Skip to main content

Alcohol and Cocaine Co-usage

  • Living reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions

Abstract

Addiction is a chronic relapsing disorder, which creates challenges for its treatment. Chronic use of drugs of abuse can change the neurobiology and neurochemistry of brain circuits and underlies drug relapse during voluntary abstinence. The role of dopamine (DA) and glutamate in drug addiction has been extensively investigated, and interactions between these neurotransmitters are important for the development of drug use disorders and drug relapse. For the past two decades, the role of glial glutamate transporters has emerged as a key mechanism in drug dependence and relapse. This chapter focuses on the role of these mechanisms in two commonly abused drugs, ethanol and cocaine, that are often abused at the same time. Here, the effect of acute and chronic exposure to cocaine and ethanol on glutamatergic systems in different brain regions within the mesocorticolimbic pathway is considered. The ultimate goal of research into mechanisms of co-use of cocaine and ethanol is to consider how co-use amplifies the changes in this circuitry and complicates attempts to abstain from drug use. This research has the ultimate goal of identifying therapeutic targets that will be effective in preventing relapse in individuals suffering from concurrent alcohol and cocaine use disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPA:

α-Amino-hydroxyl-5-methyl-4-isoxazole-propionate

Amy:

Amygdaloid complex

AUD:

Alcohol use disorder

CBHSQ:

Center for Behavioral Health Statistics and Quality

CDC:

Centers for Disease Control and Prevention

CUD:

Cocaine use disorder

DA:

Dopamine

DAT:

Dopamine transporter

DMAN:

Drug Misuse Warning Network

DSt:

Dorsal striatum

EAAT:

Excitatory amino acid transporter

EMCDDA:

European Monitoring Centre for Drugs and Drug Addiction

GLT/EAAT2:

Glutamate transporter

Hipp:

Hippocampus

iGluR:

Ionotropic glutamate receptors

IP:

Intraperitoneal

KO:

Knockout

LDT:

Laterodorsal tegmentum

mGluR:

Metabotropic glutamate receptors

mPFC:

Medial prefrontal cortex

NAc:

Nucleus accumbens

NMDA:

N-Methyl-D-aspartic acid

NSDUH:

National Survey on Drug Use and Health

PFC:

Prefrontal cortex

PPT:

Pedunculopontine tegmentum

Thal:

Thalamus

VGlut:

Vesicular glutamate transporter

VTA:

Ventral tegmental area

XCT/SLC7A11:

Cystine-glutamate antiporter

References

  • Abuse S (2014) Mental Health Services Administration.(2013) Results from the 2012 National Survey on Drug Use and Health: Summary of National Findings (No. NSDUH Series H-46, HHS Publication No.(SMA) 13–4795). Substance Abuse and Mental Health Services Administration, Rockville

    Google Scholar 

  • Agrawal A, Lynskey MT, Madden PA, Bucholz KK, Heath AC (2007) A latent class analysis of illicit drug abuse/dependence: results from the national epidemiological survey on alcohol and related conditions. Addiction 102(1):94–104

    Article  PubMed  Google Scholar 

  • Amen SL, Piacentine LB, Ahmad ME, Li SJ, Mantsch JR, Risinger RC, Baker DA (2011) Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology 36(4):871–878

    Article  CAS  PubMed  Google Scholar 

  • Andrews P (1997) Cocaethylene toxicity. J Addict Dis 16(3):75–84

    Article  CAS  PubMed  Google Scholar 

  • Apantaku-Olajide T, Darker CD, Smyth BP (2013) Onset of cocaine use: associated alcohol intoxication and psychosocial characteristics among adolescents in substance abuse treatment. J Addict Med 7(3):183–188

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, Kalivas PW (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6(7):743–749

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, Shen H, Kalivas PW (2002b) Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 23(1-3):161–162

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002a) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22(20):9134–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell K, Duffy P, Kalivas PW (2000) Context-specific enhancement of glutamate transmission by cocaine. Neuropsychopharmacology 23(3):335–344

    Article  CAS  PubMed  Google Scholar 

  • Bellone C, Luscher C (2006) Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 9(5):636–641

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369

    Article  CAS  PubMed  Google Scholar 

  • Bierut LJ, Strickland JR, Thompson JR, Afful SE, Cottler LB (2008) Drug use and dependence in cocaine dependent subjects, community-based individuals, and their siblings. Drug Alcohol Depend 95(1-2):14–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24(34):7482–7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose J, Hedden SL, Lipari RN, Park-Lee E (2016) Key substance use and mental health indicators in the United States: Results from the 2015 National Survey on Drug Use and Health. SAMHSA HHS Publication (No. SMA 16-49842016): 1–74

    Google Scholar 

  • Bourland JA (1997) The influence of ethanol on drug metabolism and disposition via carboxylesterase-mediated transesterification

    Google Scholar 

  • Bradberry CW, Nobiletti JB, Elsworth JD, Murphy B, Jatlow P, Roth RH (1993) Cocaine and cocaethylene: microdialysis comparison of brain drug levels and effects on dopamine and serotonin. J Neurochem 60(4):1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Cailhol S, Mormède P (2000) Effects of cocaine-induced sensitization on ethanol drinking: sex and strain differences. Behav Pharmacol 11(5):387–394

    Article  CAS  PubMed  Google Scholar 

  • Caillé S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH (2007) Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci 27(14):3695–3702

    Article  PubMed  PubMed Central  Google Scholar 

  • (CDC), C. f. D. C. a. P. (2020). https://www.cdc.gov/mmwr/preview/mmwrhtml/00001101.htm

  • Cepko LC, Selva JA, Merfeld EB, Fimmel AI, Goldberg SA, Currie PJ (2014) Ghrelin alters the stimulatory effect of cocaine on ethanol intake following mesolimbic or systemic administration. Neuropharmacology 85:224–231

    Article  CAS  PubMed  Google Scholar 

  • Czoty PW (2015) Effects of chronic binge-like ethanol consumption on cocaine self-administration in rhesus monkeys. Drug Alcohol Depend 153:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahchour A, Hoffman A, Deitrich R, de Witte P (2000) Effects of ethanol on extracellular amino acid levels in high-and low-alcohol sensitive rats: a microdialysis study. Alcohol Alcohol 35(6):548–553

    Article  CAS  PubMed  Google Scholar 

  • Das SC, Althobaiti YS, Alshehri FS, Sari Y (2016) Binge ethanol withdrawal: effects on post-withdrawal ethanol intake, glutamate-glutamine cycle and monoamine tissue content in P rat model. Behav Brain Res 303:120–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci 85(14):5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Saal D, Thomas M, Faust R, Bonci A, Robinson T, Malenka RC (2004) Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(-/-) mice. Proc Natl Acad Sci U S A 101(39):14282–14287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulenburg V, Gomeza J (2010) Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Res Rev 63(1-2):103–112

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50

    Article  PubMed  Google Scholar 

  • Fischer-Smith KD, Houston AC, Rebec GV (2012) Differential effects of cocaine access and withdrawal on glutamate type 1 transporter expression in rat nucleus accumbens core and shell. Neuroscience 210:333–339

    Article  CAS  PubMed  Google Scholar 

  • Fox HC, Talih M, Malison R, Anderson GM, Kreek MJ, Sinha R (2005) Frequency of recent cocaine and alcohol use affects drug craving and associated responses to stress and drug-related cues. Psychoneuroendocrinology 30(9):880–891

    Google Scholar 

  • Gossop M, Manning V, Ridge G (2006) Concurrent use of alcohol and cocaine: differences in patterns of use and problems among users of crack cocaine and cocaine powder. Alcohol Alcohol 41(2):121–125

    Article  PubMed  Google Scholar 

  • Graziani M, Nencini P, Nisticò R (2014) Genders and the concurrent use of cocaine and alcohol: pharmacological aspects. Pharmacol Res 87:60–70

    Article  CAS  PubMed  Google Scholar 

  • Griffin EA, Melas PA, Zhou R, Li Y, Mercado P, Kempadoo KA, Stephenson S, Colnaghi L, Taylor K, Hu M-C (2017) Prior alcohol use enhances vulnerability to compulsive cocaine self-administration by promoting degradation of HDAC4 and HDAC5. Sci Adv 3(11):e1701682

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakami AY, Hammad AM, Sari Y (2016) Effects of amoxicillin and augmentin on cystine-glutamate exchanger and glutamate transporter 1 isoforms as well as ethanol intake in alcohol-preferring rats. Front Neurosci 10:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammad AM, Alasmari F, Althobaiti YS, Sari Y (2017a) Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior. Behav Brain Res 332:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammad AM, Alasmari F, Sari Y (2021) Effect of modulation of the astrocytic glutamate transporters’ expression on cocaine-induced reinstatement in male p rats exposed to ethanol. Alcohol Alcohol 56(2):210–219

    Article  CAS  PubMed  Google Scholar 

  • Hammad AM, Althobaiti YS, Das SC, Sari Y (2017b) Effects of repeated cocaine exposure and withdrawal on voluntary ethanol drinking, and the expression of glial glutamate transporters in mesocorticolimbic system of P rats. Mol Cell Neurosci 82:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammad AM, Sari Y (2020) Effects of cocaine exposure on astrocytic glutamate transporters and relapse-like ethanol-drinking behavior in male alcohol-preferring rats. Alcohol Alcohol 55(3):254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris DS, Everhart ET, Mendelson J, Jones RT (2003) The pharmacology of cocaethylene in humans following cocaine and ethanol administration. Drug Alcohol Depend 72(2):169–182

    Article  CAS  PubMed  Google Scholar 

  • Heil SH, Badger GJ, Higgins ST (2001) Alcohol dependence among cocaine-dependent outpatients: demographics, drug use, treatment outcome and other characteristics. J Stud Alcohol 62(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Heyerdahl F, Hovda KE, Giraudon I, Yates C, Dines AM, Sedefov R, Wood DM, Dargan PI (2014) Current European data collection on emergency department presentations with acute recreational drug toxicity: gaps and national variations. Clin Toxicol 52(10):1005–1012

    Article  CAS  Google Scholar 

  • Hotsenpiller G, Giorgetti M, Wolf ME (2001) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 14(11):1843–1855

    Article  CAS  PubMed  Google Scholar 

  • Isenschmid DS (2020) Cocaine. Principles of forensic toxicology. Springer, pp 371–387

    Book  Google Scholar 

  • Kalivas PW, Duffy P (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci 15(7 Pt 2):5379–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW, Duffy P (1998) Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J Neurochem 70(4):1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Knackstedt LA, Melendez RI, Kalivas PW (2010) Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry 67(1):81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  Google Scholar 

  • Kozell B, Meshul K (2003) Alterations in nerve terminal glutamate immunoreactivity in the nucleus accumbens and ventral tegmental area following single and repeated doses of cocaine. Psychopharmacology 165(4):337–345

    Article  CAS  PubMed  Google Scholar 

  • La Bella V, Valentino F, Piccoli T, Piccoli F (2007) Expression and developmental regulation of the cystine/glutamate exchanger (xc-) in the rat. Neurochem Res 32(6):1081–1090

    Article  PubMed  Google Scholar 

  • LaCrosse AL, O’Donovan SM, Sepulveda-Orengo MT (2017) Contrasting the role of xCT and GLT-1 upregulation in the ability of ceftriaxone to attenuate the cue-induced reinstatement of cocaine seeking and normalize AMPA receptor subunit expression. J Neurosci 37(24):5809–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshner AI (1997) Addiction is a brain disease, and it matters. Science 278(5335):45–47

    Article  CAS  PubMed  Google Scholar 

  • Lindholm S, Rosin A, Dahlin I, Georgieva J, Franck J (2001) Ethanol administration potentiates cocaine-induced dopamine levels in the rat nucleus accumbens. Brain Res 915(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Liu X-Y, Chu X-P, Mao L-M, Wang M, Lan H-X, Li M-H, Zhang G-C, Parelkar NK, Fibuch EE, Haines M (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52(5):897–909

    Article  CAS  PubMed  Google Scholar 

  • Lovinger DM, White G, Weight FF (1990) NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat. J Neurosci 10(4):1372–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madayag A, Lobner D, Kau KS, Mantsch JR, Abdulhameed O, Hearing M, Grier MD, Baker DA (2007) Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci 27(51):13968–13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez J, Campos-Sandoval JA, Penalver A, Mates JM, Segura JA, Blanco E, Alonso FJ, de Fonseca FR (2017) Glutamate and brain glutaminases in drug addiction. Neurochem Res 42(3):846–857

    Article  CAS  PubMed  Google Scholar 

  • Martinotti G, Carli V, Tedeschi D, Di Giannantonio M, Roy A, Janiri L, Sarchiapone M (2009) Mono-and polysubstance dependent subjects differ on social factors, childhood trauma, personality, suicidal behaviour, and comorbid Axis I diagnoses. Addict Behav 34(9):790–793

    Article  CAS  PubMed  Google Scholar 

  • McKAY JR, Alterman AI, Rutherford MJ, Cacciola JS, McLELLAN AT (1999) The relationship of alcohol use to cocaine relapse in cocaine dependent patients in an aftercare study. J Stud Alcohol 60(2):176–180

    Google Scholar 

  • McKee BL, Meshul CK (2005) Time-dependent changes in extracellular glutamate in the rat dorsolateral striatum following a single cocaine injection. Neuroscience 133(2):605–613

    Article  CAS  PubMed  Google Scholar 

  • Melendez RI, Hicks MP, Cagle SS, Kalivas PW (2005) Ethanol exposure decreases glutamate uptake in the nucleus accumbens. Alcohol Clin Exp Res 29(3):326–333

    Article  CAS  PubMed  Google Scholar 

  • Minami K, Gereau RWT, Minami M, Heinemann SF, Harris RA (1998) Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 53(1):148–156

    Article  CAS  PubMed  Google Scholar 

  • Najavits LM, Lester KM (2008) Gender differences in cocaine dependence. Drug Alcohol Depend 97(1-2):190–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Niedzielska-Andres E, Pomierny-Chamiolo L, Andres M, Walczak M, Knackstedt LA, Filip M, Przegalinski E (2021) Cocaine use disorder: a look at metabotropic glutamate receptors and glutamate transporters. Pharmacol Ther 221:107797

    Article  CAS  PubMed  Google Scholar 

  • (NIH), N. I. o. A. a. a. A. (2018–2019) https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-facts-and-statistics

  • Pennings EJ, Leccese AP, Wolff FA (2002) Effects of concurrent use of alcohol and cocaine. Addiction 97(7):773–783

    Article  PubMed  Google Scholar 

  • Perkonigg A, Lieb R, Wittchen H-U (1998) Prevalence of use, abuse and dependence of illicit drugs among adolescents and young adults in a community sample. Eur Addict Res 4(1-2):58–66

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Bell K, Duffy P, Kalivas PW (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16(4):1550–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomara C, Cassano T, D’Errico S, Bello S, Romano AD, Riezzo I, Serviddio G (2012) Data available on the extent of cocaine use and dependence: biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr Med Chem 19(33):5647–5657

    Article  CAS  PubMed  Google Scholar 

  • Quertemont E, de Neuville J, De Witte P (1998) Changes in the amygdala amino acid microdialysate after conditioning with a cue associated with ethanol. Psychopharmacology 139(1-2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Rees KA, McLaughlin PA, Osselton MD (2012) Validation of a gas chromatography–ion trap-tandem mass spectrometry assay for the simultaneous quantification of cocaine, benzoylecgonine, cocaethylene, morphine, codeine, and 6-acetylmorphine in aqueous solution, blood, and skeletal muscle tissue. J Anal Toxicol 36(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Reid MS, Berger SP (1996) Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. Neuroreport 7(7):1325–1329

    Article  CAS  PubMed  Google Scholar 

  • Reissner KJ, Brown RM, Spencer S, Tran PK, Thomas CA, Kalivas PW (2014) Chronic administration of the methylxanthine propentofylline impairs reinstatement to cocaine by a GLT-1-dependent mechanism. Neuropsychopharmacology 39(2):499–506

    Article  CAS  PubMed  Google Scholar 

  • Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW (2015) Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol 20(2):316–323

    Article  CAS  PubMed  Google Scholar 

  • Robinson SE, Maher JR, McDowell KP, Kunko PM (1995) Effects of cocaine and the cocaine analog CFT on glutamatergic neurons. Pharmacol Biochem Behav 50(4):627–633

    Article  CAS  PubMed  Google Scholar 

  • Roettger V, Lipton P (1996) Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75(3):677–685

    Article  CAS  PubMed  Google Scholar 

  • Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221(2-3):227–234

    Article  CAS  PubMed  Google Scholar 

  • Rubio G, Manzanares J, Jiménez M, Rodríguez-Jiménez R, Martínez I, Iribarren MM, Jiménez-Arriero MA, Ponce G, Palomo T (2008) Use of cocaine by heavy drinkers increases vulnerability to developing alcohol dependence: a 4-year follow-up study. J Clin Psychiatry 69(4):563

    Article  PubMed  Google Scholar 

  • Salloum IM, Daley DC, Cornelius JR, Kirisci L, Thase ME (1996) Disproportionate lethality in psychiatric patients with concurrent alcohol and cocaine abuse. Am J Psychiatry 153(7):953–955

    Article  CAS  PubMed  Google Scholar 

  • Sari Y, Smith KD, Ali PK, Rebec GV (2009) Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci 29(29):9239–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sari Y, Sreemantula SN (2012) Neuroimmunophilin GPI-1046 reduces ethanol consumption in part through activation of GLT1 in alcohol-preferring rats. Neuroscience 227:327–335

    Article  CAS  PubMed  Google Scholar 

  • Sari Y, Sreemantula SN, Lee MR, Choi DS (2013) Ceftriaxone treatment affects the levels of GLT1 and ENT1 as well as ethanol intake in alcohol-preferring rats. J Mol Neurosci 51(3):779–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarti F, Borgland SL, Kharazia VN, Bonci A (2007) Acute cocaine exposure alters spine density and long-term potentiation in the ventral tegmental area. Eur J Neurosci 26(3):749–756

    Article  PubMed  Google Scholar 

  • Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458

    Article  CAS  PubMed  Google Scholar 

  • Schwendt M, Knackstedt LA (2021) Extinction vs. abstinence: a review of the molecular and circuit consequences of different post-cocaine experiences. Int J Mol Sci 22(11)

    Google Scholar 

  • Sharma M (2006) Loosening the grip: a handbook of alcohol information. J Alcohol Drug Educ 50(1):83

    Google Scholar 

  • Simonyi A, Christian MR, Sun AY, Sun GY (2004) Chronic ethanol-induced subtype- and subregion-specific decrease in the mRNA expression of metabotropic glutamate receptors in rat hippocampus. Alcohol Clin Exp Res 28(9):1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Mo Q, Guo H, Kunko PM, Robinson SE (1995) Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens. Brain Res 683(2):264–269

    Article  CAS  PubMed  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20(12):4480–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahre M, Roeber J, Kanny D, Brewer RD, Zhang X (2014) Peer reviewed: contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States. Prev Chronic Dis 11:E109

    Article  PubMed  PubMed Central  Google Scholar 

  • Staley JK, Hearn WL, Ruttenber AJ, Wetli C, Mash DC (1994) High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims. J Pharmacol Exp Ther 271(3):1678–1685

    CAS  PubMed  Google Scholar 

  • Stennett BA, Knackstedt LA (2020) A rat model of cocaine-alcohol polysubstance use reveals altered cocaine seeking and glutamate levels in the nucleus accumbens. Front Neurosci 14:877

    Article  PubMed  PubMed Central  Google Scholar 

  • Stromberg MF, Mackler SA (2005) The effect of cocaine on the expression of motor activity and conditioned place preference in high and low alcohol-preferring Wistar rats. Pharmacol Biochem Behav 82(2):314–319

    Google Scholar 

  • Substance Abuse and Mental Health Services Administration (SAMHSA) ( ). Table 2.1B—Tobacco product and alcohol use in lifetime, past year, and past month among persons aged 12 or older, by age group: percentages, 2018 and 2019 Available at: https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHDetailedTabs2018R2/NSDUHDetTabsSect2pe2018.htm#tab2-1b

  • Tzschentke TM, Schmidt WJ (2003) Glutamatergic mechanisms in addiction. Mol Psychiatry 8(4):373–382

    Article  CAS  PubMed  Google Scholar 

  • Uemura K, Li Y, Ohbora Y, Fujimiya T, Komura S (1998) Effects of repeated cocaine administration on alcohol consumption. J Stud Alcohol 59(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151(2):99–120

    Article  CAS  PubMed  Google Scholar 

  • Velasquez MM, von Sternberg K, Mullen PD, Carbonari JP, Kan LY (2007) Psychiatric distress in incarcerated women with recent cocaine and alcohol abuse. Womens Health Issues 17(4):264–272

    Article  PubMed  Google Scholar 

  • Venkatesan J, Suresh SS (2008) Substance dependence: decades apart in a teaching hospital. Indian J Psychiatry 50(2):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162(4):712–725

    Article  CAS  PubMed  Google Scholar 

  • White G, Lovinger DM, Weight FF (1990) Ethanol inhibits NMDA-activated current but does not alter GABA-activated current in an isolated adult mammalian neuron. Brain Res 507(2):332–336

    Article  CAS  PubMed  Google Scholar 

  • Winder DG, Egli RE, Schramm NL, Matthews RT (2002) Synaptic plasticity in drug reward circuitry. Curr Mol Med 2(7):667–676

    Article  CAS  PubMed  Google Scholar 

  • Wolf ME (2010) Regulation of AMPA receptor trafficking in the nucleus accumbens by dopamine and cocaine. Neurotox Res 18(3-4):393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto K, Ueda S, Nishi M, Yang Y, Matsushita H, Takeuchi Y, Kato B, Kawai Y, Noritake K, Kaneda S, Sorimachi Y, Yasuhara M (2000) Changes in dopamine transporter and c-Fos expression in the nucleus accumbens of alcohol-tolerant rats. Alcohol Clin Exp Res 24(3):361–365

    Article  CAS  PubMed  Google Scholar 

  • Zule WA, Flannery BA, Wechsberg WM, Lam WK (2002) Alcohol use among out-of-treatment crack using African–American women. The American journal of drug and alcohol abuse 28(3):525–544

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hammad, A.M., Bachu, R.D., Muskiewicz, D.E., Hall, F.S., Tiwari, A.K. (2022). Alcohol and Cocaine Co-usage. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-67928-6_152-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67928-6_152-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67928-6

  • Online ISBN: 978-3-030-67928-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics