoscopy. A comparative study. Ann Intern Med. 1984;101(4):538.

    Article  CAS  PubMed  Google Scholar 

  26. Longo WE, et al. Detection of early gastric cancer in an aggressive endoscopy unit. Am Surg. 1989;55(2):100.

    CAS  PubMed  Google Scholar 

  27. Mocellin S, Pasquali S. Diagnostic accuracy of endoscopic ultrasonography (EUS) for the preoperative locoregional staging of primary gastric cancer. Cochrane Database Syst Rev. 2015;2:CD009944.

    Google Scholar 

  28. Redondo-Cerezo E, et al. Endoscopic ultrasound in gastric cancer staging before and after neoadjuvant chemotherapy. A comparison with PET-CT in a clinical series. United Eur. United Eur Gastroenterol J. 2017;5:641–7.

    Article  Google Scholar 

  29. Choi JI, Joo I, Lee JM. State-of-the-art preoperative staging of gastric cancer by MDCT and magnetic resonance imaging. World J Gastroenterol. 2014;20(16):4546–57.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Luo M, et al. Value and impact factors of multidetector computed tomography in diagnosis of preoperative lymph node metastasis in gastric cancer: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2017;96(33):e7769.

    Article  Google Scholar 

  31. Abdalla EK, Pisters PW. Staging and preoperative evaluation of upper gastrointestinal malignancies. Semin Oncol. 2004;31(4):513.

    Article  PubMed  Google Scholar 

  32. Nie RC, et al. Endoscopic ultrasonography compared with multidetector computed tomography for the preoperative staging of gastric cancer: a meta-analysis. World J Surg Oncol. 2017;15(1):113.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ungureanu BS, et al. Endoscopic ultrasound vs. computed tomography for gastric aancer staging: a network meta-analysis. Diagnostics. 2021;11(1):134.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Borggreve AS, et al. Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br J Radiol. 2019;92(1097):20181044.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Renzulli M, et al. Gastric cancer staging: is it time for magnetic resonance imaging? Cancers (Basel). 2020;12(6):1402.

    Article  Google Scholar 

  36. De Vuysere S, et al. Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: a pilot study. BMC Med Imaging. 2021;21(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Findlay JM, et al. Routinely staging gastric cancer with 18F-FDG PET-CT detects additional metastases and predicts early recurrence and death after surgery. Eur Radiol. 2019;29(5):2490–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kawamura T, et al. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer. 2001;92:634–41.

    Article  CAS  PubMed  Google Scholar 

  39. Abdelhakeem AA, et al. Preoperatively treated diffuse-type gastric adenocarcinoma: glucose vs. other energy sources substantially influence prognosis and therapy response. Cancers. 2021;13(3):420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Z, et al. Accuracy of 18F-FDG PET/CT and CECT for primary staging and diagnosis of recurrent gastric cancer: A meta-analysis. Exp Ther Med. 2021;21:164.

    Article  CAS  PubMed  Google Scholar 

  41. Kinkel K, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR, PET): a meta-analysis. Radiology. 2002;224:748–56.

    Article  PubMed  Google Scholar 

  42. Hustinx R, Witvrouw N, Tancredi T. Liver metastases. PET Clin. 2008;3(2):187–95.

    Article  PubMed  Google Scholar 

  43. Turkalow A, et al. Peritoneal carcinomatosis: role of F-18 FDG PET. J Nucl Med. 2003;44:1407–12.

    Google Scholar 

  44. Soussan M, et al. Comparison of FDG-PET/CT and MR with diffusion-weighted imaging for assessing peritoneal carcinomatosis from gastrointestinal malignancy. Eur Radiol. 2012;22:1479–87.

    Article  PubMed  Google Scholar 

  45. Chen R, et al. Relationship between F-18 FDG-PET/CT scans and HER2 expression in gastric cancer. J Nucl Med. 2016;57(7):1040–4.

    Article  CAS  PubMed  Google Scholar 

  46. Lutz MP, et al. The 4th St. Gallen EORTC Gastrointestinal Cancer Conference: controversial issues in the multimodal primary treatment of gastric, junctional and oesophageal adenocarcinoma. Eur J Cancer. 2019;112:1–8.

    Article  PubMed  Google Scholar 

  47. Hicks R, et al. FAPI PET/CT: will it end the hegemony of 18F-FDG in oncology? J Nucl Med. 2021;62:296–302.

    Google Scholar 

  48. Kratochwil C, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–5.

    Google Scholar 

  49. Pang Y, et al. Comparison of 68Ga-FAPI and 18F-FDG in gastric, duodenal and colorectal cancers. Radiology. 2021;298:393–402.

    Google Scholar 

  50. Jacobson FL, Van den Abbeele AD. Importance of 68Ga-FAPI PET/CT for detection of cancer. Radiology. 2022;00:1–2.

    Google Scholar 

  51. Chen X, et al. Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: a preliminary study. Cancer Imaging. 2020;20:24.

    Google Scholar 

  52. Shin J, et al. A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting. Sci Rep. 2021;11:1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herceptin® package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. Updated October 2010. Accessed 16 Mar 2021.

  54. Shitara K, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419–30.

    Article  CAS  PubMed  Google Scholar 

  55. Cyramza® package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125477s034lbl.pdf. Issued 2014. Accessed 20 Mar 2021.

  56. Yang YM, et al. Advances in targeted therapy for esophageal cancer. Sig Transduct Target Ther. 2020;5:229.

    Article  CAS  Google Scholar 

  57. Khetpal N, et al. The clinical and biological significance of tyrosine kinases in gastric cancer. In: Nagaraju GP, editor. Role of tyrosine kinases in gastrointestinal malignancies. Springer; 2018.

    Google Scholar 

  58. Selim JH, et al. Targeted and novel therapy in advanced gastric cancer. Exp Hematol Oncol. 2019;8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wainberg ZA, et al. Efficacy of pembrolizumab monotherapy for advanced gastric/gastroesophageal junction cancer with programmed death ligand 1 combined positive score >10. Clin Cancer Res. 2021;27(7):1923–1931.

    Google Scholar 

  60. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  Google Scholar 

  61. Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23:39. https://doi.org/10.1208/s12248-021-00574-0.

    Article  PubMed  Google Scholar 

  62. Boger C, et al. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget. 2016;7:24269–83.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kang YK, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  64. Fuchs CS, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial [published correction appears in JAMA Oncol. 2019 Apr 1;5(4):579]. JAMA Oncol. 2018;4(5):e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  65. FDA grants accelerated approval to pembrolizumab for advanced gastric cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer. Issued: September 22, 2017. Accessed 21 Mar 2021.

  66. Moehler M, et al. LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): first results of the CheckMate 649 study. Ann Oncol. 2020;31(4):S1191.

    Article  Google Scholar 

  67. FDA grants priority review to nivolumab/chemo for frontline metastatic gastric, GEJ, and esophageal cancer. https://www.onclive.com/view/fda-grants-priority-review-to-nivolumab-chemo-for-frontline-metastatic-gastric-gej-and-esophageal-cancer. Issued: January 20, 2021. Accessed 21 Mar 2021.

  68. Xie T, et al. Positive status of Epstein-Barr virus as a biomarker for gastric cancer immunotherapy: a prospective observational study. J Immunother. 2020;43(4):139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ott K, et al. The value of PET imaging in patients with localized gastroesophageal cancer. Gastrointest Cancer Res. 2008;2(6):287–94.

    PubMed  PubMed Central  Google Scholar 

  70. Lordick F, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8(9):797–805.

    Article  PubMed  Google Scholar 

  71. Cabral F, et al. Complete pathological response (pCR) in gastroesophageal cancer: correlation with metabolic response. Cancer Radiother. 2020;24(8):834–41.

    Article  CAS  PubMed  Google Scholar 

  72. Lorenzen S, et al. Sequential FDG-PET and induction chemotherapy in locally advanced adenocarcinoma of the oesophago-gastric junction (AEG): the Heidelberg imaging program in cancer of the oesophago-gastric junction during neoadjuvant treatment: HICON trial. BMC Cancer. 2011;24(11):266.

    Article  Google Scholar 

  73. Findlay JM, et al. Predicting pathologic response of esophageal cancer to neoadjuvant chemotherapy: the implications of metabolic nodal response for personalized therapy. J Nucl Med. 2017;58(2):266–75. Erratum in: J Nucl Med. 2017;58(5):852.

    Article  CAS  PubMed  Google Scholar 

  74. Findlay JM, et al. Temporal validation of metabolic nodal response of esophageal cancer to neoadjuvant chemotherapy as an independent predictor of unresectable disease, survival, and recurrence. Eur Radiol. 2019;29(12):6717–27.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu G, et al. Intra-tumor metabolic heterogeneity of gastric cancer on 18F-FDG PETCT indicates patient survival outcomes. Clin Exp Med. 2021;21:129–38.

    Article  CAS  PubMed  Google Scholar 

  76. Hermann K, et al. Imaging gastric cancer with PET and the radiotracers F-18 FLT and F-18 FDG: a comparative analysis. J Nucl Med. 2007;48(12):1945–50.

    Article  Google Scholar 

  77. Malkowski B, et al. 18F-FLT PET/CT in patients with gastric carcinoma. Gastroenterol Res Pract. 2013;2013:696423.

    Google Scholar 

  78. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  79. Ott K, et al. Molecular imaging of proliferation and glucose utilization: utility for monitoring response and prognosis after neoadjuvant therapy in locally advanced gastric cancer. Ann Surg Oncol. 2011;18:3316–23.

    Article  PubMed  Google Scholar 

  80. Wolchok JD, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  81. Kwak JJ, et al. Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. Radiographics. 2015;35(2):424–37.

    Article  PubMed  Google Scholar 

  82. Weber JS, et al. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer. 2013;119(9):1675–82.

    Article  CAS  PubMed  Google Scholar 

  83. Khoja L, et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systemic review. Ann Oncol. 2017;28:2377–85.

    Article  CAS  PubMed  Google Scholar 

  84. Puzanov I, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yago A, et al. Adequate period of surveillance in each stage for curatively resected gastric cancer: analyzing the time and rates of recurrence. Gastric Cancer. 2021;24(3):752–61. Erratum Gastric Cancer. 2021;24(3):762–3.

    Google Scholar 

  86. Lee JW, et al. Diagnostic performance of FDG PET/CT for surveillance in asymptomatic gastric cancer patients after curative surgical resection. Eur J Nucl Med Mol Imaging. 2016;43:881–8.

    Article  PubMed  Google Scholar 

  87. Kim SJ, et al. Primary tumor [18F]-FDG avidity affects the performance of [18F]-FDG PET/CT for detecting gastric cancer recurrence. J Nucl Med. 2016;57(4):544–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick D. Van den Abbeele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sakellis, C.G., Jacene, H.A., Van den Abbeele, A.D. (2022). Diagnostic Applications of Nuclear Medicine: Gastric Cancers. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics