Skip to main content

Tendons/Muscles

  • Living reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

While internal derangements of the knee often dominate the surgeon’s evaluation, musculotendinous abnormalities about the knee can be important pain generators. Musculotendinous injuries in the knee region have specific implications for treatment and prognosis and can account for unexpected diagnoses that are sometimes missed clinically. Although radiography is the most common initial imaging test, cross-sectional imaging may be necessary to pinpoint the precise anatomic location of a derangement, determine its severity, and assess for coexisting abnormalities. Cross-sectional imaging can be performed with sonography, CT, or MRI, depending on the clinical setting. In this chapter, evaluation of knee tendons and muscles focuses on normal anatomy, anatomic variations, the selection of an appropriate cross-sectional imaging technique, and the most common imaging findings after injury and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kaufman KR, Brodine S, Shaffer R. Military training-related injuries: surveillance, research, and prevention. Am J Prev Med. 2000;18(3 Suppl):54–63.

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin M, Kaiser E, Milz S. Structure-function relationships in tendons: a review. J Anat. 2008;212(3):211–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Batty L, Murgier J, O’Sullivan R, Webster KE, Feller JA, Devitt BM. The Kaplan fibers of the iliotibial band can be identified on routine knee magnetic resonance imaging. Am J Sports Med. 2019;47(12):2895–903.

    Article  PubMed  Google Scholar 

  4. Berthold DP, Willinger L, LeVasseur MR, Marrero DE, Bell R, Muench LN, Kane Z, Imhoff AB, Herbst E, Cote MP, Arciero RA, Edgar CM. High rate of initially overlooked Kaplan fiber complex injuries in patients with isolated anterior cruciate ligament injury. Am J Sports Med. 2021;49(8):2117–24.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boutin RD. Imaging of muscle. In: Resnick D, editor. Diagnosis of bone and joint disorders. 4th ed. Philadelphia: WB Saunders; 2001.

    Google Scholar 

  6. Frey H. Musculus gastrocnemius tertius. Gegenbaurs Morph Jahrb. 1919;50:517–30.

    Google Scholar 

  7. Koplas MC, Grooff P, Piraino D, Recht M. Third head of the gastrocnemius: an MR imaging study based on 1,039 consecutive knee examinations. Skelet Radiol. 2009;38(4):349–54.

    Article  Google Scholar 

  8. Bouhoutsos J, Daskalakis E. Muscular abnormalities affecting the popliteal vessels. Br J Surg. 1981;68(7):501–6.

    Article  CAS  PubMed  Google Scholar 

  9. Dickson T, Koulouris G. Acute posterior thigh pain in an athlete. Grade I myofascial strain of an accessory muscular slip and adjoining muscle fibres, connecting an accessory tensor fascia suralis (TFS) muscle and the distal biceps femoris. Skelet Radiol. 2017;46(1):101–2, 141–2.

    Article  Google Scholar 

  10. Bale LS, Herrin SO. Tensor Fasciae Suralis–Prevalence study and literature review. medRxiv. 2019:19010389.

    Google Scholar 

  11. Herzog RJ. Accessory plantaris muscle: anatomy and prevalence. HSS J. 2011;7(1):52–6.

    Article  PubMed  Google Scholar 

  12. Kim HK, Laor T, Racadio JM. MR imaging assessment of the lateral head of the gastrocnemius muscle: prevalence of segmental anomalous origins in children and young adults. Pediatr Radiol. 2008;38(12):1300–5.

    Article  PubMed  Google Scholar 

  13. Zimmermann SM, Njagulj V, Fritz B, Fucentese SF, Sutter R, Pfirrmann CWA. The accessory iliotibial band-meniscal ligament of the knee: association with lesions of the lateral meniscus. AJR Am J Roentgenol. 2019;213(4):912–7.

    Article  PubMed  Google Scholar 

  14. Shin YK, Ryu KN, Park JS, Lee JE, Jin W, Park SY, Yoon SH, Lee KR. Biceps Femoris tendon and lateral collateral ligament: analysis of insertion pattern using MRI. J Korean Soc Magn Reson Med. 2014;18(3):225–31.

    Article  Google Scholar 

  15. Yang J, Cho Y, Cho J, Choi H, Jeon J, Kang S. Anatomical variants of "short head of biceps Femoris muscle" associated with common peroneal neuropathy in Korean populations: an MRI based study. J Korean Neurosurg Soc. 2018;61(4):509–15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fox MG, Chang EY, Amini B, Bernard SA, Gorbachova T, Ha AS, Iyer RS, Lee KS, Metter DF, Mooar PA, Shah NA, Singer AD, Smith SE, Taljanovic MS, Thiele R, Tynus KM, Kransdorf MJ. ACR appropriateness criteria chronic knee pain. J Am Coll Radiol. 2018;15(11S):S302–12.

    Article  PubMed  Google Scholar 

  17. Tuite MJ, Kransdorf MJ, Beaman FD, Adler RS, Amini B, Appel M, Bernard SA, Dempsey ME, Fries IB, Greenspan BS, Khurana B, Mosher TJ, Walker EA, Ward RJ, Wessell DE, Weissman BN. ACR appropriateness criteria acute trauma to the knee. J Am Coll Radiol. 2015;12(11):1164–72.

    Article  PubMed  Google Scholar 

  18. Keller G, Afat S, Ahrend MD, Springer F. Diagnostic accuracy of ultra-low-dose CT for torsion measurement of the lower limb. Eur Radiol. 2021;31(6):3574–81.

    Article  PubMed  Google Scholar 

  19. Stern C, Sommer S, Germann C, Galley J, Pfirrmann CWA, Fritz B, Sutter R. Pelvic bone CT: can tin-filtered ultra-low-dose CT and virtual radiographs be used as alternative for standard CT and digital radiographs? Eur Radiol. 2021;31(9):6793–801.

    Article  PubMed  PubMed Central  Google Scholar 

  20. May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. Radiographics. 2000;20 Spec No:S295–315.

    Article  CAS  PubMed  Google Scholar 

  21. Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73(10):1507–25.

    Article  CAS  PubMed  Google Scholar 

  22. Raja BS, Gupta K, Abdusamad V, Singh S, Maji S. Assessment of thickness of in vivo autograft tendons around the knee and its correlation with anthropometric data, thickness of patella and anterior cruciate ligament tibial foot print diameter. Anat Cell Biol. 2021;54(1):18–24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hodges CT, Shelton TJ, Bateni CP, Henrichon SS, Skaggs AW, Boutin RD, Lee CA, Haus BM, Marder RA. The medial epicondyle of the distal femur is the optimal location for MRI measurement of semitendinosus and gracilis tendon cross-sectional area. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3498–504.

    Article  PubMed  Google Scholar 

  24. Purohit NB, King LJ. Ultrasound of lower limb sports injuries. Ultrasound. 2015;23(3):149–57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bendjador H, Foiret J, Wodnicki R, Ferrara K. Deep high resolution 4D ultrafast ultrasound imaging with 2D matrix arrays. Bulletin of the American Physical Society. 2022 Mar 15.

    Google Scholar 

  26. Ilovitsh T, Ilovitsh A, Foiret J, Fite BZ, Ferrara KW. Acoustical structured illumination for super-resolution ultrasound imaging. Commun Biol. 2018;1:3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alfuraih AM, Tan AL, O’Connor P, Emery P, Wakefield RJ. The effect of ageing on shear wave elastography muscle stiffness in adults. Aging Clin Exp Res. 2019;31(12):1755–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maeda A, Yamagishi M, Otsuka Y, Izumo T, Rogi T, Shibata H, Fukuda M, Arimitsu T, Yamada Y, Miyamoto N, Hashimoto T. Characteristics of the passive muscle stiffness of the Vastus Lateralis: a feasibility study to assess muscle fibrosis. Int J Environ Res Public Health. 2021;18(17):8947.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeong JY, Khil EK, Kim AY, Lee SA, Choi JA. Utility of preoperative shear-wave elastography of the supraspinatus muscle for predicting successful rotator cuff repair: a prospective observational study with MRI correlation. AJR Am J Roentgenol. 2022;30:1–10.

    Google Scholar 

  30. Sarto F, Spörri J, Fitze DP, Quinlan JI, Narici MV, Franchi MV. Implementing ultrasound imaging for the assessment of muscle and tendon properties in elite sports: practical aspects, methodological considerations and future directions. Sports Med. 2021;51(6):1151–70.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mueller-Wohlfahrt HW, Haensel L, Mithoefer K, Ekstrand J, English B, McNally S, Orchard J, van Dijk CN, Kerkhoffs GM, Schamasch P, Blottner D, Swaerd L, Goedhart E, Ueblacker P. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47(6):342–50.

    Article  PubMed  Google Scholar 

  32. Peetrons P. Ultrasound of muscles. Eur Radiol. 2002;12(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  33. Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46(2):112–7.

    Article  PubMed  Google Scholar 

  34. Pollock N, James SL, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48(18):1347–51.

    Article  PubMed  Google Scholar 

  35. Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Risk factors for injuries in football. Am J Sports Med. 2004;32(1 Suppl):5S–16S.

    Article  PubMed  Google Scholar 

  36. Hägglund M, Waldén M. Risk factors for acute knee injury in female youth football. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):737–46.

    Article  PubMed  Google Scholar 

  37. van Dyk N, Farooq A, Bahr R, Witvrouw E. Hamstring and ankle flexibility deficits are weak risk factors for hamstring injury in professional soccer players: A prospective cohort study of 438 players including 78 injuries. Am J Sports Med. 2018;46(9):2203–10.

    Article  PubMed  Google Scholar 

  38. Yoon MA, Choi JY, Lim HK, Yoo HJ, Hong SH, Choi JA, Kang HS. High prevalence of abnormal MR findings of the distal semimembranosus tendon: contributing factors based on demographic, radiographic, and MR features. AJR Am J Roentgenol. 2014;202(5):1087–93.

    Article  PubMed  Google Scholar 

  39. Ibrahim M, Meknas K, Steigen SE, Olsen R, Sernert N, Ejerhed L, Kartus JT. No significant histological or ultrastructural tendinosis changes in the hamstring tendon in patients with mild to moderate osteoarthritis of the knee? Knee Surg Sports Traumatol Arthrosc. 2021;29(4):1067–74.

    Article  PubMed  Google Scholar 

  40. Temponi EF, de Carvalho Júnior LH, Saithna A, Thaunat M, Sonnery-Cottet B. Incidence and MRI characterization of the spectrum of posterolateral corner injuries occurring in association with ACL rupture. Skelet Radiol. 2017;46(8):1063–70.

    Article  Google Scholar 

  41. Ryan JB, Wheeler JH, Hopkinson WJ, Arciero RA, Kolakowski KR. Quadriceps contusions. West Point update. Am J Sports Med. 1991;19(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  42. Yamagami R, Taketomi S, Inui H, Sanada T, Nakagawa T, Tanaka S. Myositis ossificans after navigated knee surgery: a report of two cases and literature review. Knee. 2016;23(3):561–4.

    Article  PubMed  Google Scholar 

  43. Li C, Huang Z, Anil KC, Lao C, Wu Q, Jiang H. Heterotopic ossification in the post cruciate ligament of the knee: a case report and literature review. BMC Musculoskelet Disord. 2021;22(1):304.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee KR, Park SY, Jin W, Won KY. MR imaging and ultrasonography findings of early myositis ossificans: a case report. Skelet Radiol. 2016;45(10):1413–7.

    Article  Google Scholar 

  45. Van den Bergh FR, Vanhoenacker FM, De Smet E, Huysse W, Verstraete KL. Peroneal nerve: Normal anatomy and pathologic findings on routine MRI of the knee. Insights Imaging. 2013;4(3):287–99.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamath S, Venkatanarasimha N, Walsh MA, Hughes PM. MRI appearance of muscle denervation. Skelet Radiol. 2008;37(5):397–404.

    Article  CAS  Google Scholar 

  47. Bendszus M, Koltzenburg M, Wessig C, Solymosi L. Sequential MR imaging of denervated muscle: experimental study. AJNR Am J Neuroradiol. 2002;23(8):1427–31.

    PubMed  PubMed Central  Google Scholar 

  48. Smitaman E, Flores DV, Mejía Gómez C, Pathria MN. MR imaging of atraumatic muscle disorders. Radiographics. 2018;38(2):500–22.

    Article  PubMed  Google Scholar 

  49. Birchmeier T, Lisee C, Kane K, Brazier B, Triplett A, Kuenze C. Quadriceps muscle size following ACL injury and reconstruction: a systematic review. J Orthop Res. 2020;38(3):598–608.

    Article  PubMed  Google Scholar 

  50. Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, Hart JM. MRI-based assessment of lower-extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2018;27(3):201–12.

    Article  PubMed  Google Scholar 

  51. Sherman DA, Rush JL, Glaviano NR, Norte GE. Hamstrings muscle morphology after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(8):1733–50.

    Article  PubMed  Google Scholar 

  52. Khan I, Ashraf T, Saifuddin A. Magnetic resonance imaging of impingement and friction syndromes around the knee. Skelet Radiol. 2020;49(6):823–36.

    Article  Google Scholar 

  53. Muhle C, Ahn JM, Yeh L, Bergman GA, Boutin RD, Schweitzer M, Jacobson JA, Haghighi P, Trudell DJ, Resnick D. Iliotibial band friction syndrome: MR imaging findings in 16 patients and MR arthrographic study of six cadaveric knees. Radiology. 1999;212(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  54. Hayeri MR, Ziai P, Shehata ML, Teytelboym OM, Huang BK. Soft-tissue infections and their imaging mimics: from cellulitis to necrotizing fasciitis. Radiographics. 2016;36(6):1888–910.

    Article  PubMed  Google Scholar 

  55. McAndrew CM, Fitzgerald SJ, Kraay MJ, Goldberg VM. Incidence of postthrombotic syndrome in patients undergoing primary total knee arthroplasty for osteoarthritis. Clin Orthop Relat Res. 2010;468(1):178–81.

    Article  PubMed  Google Scholar 

  56. Plancher KD, Chan JJ, Bishai SK, Silane M, Ibrahim TF, Petterson SC. DVT and pulmonary embolism following knee arthroscopy: the role of genetic predisposition and autoimmune antibodies: A report of 3 cases. JBJS Case Connect. 2020;10(2):e0514.

    Article  PubMed  Google Scholar 

  57. Duncan DP, Taddonio M, Chang EY, Huang BK. Characterization of intramuscular calf vein thrombosis on routine knee MRI. Skelet Radiol. 2019;48(10):1573–80.

    Article  Google Scholar 

  58. Restrepo R, Pevsner R, Pelaez L, Plut D, Lee EY. Three distinct vascular anomalies involving skeletal muscle: simplifying the approach for the general radiologist. Radiol Clin N Am. 2020;58(3):603–18.

    Article  PubMed  Google Scholar 

  59. Ahlawat S, Chhabra A, Blakely J. Magnetic resonance neurography of peripheral nerve tumors and tumorlike conditions. Neuroimaging Clin N Am. 2014;24(1):171–92.

    Article  PubMed  Google Scholar 

  60. Kramer DE, Pace JL, Jarrett DY, Zurakowski D, Kocher MS, Micheli LJ. Diagnosis and management of symptomatic muscle herniation of the extremities: a retrospective review. Am J Sports Med. 2013;41(9):2174–80.

    Article  PubMed  Google Scholar 

  61. Nguyen JT, Nguyen JL, Wheatley MJ, Nguyen TA. Muscle hernias of the leg: A case report and comprehensive review of the literature. Can J Plast Surg. 2013;21(4):243–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Meyer NB, Jacobson JA, Kalia V, Kim SM. Musculoskeletal ultrasound: athletic injuries of the lower extremity. Ultrasonography. 2018;37(3):175–89.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reid L, Mofidi A. Bilateral snapping biceps femoris tendon: a case report and review of the literature. Eur J Orthop Surg Traumatol. 2019;29(5):1081–7.

    Article  PubMed  Google Scholar 

  64. Ernat JJ, Galvin JW. Snapping Biceps Femoris Tendon. Am J Orthop (Belle Mead NJ). 2018;47(7).

    Google Scholar 

  65. Rosa SB, Ewen PM, Doma K, Ferrer JFL, Grant A. Dynamic evaluation of patellofemoral instability: A clinical reality or just a research field? A Literature review. Orthop Surg. 2019 Dec;11(6):932–42.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boutin RD, Eshed I, Kassarjian A, Vemuri NV. The global reading room: knee MRI protocols. AJR Am J Roentgenol. 2022:1–2. https://doi.org/10.2214/AJR.21.27238. Epub ahead of print.

  67. Kogan F, Levine E, Chaudhari AS, Monu UD, Epperson K, Oei EHG, Gold GE, Hargreaves BA. Simultaneous bilateral-knee MR imaging. Magn Reson Med. 2018;80(2):529–37.

    Article  PubMed  Google Scholar 

  68. Kemnitz J, Baumgartner CF, Eckstein F, Chaudhari A, Ruhdorfer A, Wirth W, Eder SK, Konukoglu E. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain. MAGMA. 2020;33(4):483–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Watts .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Watts, R.E., Boutin, R.D. (2023). Tendons/Muscles. In: Sherman, S.L., Chahla, J., Rodeo, S.A., LaPrade, R. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-82869-1_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82869-1_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82869-1

  • Online ISBN: 978-3-030-82869-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics