Skip to main content

Anterior Cruciate Ligament Injury

  • Living reference work entry
  • First Online:
Orthopaedic Sports Medicine

Abstract

Diagnosis, prevention, and management of injury to the anterior cruciate ligament (ACL) remain integral in the practice of orthopedic sports medicine. In the past few decades, tremendous advancements have been made regarding the understanding of the anatomy, biomechanics, and function of the native ACL. These advancements have enabled a more robust understanding of the significance of the injured ACL and its associated intra-articular injuries, including damage to articular cartilage, meniscal derangement, and injury to the posterolateral corner. While there is a role for nonoperative management of these injuries in certain patients, ACL reconstruction is generally recommended for younger patients and athletes who want to return to cutting/pivoting sports. It is important for the operating surgeon to have a comprehensive understanding of the various graft choices, fixation methods, and reconstruction adjuncts to individualize and optimize the patient’s management and outcomes. Further research is imperative regarding the optimal management of concomitant injuries and ways to improve long-term outcomes after ACL injury.

Professor Freddie H. Fu died before publication of this work was completed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kaeding CC, Léger-St-Jean B, Magnussen RA. Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin Sports Med. 2017;36(1):1–8. https://doi.org/10.1016/j.csm.2016.08.001.

    Article  PubMed  Google Scholar 

  2. Musahl V, Karlsson J. Anterior cruciate ligament tear. N Engl J Med. 2019;380(24):2341–8. https://doi.org/10.1056/NEJMcp1805931.

    Article  PubMed  Google Scholar 

  3. Beck NA, Lawrence JTR, Nordin JD, DeFor TA, Tompkins M. ACL tears in school-aged children and adolescents over 20 years. Pediatrics. 2017;139(3) https://doi.org/10.1542/peds.2016-1877.

  4. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69. https://doi.org/10.1177/0363546507307396.

    Article  PubMed  Google Scholar 

  5. Øiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37(7):1434–43. https://doi.org/10.1177/0363546509338827.

    Article  PubMed  Google Scholar 

  6. Kondo E, Merican AM, Yasuda K, Amis AA. Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med. 2011;39(2):279–88. https://doi.org/10.1177/0363546510392350.

    Article  PubMed  Google Scholar 

  7. Kraeutler MJ, Wolsky RM, Vidal AF, Bravman JT. Anatomy and biomechanics of the native and reconstructed anterior cruciate ligament: surgical implications. J Bone Joint Surg Am. 2017;99(5):438–45. https://doi.org/10.2106/JBJS.16.00754.

    Article  PubMed  Google Scholar 

  8. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL. Quantitative analysis of human cruciate ligament insertions. Arthroscopy. 1999;15(7):741–9. https://doi.org/10.1016/s0749-8063(99)70006-x.

    Article  CAS  PubMed  Google Scholar 

  9. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy. Mar 2007;23(3):278–83. https://doi.org/10.1016/j.arthro.2006.11.006.

    Article  PubMed  Google Scholar 

  10. Nagai K, Gale T, Chiba D, Su F, Fu F, Anderst W. The complex relationship between in vivo ACL elongation and knee kinematics during walking and running. J Orthop Res. 2019;37(9):1920–8. https://doi.org/10.1002/jor.24330.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sabzevari S, Shaikh H, Marshall B, et al. The femoral posterior fan-like extension of the ACL insertion increases the failure load. Knee Surg Sports Traumatol Arthrosc. Apr 2020;28(4):1113–8. https://doi.org/10.1007/s00167-019-05753-3.

    Article  PubMed  Google Scholar 

  12. Steineman BD, Moulton SG, Haut Donahue TL, et al. Overlap between anterior cruciate ligament and anterolateral meniscal root insertions: a scanning electron microscopy study. Am J Sports Med. 2017;45(2):362–8. https://doi.org/10.1177/0363546516666817.

    Article  PubMed  Google Scholar 

  13. Arnoczky SP. Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin North Am. Jan 1985;16(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto T, Ingham SM, Mifune Y, et al. Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells Dev. 2012;21(6):859–72. https://doi.org/10.1089/scd.2010.0528.

    Article  CAS  PubMed  Google Scholar 

  15. Haus J, Halata Z. Innervation of the anterior cruciate ligament. Int Orthop. 1990;14(3):293–6. https://doi.org/10.1007/BF00178762.

    Article  CAS  PubMed  Google Scholar 

  16. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH. Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med. 2011;39(1):108–13. https://doi.org/10.1177/0363546510377399.

    Article  PubMed  Google Scholar 

  17. Amis AA, Dawkins GP. Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br. 1991;73(2):260–7. https://doi.org/10.1302/0301-620X.73B2.2005151.

    Article  CAS  PubMed  Google Scholar 

  18. Fujimaki Y, Thorhauer E, Sasaki Y, Smolinski P, Tashman S, Fu FH. Quantitative in situ analysis of the anterior cruciate ligament: length, Midsubstance cross-sectional area, and insertion site areas. Am J Sports Med. 2016;44(1):118–25. https://doi.org/10.1177/0363546515611641.

    Article  PubMed  Google Scholar 

  19. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH. Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):207–13. https://doi.org/10.1007/s00167-012-2356-0.

    Article  PubMed  Google Scholar 

  20. Guenther D, Irarrázaval S, Nishizawa Y, et al. Variation in the shape of the tibial insertion site of the anterior cruciate ligament: classification is required. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2428–32. https://doi.org/10.1007/s00167-015-3891-2.

    Article  PubMed  Google Scholar 

  21. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc. 2009;17(3):213–9. https://doi.org/10.1007/s00167-008-0709-5.

    Article  PubMed  Google Scholar 

  22. van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH. Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1257–62. https://doi.org/10.1007/s00167-010-1135-z.

    Article  PubMed  Google Scholar 

  23. Kittl C, El-Daou H, Athwal KK, et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee: response. Am J Sports Med. 2016;44(4):NP15–8. https://doi.org/10.1177/0363546516638070.

    Article  PubMed  Google Scholar 

  24. Harner CD, Irrgang JJ, Paul J, Dearwater S, Fu FH. Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med. 1992;20(5):499–506. https://doi.org/10.1177/036354659202000503.

    Article  CAS  PubMed  Google Scholar 

  25. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W. The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med. 2007;35(2):223–7. https://doi.org/10.1177/0363546506294571.

    Article  PubMed  Google Scholar 

  26. Murawski CD, van Eck CF, Irrgang JJ, Tashman S, Fu FH. Operative treatment of primary anterior cruciate ligament rupture in adults. J Bone Joint Surg Am. 2014;96(8):685–94. https://doi.org/10.2106/JBJS.M.00196.

    Article  PubMed  Google Scholar 

  27. West RV, Harner CD. Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2005;13(3):197–207. https://doi.org/10.5435/00124635-200505000-00006.

    Article  PubMed  Google Scholar 

  28. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–25. https://doi.org/10.1177/036354659101900303.

    Article  CAS  PubMed  Google Scholar 

  29. Takai S, Woo SL, Livesay GA, Adams DJ, Fu FH. Determination of the in situ loads on the human anterior cruciate ligament. J Orthop Res. 1993;11(5):686–95. https://doi.org/10.1002/jor.1100110511.

    Article  CAS  PubMed  Google Scholar 

  30. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res. 1997;15(2):285–93. https://doi.org/10.1002/jor.1100150219.

    Article  CAS  PubMed  Google Scholar 

  31. Guenther D, Rahnemai-Azar AA, Bell KM, et al. The anterolateral capsule of the knee behaves like a sheet of fibrous tissue. Am J Sports Med. 2017;45(4):849–55. https://doi.org/10.1177/0363546516674477.

    Article  PubMed  Google Scholar 

  32. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S. Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med. 2011;39(8):1789–99. https://doi.org/10.1177/0363546511402659.

    Article  PubMed  Google Scholar 

  33. Murawski CD, Wolf MR, Araki D, Muller B, Tashman S, Fu FH. Anatomic anterior cruciate ligament reconstruction: current concepts and future perspective. Cartilage. 2013;4(3 Suppl):27S–37S. https://doi.org/10.1177/1947603513486557.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Burnham J, Pfeiffer T, Shin J, Herbst E, Fu F. Bony morphologic factors affecting injury risk, rotatory stability, outcomes, and re-tear rate after anterior cruciate ligament reconstruction. Ann Jt. 2017;2(7):1–10.

    Google Scholar 

  35. Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yu B, Garrett WE. Mechanisms of non-contact ACL injuries. Br J Sports Med. 2007;41(Suppl 1):i47–51. https://doi.org/10.1136/bjsm.2007.037192.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Colombet P, Dejour D, Panisset JC, Siebold R, Society FA. Current concept of partial anterior cruciate ligament ruptures. Orthop Traumatol Surg Res. 2010;96(8 Suppl):S109–18. https://doi.org/10.1016/j.otsr.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  38. Kocher MS, Micheli LJ, Zurakowski D, Luke A. Partial tears of the anterior cruciate ligament in children and adolescents. Am J Sports Med. 2002;30(5):697–703. https://doi.org/10.1177/03635465020300051201.

    Article  PubMed  Google Scholar 

  39. Ochi M, Adachi N, Deie M, Kanaya A. Anterior cruciate ligament augmentation procedure with a 1-incision technique: anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy. 2006;22(4):463.e1–5. https://doi.org/10.1016/j.arthro.2005.06.034.

    Article  PubMed  Google Scholar 

  40. Noyes FR, Bassett RW, Grood ES, Butler DL. Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am. 1980;62(5):687–95. 757

    Article  CAS  PubMed  Google Scholar 

  41. Maffulli N, Binfield PM, King JB, Good CJ. Acute haemarthrosis of the knee in athletes. A prospective study of 106 cases. J Bone Joint Surg Br. 1993;75(6):945–9. https://doi.org/10.1302/0301-620X.75B6.8245089.

    Article  CAS  PubMed  Google Scholar 

  42. Cheung E, McAllister D, Petrigliano F. Chap 98: Anterior cruciate ligament injuries. In: McCarty E, editor. DeLee, Drez & Miller’s Orthopaedic sports medicine. 5th ed. Elsevier; 2020. p. 1185–98.

    Google Scholar 

  43. Huang W, Zhang Y, Yao Z, Ma L. Clinical examination of anterior cruciate ligament rupture: a systematic review and meta-analysis. Acta Orthop Traumatol Turc. 2016;50(1):22–31. https://doi.org/10.3944/AOTT.2016.14.0283.

    Article  PubMed  Google Scholar 

  44. Slocum DB, James SL, Larson RL, Singer KM. Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res. 1976;118:63–9.

    Google Scholar 

  45. Musahl V, Griffith C, Irrgang JJ, et al. Validation of quantitative measures of rotatory knee laxity. Am J Sports Med. 2016;44(9):2393–8. https://doi.org/10.1177/0363546516650667.

    Article  PubMed  Google Scholar 

  46. Musahl V, Burnham J, Lian J, et al. High-grade rotatory knee laxity may be predictable in ACL injuries. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3762–9. https://doi.org/10.1007/s00167-018-5019-y.

    Article  PubMed  Google Scholar 

  47. Lopomo N, Zaffagnini S, Signorelli C, et al. An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin. 2012;15(12):1323–8. https://doi.org/10.1080/10255842.2011.591788.

    Article  PubMed  Google Scholar 

  48. Kuroda R, Hoshino Y. Electromagnetic tracking of the pivot-shift. Curr Rev Musculoskelet Med. 2016;9(2):164–9. https://doi.org/10.1007/s12178-016-9335-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD. In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. May 2008;16(5):487–92. https://doi.org/10.1007/s00167-008-0504-3.

    Article  PubMed  Google Scholar 

  50. Slagstad I, Parkar AP, Strand T, Inderhaug E. Incidence and prognostic significance of the segond fracture in patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2020;48(5):1063–8. https://doi.org/10.1177/0363546520905557.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Takenaga T, Yoshida M, Albers M, et al. Preoperative sonographic measurement can accurately predict quadrupled hamstring tendon graft diameter for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(3):797–804. https://doi.org/10.1007/s00167-018-5101-5.

    Article  PubMed  Google Scholar 

  52. Takeuchi S, Rothrauff BB, Taguchi M, Onishi K, Fu FH. Preoperative ultrasound predicts the intraoperative diameter of the quadriceps tendon autograft more accurately than preoperative magnetic resonance imaging for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2021;(Jan 18) https://doi.org/10.1007/s00167-020-06408-4.

  53. Borchers JR, Kaeding CC, Pedroza AD, et al. Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery: a comparison of the MOON and MARS study groups. Am J Sports Med. 2011;39(9):1889–93. https://doi.org/10.1177/0363546511406871.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Remer EM, Fitzgerald SW, Friedman H, Rogers LF, Hendrix RW, Schafer MF. Anterior cruciate ligament injury: MR imaging diagnosis and patterns of injury. Radiographics. 1992;12(5):901–15. https://doi.org/10.1148/radiographics.12.5.1529133.

    Article  CAS  PubMed  Google Scholar 

  55. Steckel H, Vadala G, Davis D, Fu FH. 2D and 3D 3-tesla magnetic resonance imaging of the double bundle structure in anterior cruciate ligament anatomy. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1151–8. https://doi.org/10.1007/s00167-006-0185-8.

    Article  PubMed  Google Scholar 

  56. Steckel H, Vadala G, Davis D, Musahl V, Fu FH. 3-T MR imaging of partial ACL tears: a cadaver study. Knee Surg Sports Traumatol Arthrosc. 2007;15(9):1066–71. https://doi.org/10.1007/s00167-007-0337-5.

    Article  PubMed  Google Scholar 

  57. Kia C, Cavanaugh Z, Gillis E, et al. Size of initial bone bruise predicts future lateral chondral degeneration in ACL injuries: a radiographic analysis. Orthop J Sports Med. 2020;8(5):2325967120916834. https://doi.org/10.1177/2325967120916834.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dunn WR, Spindler KP, Amendola A, et al. Which preoperative factors, including bone bruise, are associated with knee pain/symptoms at index anterior cruciate ligament reconstruction (ACLR)? A multicenter Orthopaedic outcomes network (MOON) ACLR cohort study. Am J Sports Med. 2010;38(9):1778–87. https://doi.org/10.1177/0363546510370279.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Speer KP, Spritzer CE, Bassett FH, Feagin JA, Garrett WE. Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med. 1992;20(4):382–9. https://doi.org/10.1177/036354659202000403.

    Article  CAS  PubMed  Google Scholar 

  60. Pike AN, Patzkowski JC, Bottoni CR. Meniscal and Chondral Pathology Associated With Anterior Cruciate Ligament Injuries. J Am Acad Orthop Surg. 2019;27(3):75–84. https://doi.org/10.5435/JAAOS-D-17-00670.

    Article  PubMed  Google Scholar 

  61. Zheng T, Song GY, Feng H, et al. Lateral Meniscus Posterior Root Lesion Influences Anterior Tibial Subluxation of the Lateral Compartment in Extension After Anterior Cruciate Ligament Injury. Am J Sports Med. 2020;48(4):838–46. https://doi.org/10.1177/0363546520902150.

    Article  PubMed  Google Scholar 

  62. Bogunovic L, Kruse LM, Haas AK, Huston LJ, Wright RW. Outcome of all-inside second-generation meniscal repair: minimum five-year follow-up. J Bone Joint Surg Am. 2014;96(15):1303–7. https://doi.org/10.2106/JBJS.M.00266.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brophy RH, Zeltser D, Wright RW, Flanigan D. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment. Arthroscopy. 2010;26(1):112–20. https://doi.org/10.1016/j.arthro.2009.09.002.

    Article  PubMed  Google Scholar 

  64. Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 2010;363(4):331–42. https://doi.org/10.1056/NEJMoa0907797.

    Article  CAS  PubMed  Google Scholar 

  65. Laprade RF, Bernhardson AS, Griffith CJ, Macalena JA, Wijdicks CA. Correlation of valgus stress radiographs with medial knee ligament injuries: an in vitro biomechanical study. Am J Sports Med. Feb 2010;38(2):330–8. https://doi.org/10.1177/0363546509349347.

    Article  PubMed  Google Scholar 

  66. Westermann RW, Spindler KP, Huston LJ, Wolf BR, Group MK. Outcomes of grade III medial collateral ligament injuries treated concurrently with anterior cruciate ligament reconstruction: a multicenter study. Arthroscopy. 2019;35(5):1466–72. https://doi.org/10.1016/j.arthro.2018.10.138.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Svantesson E, Hamrin Senorski E, Alentorn-Geli E, et al. Increased risk of ACL revision with non-surgical treatment of a concomitant medial collateral ligament injury: a study on 19,457 patients from the Swedish National Knee Ligament Registry. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2450–9. https://doi.org/10.1007/s00167-018-5237-3.

    Article  PubMed  Google Scholar 

  68. Diermeier T, Rothrauff BB, Engebretsen L, et al. Treatment after anterior cruciate ligament injury: Panther Symposium ACL Treatment Consensus Group. J ISAKOS. 2021;6(3):129–37. https://doi.org/10.1136/jisakos-2020-000493.

    Article  PubMed  Google Scholar 

  69. van Yperen DT, Reijman M, van Es EM, Bierma-Zeinstra SMA, Meuffels DE. Twenty-year follow-up study comparing operative versus nonoperative treatment of anterior cruciate ligament ruptures in high-level athletes. Am J Sports Med. 2018;46(5):1129–36. https://doi.org/10.1177/0363546517751683.

    Article  PubMed  Google Scholar 

  70. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):1579–602. https://doi.org/10.1177/0363546505279913.

    Article  PubMed  Google Scholar 

  71. Paterno MV. Non-operative care of the patient with an ACL-deficient knee. Curr Rev Musculoskelet Med. 2017;10(3):322–7. https://doi.org/10.1007/s12178-017-9431-6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L. Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther. 2005;85(8):740–9. discussion 750-4

    Article  PubMed  Google Scholar 

  73. Fitzgerald GK, Axe MJ, Snyder-Mackler L. The efficacy of perturbation training in nonoperative anterior cruciate ligament rehabilitation programs for physical active individuals. Phys Ther. 2000;80(2):128–40.

    Article  CAS  PubMed  Google Scholar 

  74. Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):1543–52. https://doi.org/10.1136/bjsports-2013-093398.

    Article  PubMed  Google Scholar 

  75. Stone AV, Marx S, Conley CW. Management of partial tears of the anterior cruciate ligament: a review of the anatomy, diagnosis, and treatment. J Am Acad Orthop Surg. 2021;29(2):60–70. https://doi.org/10.5435/JAAOS-D-20-00242.

    Article  PubMed  Google Scholar 

  76. Frobell RB, Roos HP, Roos EM, Roemer FW, Ranstam J, Lohmander LS. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial. Br J Sports Med. May 2015;49(10):700. https://doi.org/10.1136/bjsports-2014-f232rep.

    Article  PubMed  Google Scholar 

  77. Korpershoek JV, de Windt TS, Vonk LA, Krych AJ, Saris DBF. Does anterior cruciate ligament reconstruction protect the meniscus and its repair? A systematic review. Orthop J Sports Med. 2020;8(7):2325967120933895. https://doi.org/10.1177/2325967120933895.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Swirtun LR, Jansson A, Renström P. The effects of a functional knee brace during early treatment of patients with a nonoperated acute anterior cruciate ligament tear: a prospective randomized study. Clin J Sport Med. 2005;15(5):299–304. https://doi.org/10.1097/01.jsm.0000180018.14394.7e.

    Article  PubMed  Google Scholar 

  79. Fithian DC, Paxton EW, Stone ML, et al. Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med. 2005;33(3):335–46. https://doi.org/10.1177/0363546504269590.

    Article  PubMed  Google Scholar 

  80. Hoogeslag RAG, Brouwer RW, Boer BC, de Vries AJ, Huis In ‘t Veld R. Acute anterior cruciate ligament rupture: repair or reconstruction? two-year results of a randomized controlled clinical trial. Am J Sports Med. 2019;47(3):567–77. https://doi.org/10.1177/0363546519825878.

    Article  PubMed  Google Scholar 

  81. Murray MM, Fleming BC, Badger GJ, et al. Bridge-enhanced anterior cruciate ligament repair is not inferior to autograft anterior cruciate ligament reconstruction at 2 years: results of a prospective randomized clinical trial. Am J Sports Med. 2020;48(6):1305–15. https://doi.org/10.1177/0363546520913532.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rothrauff B, Kondo E, Siebold R, Wang J, Yoon K, Fu F. Anterior cruciate ligament reconstruction with remnant preservation: current concepts. J ISAKOS. 2020;5:128–33.

    Article  Google Scholar 

  83. Ferguson D, Palmer A, Khan S, Oduoza U, Atkinson H. Early or delayed anterior cruciate ligament reconstruction: is one superior? a systematic review and meta-analysis. Eur J Orthop Surg Traumatol. 2019;29(6):1277–89. https://doi.org/10.1007/s00590-019-02442-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Andernord D, Karlsson J, Musahl V, Bhandari M, Fu FH, Samuelsson K. Timing of surgery of the anterior cruciate ligament. Arthroscopy. 2013;29(11):1863–71. https://doi.org/10.1016/j.arthro.2013.07.270.

    Article  PubMed  Google Scholar 

  85. Prodromidis AD, Drosatou C, Mourikis A, Sutton PM, Charalambous CP. Relationship between timing of anterior cruciate ligament reconstruction and chondral injuries: a systematic review and meta-analysis. Am J Sports Med. 2021:3635465211036141. https://doi.org/10.1177/03635465211036141.

  86. Chen JL, Allen CR, Stephens TE, et al. Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med. 2013;41(7):1571–8. https://doi.org/10.1177/0363546513487980.

    Article  PubMed  Google Scholar 

  87. Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS. Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):640–8. https://doi.org/10.1007/s00167-014-3209-9.

    Article  PubMed  Google Scholar 

  88. Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med. 2000;28(1):124–30. https://doi.org/10.1177/03635465000280010801.

    Article  CAS  PubMed  Google Scholar 

  89. Rahnemai-Azar AA, Sabzevari S, Irarrázaval S, Chao T, Fu FH. Anatomical individualized ACL reconstruction. Arch Bone Jt Surg. 2016;4(4):291–7.

    PubMed  PubMed Central  Google Scholar 

  90. Schreiber VM, Jordan SS, Bonci GA, Irrgang JJ, Fu FH. The evolution of primary double-bundle ACL reconstruction and recovery of early post-operative range of motion. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1475–81. https://doi.org/10.1007/s00167-016-4347-z.

    Article  PubMed  Google Scholar 

  91. Marcacci M, Molgora AP, Zaffagnini S, Vascellari A, Iacono F, Presti ML. Anatomic double-bundle anterior cruciate ligament reconstruction with hamstrings. Arthroscopy. 2003;19(5):540–6. https://doi.org/10.1053/jars.2003.50129.

    Article  PubMed  Google Scholar 

  92. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH. Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med. 2012;40(3):512–20. https://doi.org/10.1177/0363546511426416.

    Article  PubMed  Google Scholar 

  93. Duchman KR, Lynch TS, Spindler KP. Graft selection in anterior cruciate ligament surgery: who gets what and why? Clin Sports Med. 2017;36(1):25–33. https://doi.org/10.1016/j.csm.2016.08.013.

    Article  PubMed  Google Scholar 

  94. Chechik O, Amar E, Khashan M, Lador R, Eyal G, Gold A. An international survey on anterior cruciate ligament reconstruction practices. Int Orthop. 2013;37(2):201–6. https://doi.org/10.1007/s00264-012-1611-9.

    Article  PubMed  Google Scholar 

  95. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res. 2017;475(10):2459–68. https://doi.org/10.1007/s11999-017-5278-9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Salem HS, Varzhapetyan V, Patel N, Dodson CC, Tjoumakaris FP, Freedman KB. Anterior cruciate ligament reconstruction in young female athletes: patellar versus hamstring tendon autografts. Am J Sports Med. 2019;47(9):2086–92. https://doi.org/10.1177/0363546519854762.

    Article  PubMed  Google Scholar 

  97. Diermeier T, Tisherman R, Hughes J, et al. Quadriceps tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020;28(8):2644–56. https://doi.org/10.1007/s00167-020-05902-z.

    Article  PubMed  Google Scholar 

  98. Slone HS, Romine SE, Premkumar A, Xerogeanes JW. Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy. 2015;31(3):541–54. https://doi.org/10.1016/j.arthro.2014.11.010.

    Article  PubMed  Google Scholar 

  99. Xerogeanes J, Godfrey W, Boden SA, et al. Clinical outcomes of all-soft tissue quadriceps tendon autograft in anterior cruciate ligament reconstruction. Orthop J Sports Med. 2017;5(7_suppl6):2325967117S0031.

    Google Scholar 

  100. Sheean AJ, Musahl V, Slone HS, et al. Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sports Med. 2018;52(11):698–701. https://doi.org/10.1136/bjsports-2017-098769.

    Article  PubMed  Google Scholar 

  101. Kuhn MA, Ross G. Allografts in the treatment of anterior cruciate ligament injuries. Sports Med Arthrosc Rev. 2007;15(3):133–8. https://doi.org/10.1097/JSA.0b013e318134ecf6.

    Article  PubMed  Google Scholar 

  102. Fu FH. Pearls: individualized approach to acl reconstruction-one size does not fit all. Clin Orthop Relat Res. 2020;478(8):1735–7. https://doi.org/10.1097/CORR.0000000000001378.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Araujo PH, Asai S, Pinto M, et al. ACL Graft Position Affects in Situ Graft Force Following ACL Reconstruction. J Bone Joint Surg Am. 2015;97(21):1767–73. https://doi.org/10.2106/JBJS.N.00539.

    Article  PubMed  Google Scholar 

  104. Brand J, Weiler A, Caborn DN, Brown CH, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med. 2000;28(5):761–74. https://doi.org/10.1177/03635465000280052501.

    Article  PubMed  Google Scholar 

  105. Crum RJ, de Sa D, Kanakamedala AC, Obioha OA, Lesniak BP, Musahl V. Aperture and suspensory fixation equally efficacious for quadriceps tendon graft fixation in primary ACL reconstruction: a systematic review. J Knee Surg. 2020;33(7):704–21. https://doi.org/10.1055/s-0039-1685160.

    Article  PubMed  Google Scholar 

  106. Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SL. The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy. 1997;13(2):177–82. https://doi.org/10.1016/s0749-8063(97)90152-3.

    Article  CAS  PubMed  Google Scholar 

  107. Giurea M, Zorilla P, Amis AA, Aichroth P. Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med. 1999;27(5):621–5. https://doi.org/10.1177/03635465990270051301.

    Article  CAS  PubMed  Google Scholar 

  108. Magen HE, Howell SM, Hull ML. Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med. 1999;27(1):35–43. https://doi.org/10.1177/03635465990270011401.

    Article  CAS  PubMed  Google Scholar 

  109. Ibrahim SA, Abdul Ghafar S, Marwan Y, et al. Intratunnel versus extratunnel autologous hamstring double-bundle graft for anterior cruciate ligament reconstruction: a comparison of 2 femoral fixation procedures. Am J Sports Med. 2015;43(1):161–8. https://doi.org/10.1177/0363546514554189.

    Article  PubMed  Google Scholar 

  110. Ninomiya T, Tachibana Y, Miyajima T, Yamazaki K, Oda H. Fixation strength of the interference screw in the femoral tunnel: the effect of screw divergence on the coronal plane. Knee. 2011;18(2):83–7. https://doi.org/10.1016/j.knee.2010.02.003.

    Article  PubMed  Google Scholar 

  111. Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle. Am J Sports Med. 2008;36(6):1094–100. https://doi.org/10.1177/0363546508317412.

    Article  PubMed  Google Scholar 

  112. Pereira VL, Medeiros JV, Nunes GRS, de Oliveira GT, Nicolini AP. Tibial-graft fixation methods on anterior cruciate ligament reconstructions: a literature review. Knee Surg Relat Res. 2021;33(1):7. https://doi.org/10.1186/s43019-021-00089-0.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Noyes FR, Huser LE, Ashman B, Palmer M. Anterior cruciate ligament graft conditioning required to prevent an abnormal Lachman and pivot shift after ACL reconstruction: a robotic study of 3 ACL graft constructs. Am J Sports Med. 2019;47(6):1376–84. https://doi.org/10.1177/0363546519835796.

    Article  PubMed  Google Scholar 

  114. Golan EJ, Tisherman R, Byrne K, Diermeier T, Vaswani R, Musahl V. Anterior cruciate ligament injury and the anterolateral complex of the knee-importance in rotatory knee instability? Curr Rev Musculoskelet Med. 2019;12(4):472–8. https://doi.org/10.1007/s12178-019-09587-x.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat. 2013;223(4):321–8. https://doi.org/10.1111/joa.12087.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Musahl V, Getgood A, Neyret P, et al. Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL injury: a roundtable discussion. Knee Surg Sports Traumatol Arthrosc. Apr 2017;25(4):997–1008. https://doi.org/10.1007/s00167-017-4436-7.

    Article  PubMed  Google Scholar 

  117. Hewison CE, Tran MN, Kaniki N, Remtulla A, Bryant D, Getgood AM. Lateral extra-articular Tenodesis reduces rotational laxity when combined with anterior cruciate ligament reconstruction: a systematic review of the literature. Arthroscopy. Oct 2015;31(10):2022–34. https://doi.org/10.1016/j.arthro.2015.04.089.

    Article  PubMed  Google Scholar 

  118. Geeslin AG, Moatshe G, Chahla J, et al. Anterolateral knee extra-articular stabilizers: a robotic study comparing anterolateral ligament reconstruction and modified lemaire lateral extra-articular tenodesis. Am J Sports Med. 2018;46(3):607–16. https://doi.org/10.1177/0363546517745268.

    Article  PubMed  Google Scholar 

  119. Monaco E, Maestri B, Conteduca F, Mazza D, Iorio C, Ferretti A. Extra-articular ACL reconstruction and pivot shift: in vivo dynamic evaluation with navigation. Am J Sports Med. 2014;42(7):1669–74. https://doi.org/10.1177/0363546514532336.

    Article  PubMed  Google Scholar 

  120. Ibrahim SA, Shohdy EM, Marwan Y, et al. Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: a randomized clinical trial. Am J Sports Med. 2017;45(7):1558–66. https://doi.org/10.1177/0363546517691517.

    Article  PubMed  Google Scholar 

  121. Slette EL, Mikula JD, Schon JM, et al. Biomechanical results of lateral extra-articular tenodesis procedures of the knee: a systematic review. Arthroscopy. 2016;32(12):2592–611. https://doi.org/10.1016/j.arthro.2016.04.028.

    Article  PubMed  Google Scholar 

  122. Getgood A, Bryant D, Firth A, Group S. The stability study: a protocol for a multicenter randomized clinical trial comparing anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis in individuals who are at high risk of graft failure. BMC Musculoskelet Disord. 2019;20(1):216. https://doi.org/10.1186/s12891-019-2589-x.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yabroudi MA, Irrgang JJ. Rehabilitation and return to play after anatomic anterior cruciate ligament reconstruction. Clin Sports Med. 2013;32(1):165–75. https://doi.org/10.1016/j.csm.2012.08.016.

    Article  PubMed  Google Scholar 

  124. Wright RW, Haas AK, Anderson J, et al. Anterior cruciate ligament reconstruction rehabilitation: MOON guidelines. Sports Health. 2015;7(3):239–43. https://doi.org/10.1177/1941738113517855.

    Article  PubMed  PubMed Central  Google Scholar 

  125. D’Amore T, Rao S, Corvi J, et al. The utility of continuous passive motion after anterior cruciate ligament reconstruction: a systematic review of comparative studies. Orthop J Sports Med. 2021;9(6):23259671211013841. https://doi.org/10.1177/23259671211013841.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Perry MC, Morrissey MC, King JB, Morrissey D, Earnshaw P. Effects of closed versus open kinetic chain knee extensor resistance training on knee laxity and leg function in patients during the 8- to 14-week post-operative period after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):357–69. https://doi.org/10.1007/s00167-004-0568-7.

    Article  PubMed  Google Scholar 

  127. Meredith SJ, Rauer T, Chmielewski TL, et al. Return to sport after anterior cruciate ligament injury: panther symposium ACL injury return to sport consensus group. J ISAKOS. 2021;6(3):138–46. https://doi.org/10.1136/jisakos-2020-000495.

    Article  PubMed  Google Scholar 

  128. Lu Y, Patel BH, Kym C, et al. Perioperative blood flow restriction rehabilitation in patients undergoing ACL reconstruction: a systematic review. Orthop J Sports Med. 2020;8(3):2325967120906822. https://doi.org/10.1177/2325967120906822.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lowe WR, Warth RJ, Davis EP, Bailey L. Functional bracing after anterior cruciate ligament reconstruction: a systematic review. J Am Acad Orthop Surg. 2017;25(3):239–49. https://doi.org/10.5435/JAAOS-D-15-00710.

    Article  PubMed  Google Scholar 

  130. Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917–29. https://doi.org/10.1007/s40279-019-01093-x.

    Article  PubMed  Google Scholar 

  131. Webster KE, Hewett TE. Is there value and validity for the use of return to sport test batteries after anterior cruciate ligament injury and reconstruction? Arthroscopy. 2020;36(6):1500–1. https://doi.org/10.1016/j.arthro.2020.03.025.

    Article  PubMed  Google Scholar 

  132. Maletis GB, et al. Age-related risk factors for revision anterior cruciate ligament reconstruction. Am J Sports Med. 2015;44(2):331–6.

    Article  PubMed  Google Scholar 

  133. Persson A, Fjeldsgaard K, Gjertsen JE, et al. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian cruciate ligament registry, 2004-2012. Am J Sports Med. 2014;42(2):285–91. https://doi.org/10.1177/0363546513511419.

    Article  PubMed  Google Scholar 

  134. Widner M, Dunleavy M, Lynch S. Outcomes following ACL reconstruction based on graft type: are all grafts equivalent? Curr Rev Musculoskelet Med. 2019;12(4):460–5. https://doi.org/10.1007/s12178-019-09588-w.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hamrin Senorski E, Alentorn-Geli E, Musahl V, et al. Increased odds of patient-reported success at 2 years after anterior cruciate ligament reconstruction in patients without cartilage lesions: a cohort study from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1086–95. https://doi.org/10.1007/s00167-017-4592-9.

    Article  PubMed  Google Scholar 

  136. Rothrauff BB, Jorge A, de Sa D, Kay J, Fu FH, Musahl V. Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: a systematic review with minimum 10-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1072–84. https://doi.org/10.1007/s00167-019-05665-2.

    Article  PubMed  Google Scholar 

  137. Ajuied A, Wong F, Smith C, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2014;42(9):2242–52. https://doi.org/10.1177/0363546513508376.

    Article  PubMed  Google Scholar 

  138. Sarraj M, de Sa D, Shanmugaraj A, Musahl V, Lesniak BP. Over-the-top ACL reconstruction yields comparable outcomes to traditional ACL reconstruction in primary and revision settings: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):427–44. https://doi.org/10.1007/s00167-018-5084-2.

    Article  PubMed  Google Scholar 

  139. Akmeşe R, Yoğun Y, Küçükkarapinar İ, Ertan MB, Çelebi MM, Akkaya Z. Radiological maturation and clinical results of double-bundle and single-bundle anterior cruciate ligament reconstruction. A 5-year prospective case-controlled trial. Arch Orthop Trauma Surg. 2021; https://doi.org/10.1007/s00402-021-03971-4.

  140. Chen H, Chen B, Tie K, Fu Z, Chen L. Single-bundle versus double-bundle autologous anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials at 5-year minimum follow-up. J Orthop Surg Res. 2018;13(1):50. https://doi.org/10.1186/s13018-018-0753-x.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E. Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med. 2019;47(14):3531–40. https://doi.org/10.1177/0363546518825340.

    Article  PubMed  Google Scholar 

  142. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J. Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med. 2017;45(6):1326–32. https://doi.org/10.1177/0363546516688665.

    Article  PubMed  Google Scholar 

  143. Han HS, Seong SC, Lee S, Lee MC. Anterior cruciate ligament reconstruction : quadriceps versus patellar autograft. Clin Orthop Relat Res. Jan 2008;466(1):198–204. https://doi.org/10.1007/s11999-007-0015-4.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Reinhardt KR, Hetsroni I, Marx RG. Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am. 2010;41(2):249–62. https://doi.org/10.1016/j.ocl.2009.12.009.

    Article  PubMed  Google Scholar 

  145. van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH. Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med. 2012;40(4):800–7. https://doi.org/10.1177/0363546511432545.

    Article  PubMed  Google Scholar 

  146. Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med. 2015;43(3):641–7. https://doi.org/10.1177/0363546514561745.

    Article  PubMed  Google Scholar 

  147. Desai N, Björnsson H, Samuelsson K, Karlsson J, Forssblad M. Outcomes after ACL reconstruction with focus on older patients: results from the Swedish National Anterior Cruciate Ligament Register. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):379–86. https://doi.org/10.1007/s00167-013-2803-6.

    Article  PubMed  Google Scholar 

  148. Wang S, Zhang C, Cai Y, Lin X. Autograft or allograft? irradiated or not? a contrast between autograft and allograft in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy. 2018;34(12):3258–65. https://doi.org/10.1016/j.arthro.2018.06.053.

    Article  PubMed  Google Scholar 

  149. Hulet C, Sonnery-Cottet B, Stevenson C, et al. The use of allograft tendons in primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. Jun 2019;27(6):1754–70. https://doi.org/10.1007/s00167-019-05440-3.

    Article  PubMed  Google Scholar 

  150. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR. What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res. 2017;475(10):2412–26. https://doi.org/10.1007/s11999-017-5330-9.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rousseau R, Labruyere C, Kajetanek C, Deschamps O, Makridis KG, Djian P. Complications after anterior cruciate ligament reconstruction and their relation to the type of graft: a prospective study of 958 cases. Am J Sports Med. 2019;47(11):2543–9. https://doi.org/10.1177/0363546519867913.

    Article  PubMed  Google Scholar 

  152. Mohtadi N, Barber R, Chan D, Paolucci EO. Complications and adverse events of a randomized clinical trial comparing 3 graft types for ACL reconstruction. Clin J Sport Med. 2016;26(3):182–9. https://doi.org/10.1097/JSM.0000000000000202.

    Article  PubMed  Google Scholar 

  153. Casabianca L, Gerometta A, Massein A, et al. Graft position and fusion rate following arthroscopic Latarjet. Knee Surg Sports Traumatol Arthrosc. 2016;24(2):507–12. https://doi.org/10.1007/s00167-015-3551-6.

    Article  PubMed  Google Scholar 

  154. Ekhtiari S, Horner NS, de Sa D, et al. Arthrofibrosis after ACL reconstruction is best treated in a step-wise approach with early recognition and intervention: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3929–37. https://doi.org/10.1007/s00167-017-4482-1.

    Article  PubMed  Google Scholar 

  155. Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med. 2012;40(7):1551–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Boden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boden, S.A., Drain, N.P., Musahl, V., Fu, F.H. (2023). Anterior Cruciate Ligament Injury. In: Espregueira-Mendes, J., Karlsson, J., Musahl, V., Ayeni, O.R. (eds) Orthopaedic Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65430-6_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65430-6_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65430-6

  • Online ISBN: 978-3-030-65430-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics