Skip to main content

Microbial Production of Zeaxanthin

  • Living reference work entry
  • First Online:
Microbial Production of Food Bioactive Compounds

Abstract

A high amount of zeaxanthin, lutein, and meso-zeaxanthin are stored in the human macula, and they are associated with the risk reduction of human eye diseases such as age-related macular degeneration, glaucoma, and cataracts. The xanthophyll zeaxanthin and lutein usually coexist naturally and can be consumed from various fruits and vegetables. Zeaxanthin can be found in yellow-orange color fruits and vegetables like yellow corn, papaya, peaches, carrots, and mandarin oranges. Spirulina is also a microscopic and filamentous cyanobacterium containing a high concentration of zeaxanthin. Currently, zeaxanthin has been mainly produced by extraction and isolation from plants, but it is high-cost and energy-consuming. Therefore, the biosynthesis of zeaxanthin by microorganisms has been studied and developed recently. Many studies demonstrate that bacteria and microalgae are the most common naturally occurring zeaxanthin-accumulating microorganisms. Escherichia coli or yeast are broadly reported as engineered microorganisms for zeaxanthin production by regulating the biosynthetic pathway and the overexpression of the constructed gene. This chapter will discuss biosynthetic pathways of zeaxanthin, zeaxanthin production by natural zeaxanthin-accumulating method, and metabolic engineered microorganisms. At the end of the chapter, perspectives concerning the innovative strategies for further developing zeaxanthin production and its trends to improve the metabolically engineering microorganisms will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albrecht M, Misawa N, Sandmann G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol Lett. 1999;21(9):791–5.

    Article  CAS  Google Scholar 

  • Ashaolu TJ, Samborska K, Lee CC, Tomas M, Capanoglu E, Tarhan Ö, Taze B, Jafari SM. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int J Biol Macromol. 2021;193:2320–31.

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol. 2007a;30(4):291–6.

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K. Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol. 2007b;57(4):837–43.

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol. 2007c;57(7):1435–41.

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K. Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol. 2008;58(3):601–6.

    Article  CAS  PubMed  Google Scholar 

  • Bahrami A, Delshadi R, Cacciotti I, Esfanjani AF, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Guven EC. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interf Sci. 2022;302:102622.

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Katz A, Avron M. Accumulation of-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol. 1982;18:529.

    Article  CAS  Google Scholar 

  • Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, et al. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34–66.

    Article  CAS  PubMed  Google Scholar 

  • Berry A, Janssens D, Hümbelin M, Jore JP, Hoste B, Cleenwerck I, Vancanneyt M, Bretzel W, Mayer AF, Lopez-Ulibarri R, Shanmugam B. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol. 2003;53(1):231–8.

    Article  CAS  PubMed  Google Scholar 

  • Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid RD, Altenbuchner J, Urlacher VB. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl Microbiol Biotechnol. 2011;89(4):1137–47.

    Article  CAS  PubMed  Google Scholar 

  • Bhosale P, Larson AJ, Bernstein PS. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J Appl Microbiol. 2004;96(3):623–9.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon L, Jensen AA, Kavanagh JM, McClure DD. Microalgal production of zeaxanthin. Algal Res. 2021;55:102266.

    Article  Google Scholar 

  • Bouyahya A, El Omari N, Hakkur M, El Hachlafi N, Charfi S, Balahbib A, et al. Sources, health benefits, and biological properties of zeaxanthin. Trends Food Sci Technol. 2021;118:519–38.

    Article  CAS  Google Scholar 

  • Breitenbach J, Pollmann H, Sandmann G. Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: engineering of a high-yield zeaxanthin strain. J Biotechnol. 2019;289:112–7.

    Article  CAS  PubMed  Google Scholar 

  • Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9–10):575–84.

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Li HB, Wong RN, Ji B, Jiang Y. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J Chromatogr A. 2005;1064(2):183–6.

    Article  CAS  PubMed  Google Scholar 

  • Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs. 2011;9(9):1607–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csernetics Á, Tóth E, Farkas A, Nagy G, Bencsik O, Manikandan P, Vágvölgyi C, Papp T. expression of a bacterial β-carotene hydroxylase in canthaxanthin producing mutant Mucor circinelloides strains. Acta Biol Szegediensis. 2014;58(2):139–46.

    Google Scholar 

  • Demirci M, Lee CC, Çavuş M, Çağlar MY. Oleogels for food applications. In: Biopolymer-based formulations. Amsterdam: Elsevier; 2020. p. 781–811.

    Chapter  Google Scholar 

  • Dufossé L. Pigments, microbial. In: Reference module in life sciences. Elsevier; 2016. https://hal.science/hal-01734750

  • Eguchi T, Dekishima Y, Aizawa H, Tamegai H, Kakinuma K, Misawa N, et al. Preparation of highly deuterated zeaxanthin, lycopene, and β-carotene from fully deuterated mevalonate using engineered Escherichia coli. Tetrahedron. 2005;61(8):2027–35.

    Article  CAS  Google Scholar 

  • Erdal P, Ökmen G. Gıdalarda Kullanılan Mikrobiyal Kaynaklı Pigmentler. Türk Bilimsel Derlemeler Dergisi. 2013;2:56–68.

    Google Scholar 

  • Goodwin TW. [15] Distribution of carotenoids. In: Methods in enzymology. Academic Press; 1992. vol. 213, p. 167–72. https://doi.org/10.1016/0076-6879(92)13119-I

  • Goodwin TW. Carotenoids Part A: chemistry separation quantitation and antioxidation [15]. In: Distribution of carotenoids. Elsevier; 1992. p. 167–72.

    Google Scholar 

  • Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N. Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol. 2017;29(4):1781–90.

    Google Scholar 

  • Guihéneuf F, Stengel DB. Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res. 2015;10:152–63.

    Article  Google Scholar 

  • Ha S-H, Kim JK, Jeong YS, You M-K, Lim S-H, Kim J-K. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm. Metab Eng. 2019;52:178–89.

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Arun AB, Ho HP, Chang CM, Rekha PD, Lee MR, Singh S, Young CC. Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T. J Agric Food Chem. 2011;59(8):4119–24.

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Shahina M, Lin SY, Sridhar KR, Young LS, Lee MR, Chen WM, Chou JH, Young CC. Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. FEMS Microbiol Lett. 2012;333(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Shahina M, Lin SY, Cho JC, Lai WA, Young CC. Kordiaaquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. Int J Syst Evol Microbiol. 2013;63(Pt_12):4790–6.

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH, Liu YC, Young CC. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol. 2014;64(Pt_1):138–45.

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Lin Y, He M, Gong Y, Huang J. Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. J Agric Food Chem. 2018;66(4):891–7.

    Article  CAS  PubMed  Google Scholar 

  • Ilter I, Akyıl S, Koç M, Kaymak-Ertekin F. Alglerden Elde Edilen ve Gıdalarda Doğal Renklendirici Olarak Kullanılan Pigmentler ve Fonksiyonel Özellikleri. Turk J Agric – Food Sci Technol. 2017;5(12):1508.

    Google Scholar 

  • Inbaraj BS, Chien JT, Chen BH. Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. J Chromatogr A. 2006;1102(1–2):193–9.

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Feth B, Melis A. A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng. 2003;81(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  • Joshi C, Singhal RS. Modelling and optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques. Biocatal Agric Biotechnol. 2016;8:228–35.

    Article  Google Scholar 

  • Lagarde D, Beuf L, Vermaas W. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol. 2000;66(1):64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC, Chen J, Frank JF. Role of cellulose and colanic acid in attachment of Shiga toxin–producing Escherichia coli to lettuce and spinach in different water hardness environments. J Food Prot. 2015;78(8):1461–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Chen J, Frank JF. Influence of extracellular cellulose and colanic acid production on the survival of shiga toxin–producing Escherichia coli on spinach and lettuce after chlorine treatment. J Food Prot. 2016;79(4):666–71.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim JW, Lee PC. Complete genome sequence of Flavobacterium kingsejongi WV39, a type species of the genus Flavobacterium and a microbial C40 carotenoid zeaxanthin producer. J Biotechnol. 2018;266:9–13.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Tomas M, Jafari SM. Optical analysis of nanoencapsulated food ingredients by color measurement. In: Characterization of nanoencapsulated food ingredients. London: Academic; 2020. p. 505–28.

    Chapter  Google Scholar 

  • Liang J, Ning JC, Zhao H. Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae. Nucleic Acids Res. 2013;41(4):e54.

    Article  CAS  PubMed  Google Scholar 

  • Liao HH, Medwid RD, Heefner DL, Sniff KS, Hassler RA, Yarus MJ, inventors; Universal Foods Corp, assignee. Carotenoid producing culture using Nespongiococcum excentricum. United States patent US 5,437,997. 1995.

    Google Scholar 

  • Liau BC, Hong SE, Chang LP, Shen CT, Li YC, Wu YP, Jong TT, Shieh CJ, Hsu SL, Chang CM. Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography. Sep Purif Technol. 2011;78(1):1–8.

    Article  CAS  Google Scholar 

  • Liu Q, Li W, Liu D, Li L, Li J, Lv N, Liu F, Zhu B, Zhou Y, Xin Y, Dong X. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME J. 2021;15(6):1844–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masetto A, Flores-Cotera LB, Díaz C, Langley E, Sanchez S. Application of a complete factorial design for the production of zeaxanthin by Flavobacterium sp. J Biosci Bioeng. 2001;92(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  • Matthews PD, Wurtzel DE. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol. 2000;53(4):396–400.

    Article  CAS  PubMed  Google Scholar 

  • Mesoflavibacter aestuarii sp. nov. a zeaxanthin-producing marine bacterium isolated from seawater. Int J Syst Evol Microbiol. 2014;64:1932–7. https://doi.org/10.1099/ijs.0.061085-0

  • Mitra M, Mishra S. A comparative analysis of different extraction solvent systems on the extractability of eicosapentaenoic acid from the marine eustigmatophyte Nannochloropsis oceanica. Algal Res. 2019;38:101387.

    Article  Google Scholar 

  • Mohamed I, Mearns AS, Fraser K, Hodgson R, inventors; Aquapharm Bio Discovery Ltd, assignee. Biological production of zeaxanthin and carotenoid biosynthesis control. United States patent US 8,361,743. 2013.

    Google Scholar 

  • Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol. 2016;49:74–84.

    Article  CAS  Google Scholar 

  • Okur ÖD. Lutein and Zeaxanthin: health-friendly nutrients. Karaelmas Sci Eng J. Zonguldak Bulent Ecevit University. 2019;9(1):56–61.

    Google Scholar 

  • Orndorff SA, Campbell EA, Medwid RD, inventors; Universal Foods Corp, assignee. Zeaxanthin producing strains of Neospongiococcum excentricum. United States patent US 5,360,730. 1994.

    Google Scholar 

  • Palermo JA, Gros EG, Seldes AM. Carotenoids from three red algae of the Corallinaceae. Phytochemistry. 1991;30(9):2983–6.

    Article  CAS  Google Scholar 

  • Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi C, Iturriaga EA. Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol. 2006;69(5):526–31.

    Article  CAS  PubMed  Google Scholar 

  • Phillips MA, León P, Boronat A, Rodríguez-Concepción M. The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci. 2008;13(12):619–23.

    Article  CAS  PubMed  Google Scholar 

  • Pollmann H, Breitenbach J, Sandmann G. Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl Microbiol Biotechnol 2017;101(1):103–11. https://doi.org/10.1007/s00253-016-7769-0

  • Prabhu S, Rekha PD, Young CC, Hameed A, Lin SY, Arun AB. Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties. Appl Biochem Biotechnol. 2013;171(4):817–31.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu S, Rekha PD, Arun AB. Zeaxanthin biosynthesis by members of the genus Muricauda. Pol J Microbiol. 2014;63:115–9.

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Mitra M, Shah F, Tirkey SR, Mishra S. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges. J Funct Foods. 2020a;67:103867.

    Article  CAS  Google Scholar 

  • Ram S, Tirkey SR, Kumar MA, Mishra S. Ameliorating process parameters for zeaxanthin yield in Arthrobacter gandavensis MTCC 25325. AMB Express. 2020b;10(1):1–3.

    Article  CAS  Google Scholar 

  • Rodríguez-Sáiz M, de la Fuente J-L, Barredo J-L. Metabolic engineering of Mucor circinelloides for zeaxanthin production. Methods Mol Biol. 2012;898:133–51.

    Article  PubMed  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY. The carotenoid pigment zeaxanthin – a review. Compr Rev Food Sci Food Saf. 2008;7(1):29–49.

    Article  CAS  Google Scholar 

  • Sarnaik A, Nambissan V, Pandit R, Lali A. Recombinant Synechococcus elongatus PCC 7942 for improved zeaxanthin production under natural light conditions. Algal Res. 2018;36:139–51.

    Article  Google Scholar 

  • Schäfer L, Sandmann M, Woitsch S, Sandmann G. Coordinate up-regulation of carotenoid biosynthesis as a response to light stress in Synechococcus PCC7942. Plant Cell Environ. 2006;29(7):1349–56.

    Article  PubMed  Google Scholar 

  • Shahina M, Hameed A, Lin SY, Lee RJ, Lee MR, Young CC. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie Van Leeuwenhoek. 2014;105(4):771–9.

    Article  CAS  PubMed  Google Scholar 

  • Shen HJ, Cheng BY, Zhang YM, Tang L, Li Z, Bu YF, Li XR, Tian GQ, Liu JZ. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab Eng. 2016;38:180–90.

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ. Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresour Technol. 2013;143:308–14.

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Barrow CJ, Mathur AS, Tuli DK, Puri M. Optimization of zeaxanthin and β-carotene extraction from Chlorella saccharophila isolated from New Zealand marine waters. Biocatal Agric Biotechnol. 2015;4(2):166–73.

    Article  Google Scholar 

  • Sowmya R, Sachindra NM. Carotenoid production by Formosa sp. KMW a marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition. Biocatal Agric Biotechnol 2015;4(4):559–67. https://doi.org/10.1016/j.bcab.2015.08.018

  • Sowmya R, Sachindra NM. Biochemical and molecular characterization of carotenogenic flavobacterial isolates from marine waters. Pol J Microbiol. 2016;65(1):77–88.

    Article  PubMed  Google Scholar 

  • Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: a review. Bioresour Technol. 2022;352:127071.

    Article  CAS  PubMed  Google Scholar 

  • Surgun Acar Y, İşki̇l R, Bürün B. Biotechnological studies in Saffron (Crocus sativus L.) plant. J Inst Sci Technol. 2017;7(2):343–52.

    Article  Google Scholar 

  • Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S, Suntornsuk W. Identification of newly zeaxanthin-producing bacteria isolated from sponges in the Gulf of Thailand and their zeaxanthin production. Appl Biochem Biotechnol. 2012;167(8):2357–68.

    Article  CAS  PubMed  Google Scholar 

  • Vila E, Hornero-Méndez D, Lareo C, Saravia V. Biotechnological production of zeaxanthin by an Antarctic Flavobacterium: evaluation of culture conditions. J Biotechnol. 2020;319:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Weaver LJ, Sousa MM, Wang G, Baidoo E, Petzold CJ, Keasling JD. A kinetic-based approach to understanding heterologous mevalonate pathway function in E. coli. Biotechnol Bioeng. 2015;112(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Li H, Yang X, Gu C, Mu H, Yue Y, Wang L. Cloning and expression analysis of MEP pathway enzyme-encoding genes in Osmanthus fragrans. Genes. 2016;7(10):78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye VM, Bhatia SK. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol Lett. 2012;34(8):1405–14.

    Article  CAS  PubMed  Google Scholar 

  • Yoon BJ, Lee DH, Kang BJ, Kahng HY, Oh YS, Sohn JH, Choi ES, Oh DC. Hyunsoonleella jejuensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol. 2010;60(2):382–6.

    Article  CAS  PubMed  Google Scholar 

  • Young A, Britton G. Photobleaching in the unicellular green alga Dunaliella parva 19/9. Photosynth Res. 1990;25(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Z, Sun J, Xue C, Mao X. Biotechnological production of zeaxanthin by microorganisms. Trends Food Sci Technol. 2018;71:225–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Ching Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, CC., Küçükata, Y.Ş. (2023). Microbial Production of Zeaxanthin. In: Jafari, S.M., Harzevili, F.D. (eds) Microbial Production of Food Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-030-81403-8_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81403-8_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81403-8

  • Online ISBN: 978-3-030-81403-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics